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ABSTRACT

This article describes a skewed sensor redundancy approach based on navigation parity
vectors, each formed by comparing dual inertial navigation solutions, each generated using inputs
from a triad of 3 skewed inertial sensor sets (gyros and accelerometers). Each set of dual triads is
defined from a 4 sensor skewed tetrad within an overall skew redundant sensor array. All
combinations of tetrads are selected within the skewed array to generate multiple navigation parity
vectors for navigation-solution failure detection. Navigation outputs are formed from navigation
solution inputs to parity vectors that pass validity tests (i.e., having all components less than
prescribed navigation error limits). For an n skewed sensor array there are n! / (4! (n - 4)!) tetrads.
Modern day computer technology makes the associated throughput/memory requirement easily
achievable. The skewed sensor parallel navigation solution concept is illustrated using a skewed 6-
axis (hexad) sensor array. Itis shown by example how 12 parallel navigation solutions can be
used to form navigation parity vectors for all 15 possible tetrads in the hexad. Navigation solution
failure detection/isolation logic is described for the hexad, showing the ability to detect/isolate the
first 2 navigation solution failures, provide valid navigation outputs with 2 navigation solution
failures, and to detect the occurrence of a third failure.

INTRODUCTION

A commonly used method for increasing reliability in electronic systems is through the use of
redundant elements. For an Inertial Navigation System (INS), a classical approach to redundancy
has been by direct system duplication. With this approach, navigation outputs from two INSs are
compared against accuracy limits. Falling within test limits indicates that the two INSs are
operating properly; falling outside of test limits indicates that one of the two has experienced a
failure ("soft" or "hard", depending on the magnitude of the miscompare). Identification of the
failure to a particular INS is accomplished by comparing both INS outputs in the failed set to a
third INS. The failed INS is then identified as the one that fails the comparison test with the third
INS (given that the other INS in the failed set passes a comparison test with the third). Based on
this logic, for n INSs, the occurrence of failures in n-1 INSs can be detected, and failures in n-2
INSs can be isolated to the failed unit. Thus, to isolate up to two failed INSs, four INSs would be
required (quad redundancy).

Original redundant INSs were implemented using gimbaled platforms to isolate inertial sensors
from vehicle rotation. With the advent of strapdown inertial navigation technology, a
computational process in the INS computer replaced the mechanical platform, allowing the
equivalent of “platform” mounted sensor signals to be created within the INS computer using



vehicle (“body”) mounted (“strapdown”) inertial sensor signals for input. The strapdown sensor
signals provide additional potential benefits not readily available in traditional gimbaled systems: 1)
Use of the body mounted sensor signals for autopilot functions traditionally provided by a separate
group of flight control gyros/accelerometers, and 2) A new form of INS redundancy based on
mounting the inertial sensors in a non-orthogonal configuration.

In the past, 3-axis (triad) body mounted inertial sensor clusters were configured with input axes
orthogonal. Each level of redundancy was achieved by duplicating sensor triads (6 sensors for
dual redundancy, 9 sensors for triple redundancy, 12 sensors for quad redundancy). In effect, this
was the approach taken with gimbaled systems. It can be analytically demonstrated, however, that
orthogonal sensor mounting within a triad is actually unnecessary because the equivalent
orthogonal sensor signals can be calculated in a system computer from three non-orthogonal
(skewed) input axis aligned sensors. Thus, any failed sensor within a triad can be replaced by a
single skew aligned sensor, the computer then analytically reforming a new orthogonal triad from
the skewed sensor and the two un-failed sensors in the original triad. This basic concept allows
each additional level of redundancy to be achieved by addition of one skew aligned sensor rather
than duplication of sets of three (i.e., 4 sensors for dual redundancy, 5 sensors for triple
redundancy, 6 sensors for quad redundancy). (An additional requirement is that sensor triads
formed from the skewed redundant set have non-coplanar input axes.)

For redundant systems in general, means must be provided to detect failures within the
redundant set. For skewed strapdown systems, redundancy analysis in the past was primarily
focused on identifying sensor failures [1, 2, 4-6], rather than navigation solution failures (as with
gimbaled systems). The method was based on monitoring the outputs of “parity” equations, each
formed from a linear combination of four or more skewed sensor outputs within the redundant
sensor array (and with separate parity equations for skewed redundant gyros and accelerometers).
Parity being approximately zero identified that all sensors within the parity group were operating
properly (within the expected “normal” range for “failure-free” sensors). Sensors in failure-free
identified parity groups were then linearly combined in a weighting algorithm to calculate the
equivalent orthogonal axis outputs. This is an effective method for sorting “hard” failures for rapid
corrective action of outputs used for flight control. However, for “soft” failures (small errors that
would build up over time in an inertial navigation solution), sensor-level parity type testing
becomes problematic.

A potential solution to soft failure detection at the sensor parity level is to filter the parity
signals so that over time, soft steady failures can be discriminated from normal sensor noise. The
basic problem with this approach is that during the time before the failure is detected, the associated
sensor error will be building in the navigation solution. Thus, when the sensor causing the error is
finally identified (and no longer used for navigation computation input), the navigation error it has
already created will remain. To remedy the problem, [3] proposed that first order sensor-to-
navigation error sensitivities be generated in parallel with the sensor failure detection parity
routines. When the failed sensor (and its error) is finally identified by parity tests, the sensitivity
formulas would then be used for “retro-active” correction of the navigation solution error. While
this method improves on the previous approach, it was also then recognized that a more proper and
direct method for detecting/correcting soft failures in the navigation function was to generate
multiple (parallel) inertial navigation solutions using different combinations of redundant sensor
inputs. Comparing navigation solutions could then continuously determine those without failures,
with the failure-free navigation solutions then used in appropriate weighting formulas for output (in
the same manner as with redundant gimbaled INSs). Unfortunately, computer throughput



limitations at the time did not permit such a “brute force” parallel navigation solution approach.
With continuing advances in computer through-put/memory-size technology, the “brute force”
approach to skewed sensor redundancy management is now very feasible. This article describes
how such an approach might be implemented.

The article first reviews the classical skewed sensor parity equation method for failure
detection. An equivalent parallel strapdown inertial navigation solution approach is then described,
each solution formed from a triad of skewed gyro/accelerometer sensor sets within the skew
redundant sensor array (gyro and accelerometer input axes are assumed for the article to be
parallel). By comparing navigation solutions generated from two of the triads, a navigation parity
vector is formed. (Note - A "navigation parity vector" consists of a group of attitude, velocity,
and/or position parameter comparisons.) The dual triads used to generate each navigation parity
vector are selected from a 4-sensor (tetrad) grouping within the skewed sensor array. The article
demonstrates that a navigation parity vector formed from a particular sensor tetrad is equivalent to
the traditional skewed sensor parity equation for the tetrad, propagated through linearized error
state dynamics of the navigation solution.

A navigation parity vector is generated for each of the possible tetrads within the overall
skewed sensor array - e.g., for a skewed 6-axis (hexad) sensor array, there are 15 possible sensor
tetrads (15 combinations of 4 sensors within the 6), hence, there would be 15 corresponding
navigation parity vectors, each formed by comparing navigation solutions generated from two
triads within each tetrad. When all elements of a navigation vector lie within acceptable
performance limits, the dual navigation solution inputs forming the parity vector are deemed
failure-free, hence, usable for navigation parameter output generation. Conversely, if any element
within a navigation parity vector fails its performance limit test, both triad generated navigation
solution inputs are deemed failure-suspect, hence, no longer usable for navigation parameter output
generation. Navigation outputs would be formed as a weighted average of identified failure-free
navigation solution parameters (similar to the gimbaled INS redundancy management approach).

A hexad sensor array configuration is then analyzed in detail. There are 20 possible triads in a
hexad for generating parallel navigation solutions (20 combinations of 3 sensors within the 6).
The article demonstrates that 12 triads and associated navigation solutions are sufficient to generate
the 15 navigation parity vectors that correspond to the 15 possible tetrads. The article then shows
that monitoring the 15 navigation parity vectors allows detection/isolation of the first two
navigation solution failures, and detection of a third.

NOTATION

() = Designation for a vector in general or a column matrix containing the vector components,
depending on usage.

(X ><) = Skew symmetric (or cross-product) form of vector V represented by the square

0 -Vz Vy
matrix] Vz 0 - Vx |inwhich Vx, Vv, V7 are the components of V. The matrix
-Vy Vx O
product of (X ><) with another vector equals the cross-product of (X ><) with the other

vector.



T = Superscript designation for transform of the associated matrix.

QA = Designation for vector () represented as a column matrix with elements equal to the
projection of () on coordinate frame A axes.

TRADITIONAL PARITY EQUATION FAILURE DETECTION APPROACH

Consider an array of n skewed strapdown inertial sensors ( n gyros and n accelerometers). The
sensor outputs are related to sensor inputs as follows:

sout = D sp + 8 (M

where

SOut = Column vector of length n whose elements are the skewed sensor outputs (gyro or
accelerometer).

SIn = Three element sensor input vector whose components equal the projections of
strapdown gyro sensed angular rate or accelerometer sensed specific force on orthogonal
inertial sensor assembly axes.

8s = Column vector of length n whose elements are the errors in sQy;.

D = nby 3 geometry matrix. For this article we will assume that the skewed accelerometer
and gyro input axes are parallel, hence, D is the same when (1) represents a gyro or an
accelerometer output data vector s.

In general, the elements of sy, s and D are given by:

T
SQut = (SOuta, SOuty» SOute> SOutgs * * - SOutn)

ds (Ssa, dsp, 0S¢, 0S4, - - - SSn)T (2)

D = (Ea, Up, Uc, Ud, - - '%)T

where

SOutj» 0s; = Output and error of sensor i.
Ui = Unit vector parallel to the sensor i input axis.

a,b,c,d,---n = iindex designation for sensor a, b, ¢, d, - - - n.

A skewed sensor parity vector is defined from Eq. (1) as in [5]:

P = E SOut (3)

where



P = Sensor arity vector in general.

E = Constant matrix.
With (1) in (3),
p = E(Dspm+8s) = ED sy +E 8s )
E is chosen to satisfy the condition:
ED =0 (5)

Using (5) we see then from (4) that

p = Eds (6)

Thus, p measures the errors in SQut.

For ideal sensors containing zero error, the elements of p will all be zero. For non-ideal
sensors containing errors under normal sensor operating conditions, the elements of p will have
small values corresponding to the expected normal sensor errors. Under sensor failure conditions,
particular elements of p will have large values generated by the larger than normal sensor errors.
Those elements of p that are affected by particular sensor failures are determined by the rows of E
containing non-zero elements in the failed sensor columns. Suitable logic can be designed based
on the previous characteristics that enables sensor failures to be detected and isolated. In general,
for n skewed sensors, n-3 failures can be detected and n-2 failures can be isolated by monitoring
the p element behavior patterns.

In the traditional skewed sensor redundancy approach, p is monitored as the means for
detecting and isolating failed sensors. Remaining un-failed sensors are then used through a
suitable weighting matrix to estimate the equivalent orthogonal sensor data. The orthogonal sensor
data so generated then forms the input to inertial navigation integration routines that calculate
attitude, velocity, and position (and to flight control functions using angular rate and specific force
inputs).

SKEWED REDUNDANCY USING PARALLEL NAVIGATION SOLUTIONS

For the parallel navigation solution skewed redundancy approach, individual orthogonal sensor
signals are first derived from individual skewed 3-axis (triad) gyro/accelerometer data. The
equivalent to a skewed sensor tetrad parity equation is then generated by comparing navigation
solutions generated from two (dual) skewed sensor triads, each formed from sensors in a particular
tetrad group within the overall redundant sensor array. As such, the triads will have two skewed
sensors in common (e.g., for a tetrad with skewed sensors a, b, ¢ and d, if one triad uses sensors a,
b, ¢ and the other triad uses sensors b, ¢, d, sensors b and ¢ will be common between the triads).
The navigation parity vector formed by comparing the triad generated navigation solutions
represents the equivalent to a traditional sensor parity equation formed from the abcd sensor
outputs.



Forming Two Triads Within A Tetrad

For the abc and bed sensor triads we can write from the appropriate rows of (1):
SOutype = Dabe SIn + 3sabe SOutpeq = Dbed SIn + OShed (7
with

T
SOutgpe = (SOuty SOuty: SOut)'  SSabe = (854, 5ty 85¢)  Dape = (ug, up, ue)"

(3
_ T _ T _ T
SOutpeq = (SOuty SOutes SOutg)’  OSbed = (8sb, 85c, 85d)  Dbed = (up, u, ug)
Based on (7) we now define:
Snp. = Dot Stnq = Dt 9
SInghe = Pabe SOutype SInpeq = Pped SOutpeqg )
which with (7), finds:
~ -1 ~ -1
SIngpe = SIn + Dype dSabc SInpeg = SIn + Dpey dShed (10

where

~ A~

SIngper SInpeqg = Estimates for the true sy, sensor input vector obtained using the abc or bed
sensor triad outputs.

Note from (10) that when the sensor errors are zero, the SIn,.» Slnpq €stimates will equal the true
stn value which is the basis for the form of Egs. (9).

Appendix A shows that (9) can also be written as

~

(Eb X Uc, Uc X Uy, Uy X Hb) SOutype

SIngpe =
(Xabc ( 1 1 )
~ 1
ﬂnbcd = (EC X Ud, Ud X Up, Up X EC) §Outbcd
Olpcd
in which
Ok/m = Uk - (EIXEm) (12)
and where

ug, U7, uy, = Unit vectors along skewed sensor k, /, and m input axes.

ox/m = Defined vector product operator between unit vectors along the skewed sensor k, [, m
input axes.



For (11) to exist, 0apc and 0lpcq must be non-zero which is equivalent to the requirement that no
three of the abcd sensor input axes lie in the same plane, the classical requirement for skewed
redundant sensors [1-6].

Forming A Navigation Parity Vector From The Dual Navigation Solutions

Dual inertial navigation solutions are obtained from the abc and bed sensor data set by an

integration process using Sin,p.» SInp.q fOr the orthogonal inertial sensor vector inputs (gyro sensed
angular rate and accelerometer sensed specific force acceleration). For example, a typical aircraft
inertial navigation solution generated using an abc or bcd inertial sensor triad would determine
attitude, velocity, and position by integrating the following differential equations [8 Sect.2]:

&N = Mo llo) + M/

N N( N N
p =F¢ (EUp XXN) +PUp Uyp
(13)
~B N
vN = ngsph +g§—(2@e +QN)><XN
ct =c ( Nx) h=uy VN
where
B = Designation for orthogonal "body" frame sensor assembly coordinates.
N = Designation for locally level navigation coordinate (e.g., wander azimuth [8, Sect.

4.5]).

E = Designation for earth fixed coordinates (e.g., one axis parallel to earth's rotation axis,
another axis parallel to the intersection of earth's equatorial plane and the Greenwich
reference meridian plane, the third perpendicular to the other two).

N_ i . :
Cg = Direction cosine matrix that transforms vectors from sensor coordinate frame (B) to the
locally level navigation frame (N).

Cy = Direction cosine matrix that transforms vectors from locally level navigation
coordinates (N) to earth fixed reference coordinates (E).

A~

o = Sensor assembly inertial angular rate vector in body (B) frame coordinates calculated

in (11) from a selected skewed gyro triad, €.9., SIn,p. OF STnpq froM SOut,y, OF
SOutyq Skewed gyro measurements.



®. = Earth inertial rotation rate vector in navigation frame (N) coordinates (a function of

N E
Cy and h).
BN = Angular rate of the navigation frame relative to the earth in N frame coordinates.

pup = Upward component of BN (selected based on the type of navigation frame being
used, e.g., azimuth wander or free azimuth [7 Sect. 4.5].

N , ,
Uy, = Unit vector upward in N frame coordinates. Note that for the N frame defined with
the third axis up, ggp =(0,0, 1)T.

N : : E

F = Curvature matrix (a function of C and h).

v = Velocity vector relative to the earth in navigation (N) coordinates.
~B

asFp, = Sensor assembly specific force acceleration vector in body (B) frame coordinates

calculated in (11) from a selected skewed accelerometer triad, €.9., SIn,p,. OF STnpcq
from SQutyp,. OF SOuty4 Skewed accelerometer measurements.

N . o . .
gp = Plumb-bob gravity acceleration in N frame coordinates (a function of earth mass
o E N
distribution, Cy, ®. , and h).
h = Altitude.

The previous equations would also typically include updating algorithms to prevent vertical
channel divergence [7 Sect. 4.4.1.2.1].

The error-free form of (13) can also be written in the short-hand state vector form:

X =f (X, Ofn, aSFIn) (14)

where

o . N
X = True navigation parameter state vector with elements equal to the components of Cg,
E .
vN, Cy, and hin (13).

Om, aSFIn = True inertial angular rate and specific force acceleration vectors of the
strapdown inertial sensor assembly.

~ ~

Now consider the ®Ingy,.., (’)Inbcd angular rate vectors (calculated in (11) from the abc and bcd

skewed gyro outputs) and the as Flnype» S Flnpq SPECific force vectors (calculated in (11) from the



abc and bed skewed accelerometer outputs). The inertial navigation solution for each is obtained
by integrating the following in parallel:

4 ~
A~

Xope=f (Xabc, Olngpes @SFInabc) Xpea =T (Xbcd, Olnpeg> 3SFlngeg (15)

t /\
abc

Xabe = (t)dt Xbed = _[0 Xbcd(f) dt (16)

where

Xabe» Xped = Navigation parameter vector solutions obtained from the abc and bed sensor
derived inertial sensor inputs.

Note: Prior to initiation of the (16) navigation solution integration process, an initial alignment
operation would be performed for each sensor triad using the same sensor signals as in (15).
Initial alignment typically takes several minutes to complete [8 Chpt. 6]. The parameters
generated at initial alignment completion are used to initialize the X,p¢, Xpeq parameters in (15).
For this discussion, initial alignment operations should be considered part of the navigation
process.

In principle, the difference between )A(abc(t) and SZde (t) in (16) would provide the measure
needed to 1dent1fy the presence of error in the abc and/or bed navigation solutions. However, the

form of X i is generally not suitable for direct comparison of all Xabc(t) Versus Xbcd (1) elements,
neces 81tat1ng an intermediate method for navigation solution comparison.

COMPARING NAVIGATION SOLUTIONS GENERATED BY THE SENSOR TRIADS

When (14) represents the typical Eq. (13) aircraft INS form (for example), a method is required

for comparing the Cg and CE matrices, each of which contains 9 elements that are interrelated by
orthogonality/normality constraints inherent within a direction cosine matrix. Additionally,
comparison of N frame based parameters between different navigation solutions can be problematic
if the N frames are not initialized identically in the triad solutions being compared, e.g., [7 Sects.
6.2.1 & 6.2.2] (e.g., analogous to two gimbaled INSs using wander azimuth navigation coordinates
in which the platform heading for each may be initialized differently). (Note: This may not actually
be a problem with the skewed redundancy situation being analyzed because the solutions are
generated within the same system, presumably using the same navigation/initialization routines.)
For generality and as an example, the following E frame based navigation parameter equivalents
will be used in this article for triad solution comparisons:

E__E N E_~E_N
Cp=CyCgp  vE=Cnv

E E N

] . (17)

where



Cg = Direction cosine matrix that transforms vectors from B to E frame coordinates.
XE = Velocity relative to the earth in E frame coordinates.
R"™ = Position vector from earth's center to the INS in E frame coordinates.

Re = Average radius of the earth.

The approximation for BE in (18) is that earth's shape is approximately spherical (See [7 Egs.
(5.2.2-1) & (5.1-10)] for exact RE equation).

N E .
Assuming that the integration algorithms used in (16) maintain Cg and Cy; matrix

E
orthogonality/normality, the effective difference between the abc and bed triad determined Cg
solutions can be measured based on a rotation vector formulation [7 Sect. 3.2.2.2]:

~E ~E ~N ~E ~E ~N
CE‘abc = CNabc CE‘abc CBbcd = CNbcd CBbcd
E _ ~E (AE )T
CBade = CBabc CBbcd (18)

E . E 1| E E \T
(Qabcdx) = siNQapbcd (uq)abch) = Z{CBabcd ) (CBabcd) }

where

~“E AN 4 ~N E N o ,
CNype> CByper CNpeg» CBpeg = Cnv Cp solution within (17) using the abc and bed skewed

sensor derived values for the equivalent orthogonal sensor inputs.

E

. . . . ~E ~E . .
CBade = Direction cosine matrix formed from Cg_, , Cg, 4 as indicated in (18).

Gabcd = Magnitude of the rotation vector equivalent to Cy abed"

= Uni inE f el to the rotati ivalent to Co
E‘Pabcd = Unit vector 1n rame axes para el to the rotation vector eqUIV ent to Babcd'

E
0.,bcd = Attitude parity vector in E frame axes representing the difference between the
~E
Cs

~E .
abe> CBpeg Solutions.

. ~E ~E ) . . .
Note that without abc and bed sensor errors, the Cp, ., Cgy.4 solutions will be identical, hence,

Cg abeg M (18) will be identity and Babed in (18) will be zero. Note also that for small Oabed,

E E E E : : E
= u =
(9 abcdx) reduces to 0,peq = Pabed Y abed ®abcd, the rotation vector equivalent to CBale &

10



E
The equivalent three component vector form of the (Q abcdx) 3 by 3 matrix in (18) is derived
from

E_E_ E
U =u Xy
uE uE _(UEX UE) uE = uE X llE uE—(uE)T uE X) uE
= " Z0abed ~ 5 7 =K/ Z0abed T \W0abed T S ) =K T \5K) \Bdabed ) (19)
E E E E ( E)T E E| E
Eq)abcd_ __213(ui 'uq)abcd)ui N z ijk = U Eq)abcd>< HJ Y
=5 123,231, 312

where

E E E . .
Y;, Uy, W = Unit vectors parallel to E frame coordinate axes.

Thus, from (18) with (19),

E . E
Oabcd = Sindabed Yo abed

E . E E
= Zi=1,3 u; . SinQabcd u¢abcdﬂ u, (20)
[(ET1] E E \T| E| B
= z ijk = l(uk) Z{CBabcd_ CBabcd EJ ’Ei

123,231, 312

For the particular aircraft INS example problem being analyzed, the accuracy requirements on
attitude are generally different for vertical and horizontal components. For accuracy/failure

assessment, the vertical/horizontal components of 0,y,.q are definable in the N frame as:

N 1(aN ~N N N _E
Cg = 5 CEape + CEpeq Oabcd = Cg Oabed
(21
N N N N N
OUpabca = Babed - Uup OH,peq = Oabed - OUpapea Yup

where

N . . N . .
OUpapear OH,pq = Vertical and horizontal components of 6,14 in N frame coordinates.

N
Egs. (21) with (20) for OUp,p.q: OH,,.q Would then be used to assess "normal" attitude

performance from the abc and bcd triad navigation solutions, as compared with expected horizontal
and vertical attitude errors.

The velocity performance of the abc and bcd triads is assessed by first comparing the E frame
components:

E ~E ~E
Axabcd = Vabc - Vbed (22)

11



where

~E ~E . . .
Vabe, Vbed = E frame components of the velocity solutions obtained from the abc and bed

triads.

AV, p,.q = Velocity parity vector in the E frame for the abc and bed triad navigation solutions.

~E ~E
Note that without abc and bcd sensor errors, the Vabe, Vbed solutions will be identical, hence,

AV, pcq in (22) will be zero. For the example aircraft INS, horizontal and vertical velocity accuracy
requirements are different, hence, as with attitude accuracy assessment,

N N, E N N N N N
AVabed = CE AVabed  AVUpabed = AVabed - UUp  AVHaped = AVabed ~ AVUpapea Yup  (23)

N
in which Cg is as calculated in (21) and where

N . ) N
AVUpapea> AVH,pq = Vertical and horizontal components of AV, 4.

Positioning assessment is derived from the difference in abc and bcd triad positioning solutions
for Cy and h, translated into the equivalent BE with (17):
E _~E N ~E _~E N
UUpabe = CNabc EUp UUpped = CNbcd EUp 24)
E ~E ~E ~ \~E ~ \~E
AR, pcq = Rabe - Rbed = (Re + habc) UUpabe - (Re + hbcd) UUpped

where

~E ~E
Rabe, Rbed = E frame components of the position vector solutions obtained from the abc and
bed triads.

AR, ;.4 = Position parity vector in the E frame for the abc and bed triad navigation solutions.

~E ~E
Note that without abc and bed sensor errors, the Rape, Rbed solutions will be identical, hence,

AR, .q in (24) will be zero. For the aircraft INS, horizontal and vertical positioning accuracy
requirements are different, hence, as with attitude and velocity accuracy assessment,

N N E
AR ped = Cg ARy peq

N

25)
N N N N (
ARUpypeq = ARypeq - Uyp ARH, 04 = ARyped = ARUpybea Uup

N
in which Cg is as calculated in (21) and where

12



N . . N
ARUp,pea» ARH,,,.q = Vertical and horizontal components of AR, 4.

Egs. (20) - (25) allow the difference between abc and bed attitude/velocity/position solutions

N E
from (13) - (16) (i.e., 9 elements of Cg, 9 elements of Cy;, 3 elements of XN, and 1 element of h -

22 elements in all), to be expressed by 9 elements: OUp,p 4> AVUpapedr ARUpypeq and 2 elements in

N N N .. .
each of Oy, 4> AVH, . ARH,,.4- Thus, the composite navigation parity vector would be

T

! N 26
’ AvUPabcd’ (ARHabcd) ’ ARUpabcd ( )

Agabcd = QHade ’ eUpabcd’ AKHabcd

where

A gabcd = Nine element navigation parity vector representing the difference between the abc
and bcd triad navigation solutions to (13) - (16).

For the (15) - (16) navigation equation set representing the integral solutions of (13) to abc and

bed sensor triad inputs, (26) would be used as the measure of how closely Xabc and Xbcd compare

N N N
(i.e., versus GJ{abcd, OUpabear AXHabcd’ AVUp,peds ABHabcd’ ARUp, .4 Navigation parameter
accuracy requirements). If all A gabcd component error measurements are deemed acceptable, both

Xabe and Xpcq would be treated as valid, allowing their components to be used with appropriate
averaging for navigation system parameter outputs. For systems with more than 4 skewed axis
sensors, multiple triad navigation solutions would be generated and compared by twos in the same
manner. The final navigation parameter outputs would be generated by averaging the outputs from
all triads deemed acceptable.

EQUIVALENCY BETWEEN SKEWED REDUNDANT SENSOR AND PARALLEL
NAVIGATION PARITY APPROACHES

The previous developments showed how for a (13) type set of navigation equations, Alabcd
in (26) can be used as the measure of triad abc and bcd navigation parameter accuracy for failure
detection. For a navigation equation set different than (13), an equivalent formula can be derived
for Alabed. We could have also have defined navigation parity as simply the difference between
navigation solution parameters generated directly with the abc and bcd sensor triads, e.g., Egs.
(13) - (16). For both definitions, there is a corresponding parity equation that can be formed
from the abcd sensors. This section derives equivalency relationships between the navigation
parity vector and sensor parity equation for both navigation parity definitions.

13



Navigation/Sensor Parity Equivalency For Directly Generated Navigation Parameters

For navigation parity defined as the direct difference between the abc and bcd triad X
navigation solutions:
AXabed = Xabe - Xbed (27)

where

AXabed = Navigation solution parity vector that equals zero when the abc and bcd triads are
error free.

The sensor induced errors in X,pc, Xped are defined as variations from the true navigation
solution:

Xabc = X + 0Xabc Xbcd = X + 0Xped (28)
where

X = True (error free) navigation solution.

0Xabe» 0Xped = Errors in the Xape, Xped Navigation solutions caused by sensor errors.

The dXape, 0Xped Navigation errors can be approximated by the following linearized forms
[7 Sect. 12.2.1,12.2.2, & 12.2.3]:

8Xabc =~ M(t) Xabc 8Xbcd =~ M(t) Xbed (29)
where

Xabces Xbed = Error state vectors associated with Xape, Xped-

M(t) = Matrix for converting Xapc, Xbed t0 0Xabe, 0Xpbed- M(t) is a function of X,
. . . g
hence, varies with time.

The Xape and Xpcq error state vectors are what is typically used for linearized inertial navigation
system error analysis [9 Sect. 5.1]. In general, X,pc and xpcq contain 9 elements each (3 attitude

error states, 3 velocity error states, 3 position error states - e.g., Y, 0V, 0R in [7 Sect. 12.3.3 & 8
Eqs. (46)] that are analytically related to the dXapc, 0Xpcq Navigation parameter error vectors
which, for the example given in (13), have 22 elements each. Similarly for xpcq versus dXpcg.

Based on (26) - (28), we can also define a linearized navigation parity vector as the
difference between the X,pc and Xpcq error state vectors:

AXabed = Xabe - Xbed (30)
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which with (27) - (29) shows that
AXabed = M(1) AXabed (31)

For the navigation errors created by gyro or accelerometer sensor error (Sﬂnab . and SSan d)» the

Xabc and Xpcg error state vectors equal the integral of the following classical forms [7 Sect. 15.1,
8 Egs. (51), 9 Sect. 5.1]:

Xape(®) = Ax(V) Xabe(t) + Ags(t) O8ngp (V) "
(32)
Xpod(® = Ax(t) Xbed(t) + Ags(t) OSIny,4(t)

where

Ax(t), Ags(t) = Navigation error state dynamic matrix partitions (functions of X) coupling

X navigation and Js inertial sensor errors (gyro or accelerometer), into the x navigation
error states.

From (10) it should be clear that

-1 -1
8§[nabc = Dabc 6§Outabc SSJIIbcd = Dbcd 8§0utbcd (33)

Taking the derivative of (30) and substituting (32) - (33) then gives

A% .40 = Ax(D) Axabed() + Ags(®) Dy sabe(®) - Dpeg Ssbed(®) (34)

Integrating (34) obtains Axapcq Which, through (31), provides the linearized version of
navigation parameter parity vector AXapcq as a function of abed sensor errors.

Let us now consider a particular form for a sensor parity vector based on directly comparing
orthogonal sensor vectors derived from the abc and bcd sensors:

Pabcd = SIngpe - Slnpeq (35)
where

Pabcd = Sensor parity vector formed from skewed inertial sensor (gyro or accelerometer)
abcd outputs.

With (10), (35) is

-1 -1
Pabcd = D,y dSabc - Dyca dShed (36)

Comparing (36) with (6), shows that pahcd satisfies the traditional sensor parity vector definition.

15



Eq. (A-17) in Appendix A show that papcd in (36) can also be written as:

Pabcd
Pabed = Z Oljbc U; 37)
Xabc Obed j=1,3
in which
0lemEEj'(ElXUJn) aklmE%‘(quﬁn)

(33)
Pabed = Olbed SOut, - Oleda SOuty, + Odab SOut,. - abe SOuty

and where

u; = Unit vector along the sensor assembly j coordinate axis. Sensor assembly coordinates
are defined as an orthogonal right hand set fixed to the sensor assembly.

ug, U7, uy, = Unit vectors along skewed sensor k, /, and m input axes.

Pabcd = Scalar sensor parity equation for the abed sensors (i.e., equals zero under error free
abcd sensor conditions, and measures abcd sensor errors otherwise).

Substituting (37) for (36) in (34) gives

bed
A jpeg(® = Ax(® Mabea® + Ags® — L9 P gy (39)
Qabc Obed j=1,3

whose integral is

t .
Axabed(® = [ A%y (0 e (40)
or with (31),
t .
AXapea® = MO [ | A%, (0 dv 1)

Thus, from (39) - (41) we see that on a linearized basis, the navigation parameter parity vector

AXabed 18 proportional to the propagated P,pcq scalar sensor parity equation for the abed sensors,
propagated through the navigation error state dynamic equations.

Navigation/Sensor Parity Equivalency For Converted Navigation Parameters

For a Agabcd type navigation parity vector representing the difference between abc and bcd
triad generated navigation solutions (e.g., Eq. (26) for the Eqgs. (13) aircraft INS), the
equivalency between Agabcd and the corresponding abcd parity equation is more directly
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defined. For example, similar to the derivation leading to (26), the Xabc, Xbcd €rror state vector
elements might have been derived by first defining the errors to be in the computed Eq. (17) E
frame equivalent navigation parameters, then transforming the E frame defined navigation errors
into the N frame for horizontal/vertical component extraction [7 Sects. 12.2.1 - 12.2.3, 8 Egs.
(46)]. The derivation would closely match (18) - (26), except that the final result, compared with
(26), would be for the individual abc and bcd triad generated navigation solutions (not the (18) -
(26) defined parity difference):

T F
’ 6RUpabc

N T N T N
Xabe = |\WH,pce| » YUpabes 8XHabC » 8V Upgper SBHabc
T (42)

T

(N N N\
Xbed = %'Ibcd 7\|IUprd, 6XHde 96VUprd, 6BHde 78RUprd

where

N . . . .
v, Yup = Horizontal and vertical (up) components of the small rotation angle error in the

computed Cg attitude matrix (nominally defined in (17)), define in the E frame then
transformed to the N frame.

N N . : ,
dVy, dVup, 6Ry, 0Ryp = Horizontal and vertical components of the errors in computed

~E ~E
v , R (nominally defined in (17)), defined in the E frame then transformed to the N
frame.

Eqg. (26) would be rederived, beginning with a linearized version of the error in the computed
(17) navigation parameters generated using each of the abc and bcd triads:

~E ~E ~E ~E
sCE=Ch-CE=-(yPx)Ch  svE= "B sRE=R"-RE )
T

= fove (R M=

where
~E ~E ~E L _ _
CB,v ,R = Values for the (17) navigation parameters calculated with sensor inputs from
each of the abc and bcd triads.

~F ~

E ~E
CB,XE, RE = Nominal (error free) values for Cp, v , R .
8Cp, 8VE, 8RE = Attitude, velocity, position errors defined in the E frame.

E
VY = Small angle rotation vector equivalent to SCE , see [7 Sect. 12.2.1].

Then navigation parity vector Alabcd would be defined as the difference between the abc and

bed triad generated QNS:
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N N
Agade = gabc - gbcd (44)

The (44) result exactly matches Axabcd in (30) formed as the difference between the (42)
Xabes Xbed Vectors. Furthermore, it can be verified that Alaped in (44) exactly matches the

linearized form of Alabcd in (26) in which individual elements are defined as the difference
between abc and bcd triad generated navigation errors:

N N N ~
QHabcd = MHabc - M‘Ibcd eUpabcd = YUpabe = YUpbed
N N N
AVHbea = OVHape - OVHpes  AVUpabed = OV Upabe - 8V Uppeg (45)

N N N
ABHabcd = SBHabc B SBHbcd ARUpabcd = 8RUpabc - SRUPbcd
N N , N
Thus, for Xabes Xbed and Capes Cped error components defined the same, Caped = AXabed, and

t .
Alabed = J o A pg(® dt o)

in which Aéab d 18 provided by (39). From (39) and (46) we see that on a linearized basis, a

Alabcd type navigation parity vector is proportional to the propagated Ppcq scalar sensor parity
equation for the abcd sensors, propagated through the navigation error state dynamic equations.

HEXAD EXAMPLE

As an example of how skewed sensor parallel navigation solution redundancy might be
implemented, consider a skewed hexad sensor array configuration (i.e. 6 skewed
gyro/accelerometer sets). In a hexad there are 15 potential tetrad (four) skewed sensor sets (i.e., the
number of combinations of 4 containedin 6is6 ! /[4!(6-4)!]=15). Forthe 1,2, 3,4,5,and 6
skewed hexad sensors, the fifteen tetrad sensor groups are as follows:
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Tetrad 56 = 1234
Tetrad 46 = 1235
Tetrad 45 = 1236
Tetrad 36 = 1245
Tetrad 35 = 1246
Tetrad 34 = 1256
Tetrad 26 = 1345 47)
Tetrad 25 = 1346
Tetrad 24 = 1356
Tetrad 23 = 1456
Tetrad 16 = 2345
Tetrad 15 = 2346
Tetrad 14 = 2356
Tetrad 13 = 2456
Tetrad 12 = 3456

where
Tetrad IJ = Set of 4 of the 6 skewed sensors that does not include sensors I and J.

For each tetrad, two (of the possible four) triads are selected for navigation solution generation,
for Tetrad 34 in Eqs. (47) for example, triads 156 and 256. The 156 and 256 skewed triads would
be Eq. (11) orthogonalized, each then used to generate a navigation solution. The navigation parity
vector for Tetrad 34 would then be obtained by comparing the two triad 156 and 256 generated
navigation solutions. Fifteen navigation parity vectors would thereby be defined, one for each of
the Eq. (47) sensor tetrads:

Tetrad 56 = 1234 = AXsg
Tetrad 46 = 1235 = AX46
Tetrad 45 = 1236 = AX45
Tetrad 36 = 1245 = AX3g
Tetrad 35 = 1246 = AX35
Tetrad 34 = 1256 = AX34
Tetrad 26 = 1345 = AX»¢ (48)
Tetrad 25 = 1346 = AX>5
Tetrad 24 = 1356 = AX24
Tetrad 23 = 1456 = AX>73
Tetrad 16 = 2345 = AX¢
Tetrad 15 =2346 = AXj5
Tetrad 14 = 2356 = AX14
Tetrad 13 = 2456 = AX3
Tetrad 12 = 3456 = AX12

where
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AXp = Navigation parity vector formed by differencing navigation solution parameters
generated from the sensor triads selected within each Tetrad 1J (defined as the tetrad
that does not contain sensors I and J).

There are 20 potential triads that can be defined in a hexad (i.e., the number of combinations of 3
contained in a hexadis 6 ! /[3 ! (6 - 3) !] =20). Note - More than one tetrad contains the same
triad, e.g., the 123 triad can be found in the 1234, 1235, and 1236 tetrads. This enables less than
20 triad generated navigation solutions to form all 15 possible navigation parity vectors. For
example, by analytical experimentation it has been determined that the 15 Eq. (47) tetrads can be
formed from the following 12 of 20 possible triads:

A~ A~ A~ A~ A~

X123 X134 X145 X146 X156 X235 X236 X245 X046 X256 X345 X356  (49)

where

Xk = Navigation parameter vector solution generated using IJK skewed sensor triad derived
inertial sensor inputs.

The navigation parameter parity vectors in (48) are formed by differencing navigation solutions
in (49) generated using sensor triads within each parity vector's tetrad:

AXs6 = gm - 2134
AX46 = X123 - X235
AX4s = X123 - X236
AX36 = X145 - X245
AX3s5 = X146 - X246
AX34 = X156 - X256
AXo6 = X134 - X145 (50)
AXos = X134 - X146
AX24 = X156 - X356
AX23 = X145 - X156
AX16 = X235 - X245
AX15 = X236 - X246
AX14 = X235 - X236
AX13 = X245 - X256
AX12 = X345 - X356

Failure detection/isolation logic using the (50) navigation parity equations would be as follows.

For the first sensor failure, 5 of the Egs. (50) navigation parity vectors would remain within
accuracy limits. For example, for a sensor 1 failure, parity vectors AX1¢, AX15, AX14, AX13, and
AX12 would remain within accuracy limits because none have used a triad navigation solution
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derived using sensor 1. The other 10 parity vectors would have exceeded their accuracy limits
which, for this example set of 10 (those for which I or J is not 1), identifies sensor 1 as the failed

sensor. Following the sensor 1 failure, only the triads that generated the AX g, AX15, AX14,
AX13, AX12 parlty vectors in Eq (50) would be used to generate navigation outputs (i.e., XJ35,

X236, X245, X246, X256, X345, X356). The AX 16, AX15, AX 14, AX 3, AX 1 parity vectors would
continue to be monitored to detect the next failure.

For the second sensor failure, only one of the remaining parity vectors will continue to meet

accuracy requirements (i.e., the AXyy in which I and J correspond to the two failed sensors). The
parity vector that continued to satisfy accuracy limits, identifies (isolates) the second failed sensor
(i.e., given that I was identified as the first sensor to fail, the second failed sensor would be J in the

unfailed AX{yj parity vector). After the second sensor failure, the two navigation solutions used in
the remaining "failure-free" navigation parity vector would continue to be used to generate
navigation outputs. The remaining parity vector would then be monitored to detect another failure.

A third failure will cause the remaining parity vector to exceed accuracy limits, but that failure
cannot be isolated to a particular sensor (or triad navigation solution). Consequently, accuracy
assured navigation outputs could not be generated following the third detected failure without an
alternative navigation device for comparison (e.g., GPS).

For soft failures, the previous patterns may not develop simultaneously for sensor failure
identification. However, the triads with identified failure-free navigation parity vectors would still
be satisfactory for output generation. For hard or soft failures, the output navigation parameters
would be obtained by averaging the navigation parameters from triads that were used in the failure-
free navigation parity vectors.

APPENDIX A

EQUIVALENCY BETWEEN A NAVIGATION PARITY VECTOR AND ITS
ASSOCIATED TETRAD SENSOR PARITY EQUATION

A sensor parity vector for the abcd sensor tetrad was defined in Eq. (35) as:

~ ~

Pabcd = SIngp - SInpcg (A-1)

Expanding (A-1) along sensor assembly j axes finds:

Pabed = Z Pabcd/j Yj (A-2)
i=1,3
in which
Pabed/j = Uj - (ﬂnabc - Slnpeg (A-3)
where
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Pabed/j = Component of papcd along sensor assembly axis j.

u; = Unit vector along the sensor assembly j coordinate axis. Sensor assembly coordinates
are defined as an orthogonal right hand set fixed to the sensor assembly.

Using (9), Eq. (A-3) is equivalently:

T (-1 -1
Pabed/j = U |Dype SOutype Dped SOutpeq (A-4)
where

XT = Transpose of the column matrix formed from the components of V.

For derivations to follow, the following identities will be useful:

Viex (Vix Vi) = Vi (Vi - Vin) - Vin (Vi - V) (A-5)

From the Dgpc, Dpcq definitions in (8) and the classical analytical equations for the elements
of a matrix inverse [10 Chpt. 4 Sect. 17] it can be shown that

D;;%)c = ! (Eb X Uc, Uc X Ug, Ug X Eb)
Uy (Hb X Ec)
(A-6)
Dpng = (e X g, ug X up, up x ug)
Up- (Hc X Ed)

(With Dgape, Dpeg from (8), (A-6) can be demonstrated to be correct by analytically showing that

Babe By, and Bped By equal the identity matrix.) Substituting (A-6) in (A-4) with (8) and
expanding finds
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Pabed/j = Y;
Uy - (Eb X Uc

h 1) (ub X uc, ue X g, ug X up) (sOuty SOutys SOute)"
ol (e X g, wa X up, up x ) (sOutys SOute> SOutg)"
Up - (Ec X Ed)
r. 1. {(Eb X EC) SOut,» (Ec X Ea) SOutp,» (Ea X Eb) SOutJ

Uy - (Eb X Ec)
rb. {(gc X Ed) SOutys (Hd X Hb) SOutes (Eb X Ec) soutd}
Up - (Hc X Hd)

! {Hj : (Eb X Ec) SOut, + 45 - (Ec X Ea) SOuty + 4j - (Ea X Eb) SOut(j
Uy - (Eb X Ec)

1 {Ej : (Hc X Ed) SOut, + 45 - (Ed X Eb) SOut, + 45 - (Eb X EC) SOuth
Up - (Ec X Ed)

(A-7)

For simplicity, we adopt the following notation:

Oli/m = Uj- (EIXEm) Ok/m = Uk - (EIXEm) (A-8)

where

ug, U7, uy, = Unit vectors along skewed sensor k, /, and m input axes.
With (A-8), (A-7) becomes:

1
Pabed/j = 7(0‘jbc SOut, + Ujca SOuty, + %jab SOutc)
Olabc

1
- OYjcd SOuty, + Oljdb SOut, + Cjbe SOuty
] b ] c ]
Olbcd (A-9)

Ojab ocjdb) Oljbe

Qijbc Qjca Oijcd
= - SOut, + e ) SOuty +
Olabe Oabc Obed

SOut, - 0(7 SOuty
bed

Oabc Obed

Ojbe (a'ca Olbcd - Ujcd OCabc) (a'ab Obcd - Ojdb Oﬂabc) Ojbe
] ] ] ]
= + SOuty, + SOut, - SOuty

= SQOut,
Qabe Qabe Obed Olabc Obed Obced

Using (A-5) and (A-8), the first bracketed term in (A-9) simplifies as follows. First,
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[Ej . (Ec X Eaﬂ [Eb . (Ec X Edﬂ - [Ej : (Ec X Edﬂ [Ea . (Eb X Ec)}

= [(Ec X Ea) 'EjJ [(Ec X Ed) 'EbJ : [(Ec X Ed) 'Ej} {(Ec X Ea) 'Eb}
(A-10)

= (Ec X Ea)T {EJ [(EC X Ed) 'Eb} - Up {(Ec X Ed) 'Ej}}
= (Ec X Ha)T [(Bc X Ed) X (Ej X Eb)}

= (ue X ua)" |{ue x ug) x | (uj x up)

Then for the term (gc X ga)T [(gc X gd) X ] in (A-10),
(EC X Ea)T [(EC X Ed) X J = {[(Ec X Ed) X }T (EC X Ea)}T
_ T
[(Ec X Ed) X (Ec X Ea)} ) (A-11)
= - {Ec [(Ec X Ed) : Ea} - Uy [(Ec X Ed) : Ec}}

= -gﬂga : (Ec XEd)J

Substituting (A-11) in (A-10) yields the simplified result

Ojca Obed - Ojed Qabe =
= -Q[Ha : (HCXEd)J (ijEb) (A-12)
= - [ga ue % Edﬂ bc ' (Ej X Ebﬂ
= - Qacd Ocjp = - Ocda Ujbe

Similarly, for the second bracketed term in (A-9):
Oljab Olbed - Olidb Olabe = Oldab Ojbe (A-13)

With (A-12) and (A-13), (A-9) simplifies to
Olcda Qjbe Oldab Ojbe Ojbe
SOuty, + SOut. = — SOutyg
Olabe Obed Olbed (A-14)

Olibc

Pabed/j = SOut, - (

Qabe Olabce Obed

OYybc
— e (abcd SOut, - Ocda SOutp, T Gldab SOut, - Qabc SOutd)
Olabc Obed

Identifying the bracketed term in (A-14) as a scalar abcd sensor parity equation,
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Pabed = Obed SOut, - Oleda SOuty, + Odab SOut,. - Cabe SOuty (A-15)
Eq. (A-14) becomes

Qjbc
Pabed/j = ——— Pabed (A-16)
Xabc Obed

Eq. (A-16) is then substituted into (A-2) to obtain the final result:

Pabcd
Pabed = —— — Z Oljbc U; (A-17)
Olabc Obed j=1.3
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