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ABSTRACT 
 

This article describes a skewed sensor redundancy approach based on navigation parity 
vectors, each formed by comparing dual inertial navigation solutions, each generated using inputs 
from a triad of 3 skewed inertial sensor sets (gyros and accelerometers).  Each set of dual triads is 
defined from a 4 sensor skewed tetrad within an overall skew redundant sensor array. All 
combinations of tetrads are selected within the skewed array to generate multiple navigation parity 
vectors for navigation-solution failure detection.  Navigation outputs are formed from navigation 
solution inputs to parity vectors that pass validity tests (i.e., having all components less than 
prescribed navigation error limits).  For an n skewed sensor array there are n! / (4! (n - 4)!) tetrads.  
Modern day computer technology makes the associated throughput/memory requirement easily 
achievable.  The skewed sensor parallel navigation solution concept is illustrated using a skewed 6-
axis (hexad) sensor array.  It is shown by example how 12 parallel navigation solutions can be 
used to form navigation parity vectors for all 15 possible tetrads in the hexad.  Navigation solution 
failure detection/isolation logic is described for the hexad, showing the ability to detect/isolate the 
first 2 navigation solution failures, provide valid navigation outputs with 2 navigation solution 
failures, and to detect the occurrence of a third failure. 
 
 
INTRODUCTION 
 

A commonly used method for increasing reliability in electronic systems is through the use of 
redundant elements.  For an Inertial Navigation System (INS), a classical approach to redundancy 
has been by direct system duplication.  With this approach, navigation outputs from two INSs are 
compared against accuracy limits.  Falling within test limits indicates that the two INSs are 
operating properly; falling outside of test limits indicates that one of the two has experienced a 
failure ("soft" or "hard", depending on the magnitude of the miscompare).  Identification of the 
failure to a particular INS is accomplished by comparing both INS outputs in the failed set to a 
third INS.  The failed INS is then identified as the one that fails the comparison test with the third 
INS (given that the other INS in the failed set passes a comparison test with the third).  Based on 
this logic, for n INSs, the occurrence of failures in n-1 INSs can be detected, and failures in n-2 
INSs can be isolated to the failed unit.  Thus, to isolate up to two failed INSs, four INSs would be 
required (quad redundancy). 

 
Original redundant INSs were implemented using gimbaled platforms to isolate inertial sensors 

from vehicle rotation.  With the advent of strapdown inertial navigation technology, a 
computational process in the INS computer replaced the mechanical platform, allowing the 
equivalent of “platform” mounted sensor signals to be created within the INS computer using 
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vehicle (“body”) mounted (“strapdown”) inertial sensor signals for input.  The strapdown sensor 
signals provide additional potential benefits not readily available in traditional gimbaled systems: 1) 
Use of the body mounted sensor signals for autopilot functions traditionally provided by a separate 
group of flight control gyros/accelerometers, and 2) A new form of INS redundancy based on 
mounting the inertial sensors in a non-orthogonal configuration. 

 
In the past, 3-axis (triad) body mounted inertial sensor clusters were configured with input axes 

orthogonal.  Each level of redundancy was achieved by duplicating sensor triads (6 sensors for 
dual redundancy, 9 sensors for triple redundancy, 12 sensors for quad redundancy).  In effect, this 
was the approach taken with gimbaled systems.  It can be analytically demonstrated, however, that 
orthogonal sensor mounting within a triad is actually unnecessary because the equivalent 
orthogonal sensor signals can be calculated in a system computer from three non-orthogonal 
(skewed) input axis aligned sensors.  Thus, any failed sensor within a triad can be replaced by a 
single skew aligned sensor, the computer then analytically reforming a new orthogonal triad from 
the skewed sensor and the two un-failed sensors in the original triad.  This basic concept allows 
each additional level of redundancy to be achieved by addition of one skew aligned sensor rather 
than duplication of sets of three (i.e., 4 sensors for dual redundancy, 5 sensors for triple 
redundancy, 6 sensors for quad redundancy).  (An additional requirement is that sensor triads 
formed from the skewed redundant set have non-coplanar input axes.) 

 
For redundant systems in general, means must be provided to detect failures within the 

redundant set.  For skewed strapdown systems, redundancy analysis in the past was primarily 
focused on identifying sensor failures [1, 2, 4-6], rather than navigation solution failures (as with 
gimbaled systems).  The method was based on monitoring the outputs of “parity” equations, each 
formed from a linear combination of four or more skewed sensor outputs within the redundant 
sensor array (and with separate parity equations for skewed redundant gyros and accelerometers).  
Parity being approximately zero identified that all sensors within the parity group were operating 
properly (within the expected “normal” range for “failure-free” sensors).  Sensors in failure-free 
identified parity groups were then linearly combined in a weighting algorithm to calculate the 
equivalent orthogonal axis outputs.  This is an effective method for sorting “hard” failures for rapid 
corrective action of outputs used for flight control.  However, for “soft” failures (small errors that 
would build up over time in an inertial navigation solution), sensor-level parity type testing 
becomes problematic. 

 
A potential solution to soft failure detection at the sensor parity level is to filter the parity 

signals so that over time, soft steady failures can be discriminated from normal sensor noise.  The 
basic problem with this approach is that during the time before the failure is detected, the associated 
sensor error will be building in the navigation solution.  Thus, when the sensor causing the error is 
finally identified (and no longer used for navigation computation input), the navigation error it has 
already created will remain.  To remedy the problem, [3] proposed that first order sensor-to-
navigation error sensitivities be generated in parallel with the sensor failure detection parity 
routines.  When the failed sensor (and its error) is finally identified by parity tests, the sensitivity 
formulas would then be used for “retro-active” correction of the navigation solution error.  While 
this method improves on the previous approach, it was also then recognized that a more proper and 
direct method for detecting/correcting soft failures in the navigation function was to generate 
multiple (parallel) inertial navigation solutions using different combinations of redundant sensor 
inputs.  Comparing navigation solutions could then continuously determine those without failures, 
with the failure-free navigation solutions then used in appropriate weighting formulas for output (in 
the same manner as with redundant gimbaled INSs).  Unfortunately, computer throughput 
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limitations at the time did not permit such a “brute force” parallel navigation solution approach.  
With continuing advances in computer through-put/memory-size technology, the “brute force” 
approach to skewed sensor redundancy management is now very feasible.  This article describes 
how such an approach might be implemented. 

 
The article first reviews the classical skewed sensor parity equation method for failure 

detection.  An equivalent parallel strapdown inertial navigation solution approach is then described, 
each solution formed from a triad of skewed gyro/accelerometer sensor sets within the skew 
redundant sensor array (gyro and accelerometer input axes are assumed for the article to be 
parallel).  By comparing navigation solutions generated from two of the triads, a navigation parity 
vector is formed. (Note - A "navigation parity vector" consists of a group of attitude, velocity, 
and/or position parameter comparisons.)  The dual triads used to generate each navigation parity 
vector are selected from a 4-sensor (tetrad) grouping within the skewed sensor array.  The article 
demonstrates that a navigation parity vector formed from a particular sensor tetrad is equivalent to 
the traditional skewed sensor parity equation for the tetrad, propagated through linearized error 
state dynamics of the navigation solution. 

 
A navigation parity vector is generated for each of the possible tetrads within the overall 

skewed sensor array - e.g., for a skewed 6-axis (hexad) sensor array, there are 15 possible sensor 
tetrads (15 combinations of 4 sensors within the 6), hence, there would be 15 corresponding 
navigation parity vectors, each formed by comparing navigation solutions generated from two 
triads within each tetrad.  When all elements of a navigation vector lie within acceptable 
performance limits, the dual navigation solution inputs forming the parity vector are deemed 
failure-free, hence, usable for navigation parameter output generation.  Conversely, if any element 
within a navigation parity vector fails its performance limit test, both triad generated navigation 
solution inputs are deemed failure-suspect, hence, no longer usable for navigation parameter output 
generation.  Navigation outputs would be formed as a weighted average of identified failure-free 
navigation solution parameters (similar to the gimbaled INS redundancy management approach). 

 
A hexad sensor array configuration is then analyzed in detail.  There are 20 possible triads in a 

hexad for generating parallel navigation solutions (20 combinations of 3 sensors within the 6).   
The article demonstrates that 12 triads and associated navigation solutions are sufficient to generate 
the 15 navigation parity vectors that correspond to the 15 possible tetrads.  The article then shows 
that monitoring the 15 navigation parity vectors allows detection/isolation of the first two 
navigation solution failures, and detection of a third. 

 
 
NOTATION 

 
( ) = Designation for a vector in general or a column matrix containing the vector components, 

depending on usage. 
 

V ×   =  Skew symmetric (or cross-product) form of vector V represented by the square 

matrix 

0 - VZ VY
VZ 0 - VX

- VY VX 0
 in which VX, VY, VZ are the components of V.  The matrix 

product of V ×  with another vector equals the cross-product of V ×  with the other 

vector. 
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 T = Superscript designation for transform of the associated matrix. 
 

( )A  = Designation for vector ( ) represented as a column matrix with elements equal to the 
projection of ( ) on coordinate frame A axes. 

 
 
TRADITIONAL PARITY EQUATION FAILURE DETECTION APPROACH 
 

Consider an array of n skewed strapdown inertial sensors ( n gyros and n accelerometers).  The 
sensor outputs are related to sensor inputs as follows: 
 

 sOut  =  D sIn + δs (1) 
 
where 
 

sOut  =  Column vector of length n whose elements are the skewed sensor outputs (gyro or 
accelerometer). 
 

sIn  =  Three element sensor input vector whose components equal the projections of 
strapdown gyro sensed angular rate or accelerometer sensed specific force on orthogonal 
inertial sensor assembly axes. 
 

 δs  =  Column vector of length n whose elements are the errors in sOut. 
 

D  =  n by 3 geometry matrix.  For this article we will assume that the skewed accelerometer 
and gyro input axes are parallel, hence, D is the same when (1) represents a gyro or an 
accelerometer output data vector s. 

 

In general, the elements of sOut, δs and D are given by: 
 

 sOut  =  sOuta, sOutb, sOutc, sOutd,  sOutn
T 

 δs  =
_  δsa, δsb, δsc, δsd,  δsn

T
 (2) 

 

 D  =  ua, ub, uc, ud, un
T

 
 
where 
 

 sOuti, δsi  =  Output and error of sensor i. 
 

 ui  =  Unit vector parallel to the sensor i input axis. 
 

 a, b, c, d,  n  =  i index designation for sensor a, b, c, d,  n. 
 

A skewed sensor parity vector is defined from Eq. (1) as in [5]: 
 
 p  =  E sOut (3) 
 
where 
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 p  =  Sensor arity vector in general. 
 

 E  =  Constant matrix. 
 
With (1) in (3), 
 

 p  =  E D sIn + δs   =  E D sIn + E δs (4) 
 
E is chosen to satisfy the condition: 
 
 E D  =  0 (5) 
 
Using (5) we see then from (4) that 
 

 p  =  E δs (6) 
 
Thus, p measures the errors in sOut. 
 

For ideal sensors containing zero error, the elements of p will all be zero.  For non-ideal 
sensors containing errors under normal sensor operating conditions, the elements of p will have 
small values corresponding to the expected normal sensor errors.  Under sensor failure conditions, 
particular elements of p will have large values generated by the larger than normal sensor errors.  
Those elements of p that are affected by particular sensor failures are determined by the rows of E 
containing non-zero elements in the failed sensor columns.  Suitable logic can be designed based 
on the previous characteristics that enables sensor failures to be detected and isolated.  In general, 
for n skewed sensors, n-3 failures can be detected and n-2 failures can be isolated by monitoring 
the p element behavior patterns. 
 

In the traditional skewed sensor redundancy approach, p is monitored as the means for 
detecting and isolating failed sensors.  Remaining un-failed sensors are then used through a 
suitable weighting matrix to estimate the equivalent orthogonal sensor data.  The orthogonal sensor 
data so generated then forms the input to inertial navigation integration routines that calculate 
attitude, velocity, and position (and to flight control functions using angular rate and specific force 
inputs). 
 
 
SKEWED REDUNDANCY USING PARALLEL NAVIGATION SOLUTIONS 
 

For the parallel navigation solution skewed redundancy approach, individual orthogonal sensor 
signals are first derived from individual skewed 3-axis (triad) gyro/accelerometer data.  The 
equivalent to a skewed sensor tetrad parity equation is then generated by comparing navigation 
solutions generated from two (dual) skewed sensor triads, each formed from sensors in a particular 
tetrad group within the overall redundant sensor array.  As such, the triads will have two skewed 
sensors in common (e.g., for a tetrad with skewed sensors a, b, c and d, if one triad uses sensors a, 
b, c and the other triad uses sensors b, c, d, sensors b and c will be common between the triads).  
The navigation parity vector formed by comparing the triad generated navigation solutions 
represents the equivalent to a traditional sensor parity equation formed from the abcd sensor 
outputs. 
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Forming Two Triads Within A Tetrad 
 
For the abc and bcd sensor triads we can write from the appropriate rows of (1): 

 

 sOutabc  =  Dabc sIn + δsabc          sOutbcd  =  Dbcd sIn + δsbcd (7) 
 
with 

sOutabc  =
_  sOuta, sOutb, sOutc

T     δsabc  =
_  δsa, δsb, δsc

T
     Dabc  =

_  ua, ub, uc
T

sOutbcd  =
_  sOutb, sOutc, sOutd

T     δsbcd  =
_  δsb, δsc, δsd

T
     Dbcd  =

_  ub, uc, ud
T
 (8) 

 
Based on (7) we now define: 

 sInabc  =
_  Dabc

-1
 sOutabc          sInbcd  =

_  Dbcd
-1

 sOutbcd (9) 
 
which with (7), finds: 
 

 sInabc  =  sIn + Dabc
-1

 δsabc           sInbcd  =  sIn + Dbcd
-1

 δsbcd (10) 
 
where 
 

sInabc, sInbcd  =  Estimates for the true sIn sensor input vector obtained using the abc or bcd 
sensor triad outputs. 

 

Note from (10) that when the sensor errors are zero, the sInabc, sInbcd estimates will equal the true 
sIn value which is the basis for the form of Eqs. (9). 
 

Appendix A shows that (9) can also be written as 
 

 

sInabc  =  
1

αabc

 ub × uc, uc × ua, ua × ub  sOutabc

sInbcd  =  
1

αbcd

 uc × ud, ud × ub, ub × uc  sOutbcd

 (11)

 

 
in which 

 αk l m  =
_  uk ⋅ ul × um  (12) 

 
and where 
 

uk, ul, um  =  Unit vectors along skewed sensor k, l, and m input axes. 
 

αk l m  =  Defined vector product operator between unit vectors along the skewed sensor k, l, m 
input axes. 
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For (11) to exist, αabc and αbcd must be non-zero which is equivalent to the requirement that no 
three of the abcd sensor input axes lie in the same plane, the classical requirement for skewed 
redundant sensors [1-6]. 
 
 
Forming A Navigation Parity Vector From The Dual Navigation Solutions 
 

Dual inertial navigation solutions are obtained from the abc and bcd sensor data set by an 

integration process using sInabc, sInbcd for the orthogonal inertial sensor vector inputs (gyro sensed 
angular rate and accelerometer sensed specific force acceleration).  For example, a typical aircraft 
inertial navigation solution generated using an abc or bcd inertial sensor triad would determine 
attitude, velocity, and position by integrating the following differential equations [8 Sect.2]: 
 

 CB

.N
  =  CB

N
 ωIn

B
 ×  - ωe

N
 + ρN

 ×  CB
N

 
 

 ρN
  =  FC

N
 uUp

N
 × vN  + ρUp uUp

N
 

 (13) 

 v
. N  =  CB

N
 aSFIn

B
  + gP

N
 - 2 ωe

N
 + ρN

 × vN
 

 

 CN

. E   =  CN
E

  ρN×  h
.

 =  uUp
N

 ⋅ vN
 

 
where 
 
 B  =  Designation for orthogonal "body" frame sensor assembly coordinates. 

 

N  =  Designation for locally level navigation coordinate (e.g., wander azimuth [8, Sect. 
4.5]). 
 

E  =  Designation for earth fixed coordinates (e.g., one axis parallel to earth's rotation axis, 
another axis parallel to the intersection of earth's equatorial plane and the Greenwich 
reference meridian plane, the third perpendicular to the other two). 
 

CB
N

 = Direction cosine matrix that transforms vectors from sensor coordinate frame (B) to the 

locally level navigation frame (N). 
 

CN
E

 = Direction cosine matrix that transforms vectors from locally level navigation 

coordinates (N) to earth fixed reference coordinates (E). 
 

ωIn  =  Sensor assembly inertial angular rate vector in body (B) frame coordinates calculated 

in (11) from a selected skewed gyro triad, e.g., sInabc or sInbcd from sOutabc or 

sOutbcd 
skewed gyro measurements. 
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ωe
N

  =  Earth inertial rotation rate vector in navigation frame (N) coordinates (a function of 

CN
E

 and h). 
 

ρN
  =  Angular rate of the navigation frame relative to the earth in N frame coordinates. 

 

ρUp  =  Upward component of ρN
 (selected based on the type of navigation frame being 

used, e.g., azimuth wander or free azimuth [7 Sect. 4.5]. 
 

uUp
N

  =  Unit vector upward in N frame coordinates.  Note that for the N frame defined with 

the third axis up, uUp
N

 = 0, 0, 1 T. 
 

FC
N

  =  Curvature matrix (a function of CN
E

 and h). 
 

vN  =  Velocity vector relative to the earth in navigation (N) coordinates. 
 

aSFIn 
B

  = Sensor assembly specific force acceleration vector in body (B) frame coordinates 

calculated in (11) from a selected skewed accelerometer triad, e.g., sInabc or sInbcd 

from sOutabc or sOutbcd 
skewed accelerometer measurements. 

 

gP
N

  =  Plumb-bob gravity acceleration in N frame coordinates (a function of earth mass 

distribution, CN
E

, ωe
N

, and h). 
 

h  =  Altitude. 
 
The previous equations would also typically include updating algorithms to prevent vertical 
channel divergence [7 Sect. 4.4.1.2.1]. 
 

The error-free form of (13) can also be written in the short-hand state vector form: 
 

 X
.

  =  f X, ωIn, aSF In  (14) 

 
where 
 

X  =  True navigation parameter state vector with elements equal to the components of CB
N

, 

vN, CN
E

, and h in (13). 

 

ωIn, aSF In  =  True inertial angular rate and specific force acceleration vectors of the 
strapdown inertial sensor assembly. 

 

Now consider the ωInabc, ωInbcd angular rate vectors (calculated in (11) from the abc and bcd 

skewed gyro outputs) and the aSF Inabc, aSF Inbcd specific force vectors (calculated in (11) from the 
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abc and bcd skewed accelerometer outputs).  The inertial navigation solution for each is obtained 
by integrating the following in parallel: 
 

 Xabc

.
 = f Xabc, ωInabc, aSF Inabc          Xbcd

.
 = f Xbcd, ωInbcd, aSF Inbcd  (15) 

 

 Xabc  =  ∫ 0

t
Xabc

.
(τ) dτ           Xbcd  =  ∫ 0

t
Xbcd

.
(τ) dτ (16)

 
 
where 
 

Xabc, Xbcd  =  Navigation parameter vector solutions obtained from the abc and bcd sensor 
derived inertial sensor inputs. 

 
Note: Prior to initiation of the (16) navigation solution integration process, an initial alignment 
operation would be performed for each sensor triad using the same sensor signals as in (15).  
Initial alignment typically takes several minutes to complete [8 Chpt. 6].  The parameters 

generated at initial alignment completion are used to initialize the Xabc, Xbcd parameters in (15).  

For this discussion, initial alignment operations should be considered part of the navigation 
process. 

 

In principle, the difference between abc
(t)X  and bcd

(t)X  in (16) would provide the measure 
needed to identify the presence of error in the abc and/or bcd navigation solutions.  However, the 

form of X is generally not suitable for direct comparison of all abc
(t)X  versus bcd

(t)X elements, 
necessitating an intermediate method for navigation solution comparison. 

 
 

COMPARING NAVIGATION SOLUTIONS GENERATED BY THE SENSOR TRIADS 
 

When (14) represents the typical Eq. (13) aircraft INS form (for example), a method is required 

for comparing the CB
N

 and CN
E

 matrices, each of which contains 9 elements that are interrelated by 
orthogonality/normality constraints inherent within a direction cosine matrix.  Additionally, 
comparison of N frame based parameters between different navigation solutions can be problematic 
if the N frames are not initialized identically in the triad solutions being compared, e.g., [7 Sects. 
6.2.1 & 6.2.2] (e.g., analogous to two gimbaled INSs using wander azimuth navigation coordinates 
in which the platform heading for each may be initialized differently).  (Note: This may not actually 
be a problem with the skewed redundancy situation being analyzed because the solutions are 
generated within the same system, presumably using the same navigation/initialization routines.)  
For generality and as an example, the following E frame based navigation parameter equivalents 
will be used in this article for triad solution comparisons: 

 

 

CB
E

 = CN
E

 CB
N

          vE = CN
E

 vN

uUp
E

 = CN
E

 uUp
N

        RE ≈ Re + h  uUp
E

 (17)
 

 
where 
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 CB
E

 = Direction cosine matrix that transforms vectors from B to E frame coordinates. 
 

 vE = Velocity relative to the earth in E frame coordinates. 
 

 RE
 = Position vector from earth's center to the INS in E frame coordinates. 

 

 Re = Average radius of the earth. 
 

The approximation for RE in (18) is that earth's shape is approximately spherical (See [7 Eqs. 

(5.2.2-1) & (5.1-10)] for exact RE equation). 
 

Assuming that the integration algorithms used in (16) maintain CB
N

 and CN
E

 matrix 

orthogonality/normality, the effective difference between the abc and bcd triad determined CB
E

 
solutions can be measured based on a rotation vector formulation [7 Sect. 3.2.2.2]: 

 

 

CBabc
E

 = CNabc
E

 CBabc
N

         CBbcd
E

 = CNbcd
E

 CBbcd
N

CBabcd

E
  =

_  CBabc
E

 CBbcd
E T

θabcd
E

 ×   =
_  sin φabcd uφabcd

E
 ×   =  

1
2

 CBabcd

E
 - CBabcd

E T

 (18)

 
 
where 
 

CNabc
E

, CBabc
N

, CNbcd
E

, CBbcd
N

 =  CN
E

, CB
N

 solution within (17) using the abc and bcd skewed 

sensor derived values for the equivalent orthogonal sensor inputs.  
 

CBabcd

E  = Direction cosine matrix formed from CBabc
E

, CBbcd
E

 as indicated in (18). 
 

φabcd = Magnitude of the rotation vector equivalent to CBabcd

E
. 

 

uφabcd

E
 = Unit vector in E frame axes parallel to the rotation vector equivalent to CBabcd

E
. 

 

θabcd
E

 = Attitude parity vector in E frame axes representing the difference between the 

CBabc
E

, CBbcd
E

 solutions. 
 

Note that without abc and bcd sensor errors, the CBabc
E

, CBbcd
E

 solutions will be identical, hence, 

CBabcd

E
 in (18) will be identity and θabcd in (18) will be zero.  Note also that for small φabcd, 

θabcd
E

 ×  reduces to θabcd
E  = φabcd uφabcd

E
 = φabcd

E
, the rotation vector equivalent to CBabcd

E
. 
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The equivalent three component vector form of the θabcd
E

 ×  3 by 3 matrix in (18) is derived 
from 

 

ui
E
 = uj

E
 × uk

E

ui
E
 . uφabcd

E
 = uj

E
 × uk

E
 . uφabcd

E
 = uφabcd

E
 × uj

E
 . uk

E
 = uk

E T
 uφabcd

E
 ×  uj

E

uφabcd

E
 = Σ

i = 1,
 
3

 ui
E
 . uφabcd

E
 ui

E
 = Σ ijk =

123, 231, 312

uk
E T

 uφabcd

E
 ×  uj

E
ui

E

 (19)

 
 
where 
 

 ui
E
, uj

E
, uk

E 
 = Unit vectors parallel to E frame coordinate axes. 

 
Thus, from (18) with (19), 
 

 

θabcd
E

 = sin φabcd uφabcd

E

= Σi = 1,3
 ui

E
 . sin φabcd uφabcd

E
 ui

E

= Σ ijk =
123, 231, 312

uk
E T

 
1
2

 CBabcd

E
 - CBabcd

E T
 uj

E
ui

E
  

 (20)

 
 

For the particular aircraft INS example problem being analyzed, the accuracy requirements on 
attitude are generally different for vertical and horizontal components.  For accuracy/failure 

assessment, the vertical/horizontal components of θabcd
E

 are definable in the N frame as: 
 

 

CE
N

 ≈ 
1
2

 CEabc
N

 + CEbcd
N

           θabcd
N

 = CE
N

 θabcd
E

θUpabcd = θabcd
N

 . uUp
N

         θHabcd

N
 = θabcd

N
 - θUpabcd uUp

N
 (21)

 
 
where 
 

 θUpabcd, θHabcd

N
  =  Vertical and horizontal components of θabcd

N
 in N frame coordinates. 

 

Eqs. (21) with (20) for θUpabcd, θHabcd

N
 would then be used to assess "normal" attitude 

performance from the abc and bcd triad navigation solutions, as compared with expected horizontal 
and vertical attitude errors. 
 

The velocity performance of the abc and bcd triads is assessed by first comparing the E frame 
components: 

 

 Δvabcd
E

 = vabc
E

 - vbcd
E

 (22) 
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where 
 

vabc
E

, vbcd
E

 = E frame components of the velocity solutions obtained from the abc and bcd 
triads. 

 

Δvabcd
E

 = Velocity parity vector in the E frame for the abc and bcd triad navigation solutions. 
 

Note that without abc and bcd sensor errors, the vabc
E

, vbcd
E

 solutions will be identical, hence, 

Δvabcd
E

 in (22) will be zero.  For the example aircraft INS, horizontal and vertical velocity accuracy 
requirements are different, hence, as with attitude accuracy assessment, 
 

Δvabcd
N

 = CE
N

 Δvabcd
E

      ΔvUpabcd = Δvabcd
N

 . uUp
N

      ΔvHabcd

N
 = Δvabcd

N
 - ΔvUpabcd uUp

N
 (23)

 
 

in which CE
N

 is as calculated in (21) and where 
 

 ΔvUpabcd, ΔvHabcd

N
  =  Vertical and horizontal components of Δvabcd

N
. 

 
Positioning assessment is derived from the difference in abc and bcd triad positioning solutions 

for CN
E

 and h, translated into the equivalent RE with (17): 
 

 

uUpabc
E

 = CNabc
E

 uUp
N

       uUpbcd
E

 = CNbcd
E

 uUp
N

ΔRabcd
E

 =
_ Rabc

E
 - Rbcd

E
 = Re + habc  uUpabc

E
 - Re + hbcd  uUpbcd

E
 (24)

 
 
where 
 

Rabc
E

, Rbcd
E

 = E frame components of the position vector solutions obtained from the abc and 
bcd triads. 

 

ΔRabcd
E

 = Position parity vector in the E frame for the abc and bcd triad navigation solutions. 
 

Note that without abc and bcd sensor errors, the Rabc
E

, Rbcd
E

 solutions will be identical, hence, 

ΔRabcd
E

 in (24) will be zero.  For the aircraft INS, horizontal and vertical positioning accuracy 
requirements are different, hence, as with attitude and velocity accuracy assessment, 
 

 

ΔRabcd
N

 = CE
N

 ΔRabcd
E

ΔRUpabcd = ΔRabcd
N

 . uUp
N

         ΔRHabcd

N
 = ΔRabcd

N
 - ΔRUpabcd uUp

N
 (25)

 
 

in which CE
N

 is as calculated in (21) and where 
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 ΔRUpabcd, ΔRHabcd

N
  =  Vertical and horizontal components of ΔRabcd

N
. 

 
Eqs. (20) - (25) allow the difference between abc and bcd attitude/velocity/position solutions 

from (13) - (16) (i.e., 9 elements of CB
N

, 9 elements of CN
E

, 3 elements of vN, and 1 element of h - 

22 elements in all), to be expressed by 9 elements: θUpabcd, ΔvUpabcd, ΔRUpabcd and 2 elements in 

each of θHabcd

N
, ΔvHabcd

N
, ΔRHabcd

N
.  Thus, the composite navigation parity vector would be 

 

 
Δζabcd  =

_  θHabcd

N T
, θUpabcd, ΔvHabcd

N T
, ΔvUpabcd, ΔRHabcd

N T
, ΔRUpabcd

T
 (26)

 
 
where 
 

Δζabcd  =  Nine element navigation parity vector representing the difference between the abc 
and bcd triad navigation solutions to (13) - (16). 

 
For the (15) - (16) navigation equation set representing the integral solutions of (13) to abc and 

bcd sensor triad inputs, (26) would be used as the measure of how closely Xabc and Xbcd compare 

(i.e., versus θHabcd

N
, θUpabcd, ΔvHabcd

N
, ΔvUpabcd, ΔRHabcd

N
, ΔRUpabcd navigation parameter 

accuracy requirements).  If all Δζabcd component error measurements are deemed acceptable, both 

Xabc and Xbcd would be treated as valid, allowing their components to be used with appropriate 
averaging for navigation system parameter outputs.  For systems with more than 4 skewed axis 
sensors, multiple triad navigation solutions would be generated and compared by twos in the same 
manner.  The final navigation parameter outputs would be generated by averaging the outputs from 
all triads deemed acceptable. 

 
 
EQUIVALENCY BETWEEN SKEWED REDUNDANT SENSOR AND PARALLEL 

NAVIGATION PARITY APPROACHES 
 

The previous developments showed how for a (13) type set of navigation equations, Δζabcd 

in (26) can be used as the measure of triad abc and bcd navigation parameter accuracy for failure 
detection.  For a navigation equation set different than (13), an equivalent formula can be derived 

for Δζabcd.  We could have also have defined navigation parity as simply the difference between 

navigation solution parameters generated directly with the abc and bcd sensor triads, e.g., Eqs. 
(13) - (16).  For both definitions, there is a corresponding parity equation that can be formed 
from the abcd sensors.  This section derives equivalency relationships between the navigation 
parity vector and sensor parity equation for both navigation parity definitions. 
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Navigation/Sensor Parity Equivalency For Directly Generated Navigation Parameters 
 

For navigation parity defined as the direct difference between the abc and bcd triad X 
navigation solutions: 

 ΔXabcd =
_ Xabc - Xbcd

 (27)
 

 
where 
 

ΔXabcd = Navigation solution parity vector that equals zero when the abc and bcd triads are 
error free. 

 

The sensor induced errors in Xabc, Xbcd are defined as variations from the true navigation 

solution: 
 

 Xabc  =  X + δXabc Xbcd  =  X + δXbcd (28) 

 
where 
 
 X  =  True (error free) navigation solution. 

 

 δXabc, δXbcd  =  Errors in the Xabc, Xbcd navigation solutions caused by sensor errors. 

 

The δXabc, δXbcd navigation errors can be approximated by the following linearized forms 
[7 Sect. 12.2.1, 12.2.2, & 12.2.3]: 
 

 δXabc  ≈  M(t) xabc δXbcd  ≈  M(t) xbcd (29) 
 
where 
 

 xabc, xbcd  =  Error state vectors associated with Xabc, Xbcd. 
 

M(t)  =  Matrix for converting xabc, xbcd to δXabc, δXbcd.  M(t) is a function of X, 
hence, varies with time. 

 
The xabc and xbcd error state vectors are what is typically used for linearized inertial navigation 
system error analysis [9 Sect. 5.1].  In general, xabc and xbcd contain 9 elements each (3 attitude 

error states, 3 velocity error states, 3 position error states - e.g., ψ, δV, δR in [7 Sect. 12.3.3 & 8 

Eqs. (46)] that are analytically related to the δXabc, δXbcd navigation parameter error vectors 

which, for the example given in (13), have 22 elements each.  Similarly for xbcd versus δXbcd. 
 

Based on (26) - (28), we can also define a linearized navigation parity vector as the 
difference between the xabc and xbcd error state vectors: 

 Δxabcd  =
_  xabc - xbcd (30) 
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which with (27) - (29) shows that 
 

 ΔXabcd  =  M(t) Δxabcd (31) 
 

For the navigation errors created by gyro or accelerometer sensor error (δsInabc and δsInbcd), the 
xabc and xbcd error state vectors equal the integral of the following classical forms [7 Sect. 15.1, 
8 Eqs. (51), 9 Sect. 5.1]: 
 

 

xabc
.

(t) = Ax(t) xabc(t) + Aδs(t) δsInabc(t)

xbcd
.

(t) = Ax(t) xbcd(t) + Aδs(t) δsInbcd(t)
 (32)

 
 
where 
 

Ax(t), Aδs(t)  =  Navigation error state dynamic matrix partitions (functions of X) coupling 

x navigation and δs inertial sensor errors (gyro or accelerometer), into the x navigation 
error states. 

 
From (10) it should be clear that 

 

 δsInabc  =  Dabc
-1

 δsOutabc δsInbcd  =  Dbcd
-1

 δsOutbcd (33) 
 
Taking the derivative of (30) and substituting (32) - (33) then gives 
 

 Δxabcd

.
(t) = Ax(t) Δxabcd(t) + Aδs(t) Dabc

-1
 δsabc(t) - Dbcd

-1
 δsbcd(t)  (34) 

 

Integrating (34) obtains Δxabcd which, through (31), provides the linearized version of 

navigation parameter parity vector ΔXabcd as a function of abcd sensor errors. 
 

Let us now consider a particular form for a sensor parity vector based on directly comparing 
orthogonal sensor vectors derived from the abc and bcd sensors: 

 pabcd  =
_  sInabc - sInbcd (35) 

 
where 
 

pabcd  =  Sensor parity vector formed from skewed inertial sensor (gyro or accelerometer) 
abcd outputs. 

 
With (10), (35) is 
 

 pabcd  =  Dabc
-1

 δsabc - Dbcd
-1

 δsbcd (36) 
 
Comparing (36) with (6), shows that pabcd satisfies the traditional sensor parity vector definition. 
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Eq. (A-17) in Appendix A show that pabcd in (36) can also be written as: 
 

 pabcd  =  
Pabcd

αabc αbcd

 Σ
j = 1,3

αj bc uj  (37) 

 
in which 

 

αj lm  =
_  uj ⋅ ul × um            αk l m  =

_  uk ⋅ ul × um

Pabcd  =
_  αbcd sOuta - αcda sOutb + αdab sOutc - αabc sOutd

 (38)

  
and where 
 

uj  =  Unit vector along the sensor assembly j coordinate axis.  Sensor assembly coordinates 
are defined as an orthogonal right hand set fixed to the sensor assembly. 
 

uk, ul, um  =  Unit vectors along skewed sensor k, l, and m input axes. 
 

Pabcd  =  Scalar sensor parity equation for the abcd sensors (i.e., equals zero under error free 
abcd sensor conditions, and measures abcd sensor errors otherwise). 

 
Substituting (37) for (36) in (34) gives 
 

 Δxabcd
.

(t)  =  Ax(t) Δxabcd(t) + Aδs(t) 
Pabcd

αabc αbcd

 Σ
j = 1,3

αj bc uj (39) 

 
whose integral is 
 

 
Δxabcd(t)  =  ∫ 0

t
Δxabcd

.
(τ) dτ (40)

 
 
or with (31), 
 

 
ΔXabcd(t)  =  M(t) ∫ 0

t
Δxabcd

.
(τ) dτ (41)

 
 
Thus, from (39) - (41) we see that on a linearized basis, the navigation parameter parity vector 

ΔXabcd is proportional to the propagated Pabcd scalar sensor parity equation for the abcd sensors, 
propagated through the navigation error state dynamic equations. 
 
 
Navigation/Sensor Parity Equivalency For Converted Navigation Parameters 
 

For a Δζabcd type navigation parity vector representing the difference between abc and bcd 

triad generated navigation solutions (e.g., Eq. (26) for the Eqs. (13) aircraft INS), the 

equivalency between Δζabcd and the corresponding abcd parity equation is more directly 
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defined.  For example, similar to the derivation leading to (26), the xabc, xbcd error state vector 

elements might have been derived by first defining the errors to be in the computed Eq. (17) E 
frame equivalent navigation parameters, then transforming the E frame defined navigation errors 
into the N frame for horizontal/vertical component extraction [7 Sects. 12.2.1 - 12.2.3, 8 Eqs. 
(46)].  The derivation would closely match (18) - (26), except that the final result, compared with 
(26), would be for the individual abc and bcd triad generated navigation solutions (not the (18) - 
(26) defined parity difference): 

 

 

xabc  =
_  ψHabc

N T
, ψUpabc, δVHabc

N T
, δVUpabc, δRHabc

N T
, δRUpabc

T

xbcd  =
_  ψHbcd

N T
, ψUpbcd, δVHbcd

N T
, δVUpbcd, δRHbcd

N T
, δRUpbcd

T (42) 

 
where 
 

ψH
N

, ψUp  =  Horizontal and vertical (up) components of the small rotation angle error in the 

computed CB
E

 attitude matrix (nominally defined in (17)), define in the E frame then 

transformed to the N frame. 
 

δVH
N

, δVUp, δRH
N

, δRUp  =  Horizontal and vertical components of the errors in computed 

v
E
, R

E
 (nominally defined in (17)), defined in the E frame then transformed to the N 

frame. 
 
Eq. (26) would be rederived, beginning with a linearized version of the error in the computed 
(17) navigation parameters generated using each of the abc and bcd triads: 
 

 

δCB
E

 =
_ CB

E
 - CB

E
 = - ψE

 ×  CB
E

         δVE =
_ v

E
 - vE        δRE =

_ R
E
 - RE

ζE
 =
_ ψE T

, δVE T
, δRE T T

       ζN
 = CE

N
 ζE

 (43)

 
 
where 
 

CB
E

, v
E
, R

E
  =  Values for the (17) navigation parameters calculated with sensor inputs from 

each of the abc and bcd triads. 
 

 CB
E

, vE, RE
  =  Nominal (error free) values for CB

E
, v

E
, R

E
. 

 

 δCB
E

, δVE, δRE
  =  Attitude, velocity, position errors defined in the E frame. 

 

 ψE
  =  Small angle rotation vector equivalent to δCB

E
 , see [7 Sect. 12.2.1]. 

 

Then navigation parity vector Δζabcd would be defined as the difference between the abc and 

bcd triad generated ζ
N

s: 
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 Δζabcd  =  ζabc
N

 - ζbcd
N

 (44)
 

 

The (44) result exactly matches Δxabcd in (30) formed as the difference between the (42) 

xabc, xbcd vectors.  Furthermore, it can be verified that Δζabcd in (44) exactly matches the 

linearized form of Δζabcd in (26) in which individual elements are defined as the difference 
between abc and bcd triad generated navigation errors: 

 

 

θHabcd

N
 =
_ ψHabc

N
 - ψHbcd

N
         θUpabcd =

_ ψUpabc - ψUpbcd

ΔvHabcd

N
 =
_ δVHabc

N
 - δVHbcd

N
         ΔvUpabcd =

_ δVUpabc - δVUpbcd

ΔRHabcd

N
 =
_ δRHabc

N
 - δRHbcd

N
         ΔRUpabcd =

_ δRUpabc - δRUpbcd

 (45)

 
 

Thus, for xabc, xbcd and ζabc
N

, ζbcd
N

 error components defined the same, ζabcd
N

 = Δxabcd, and 
 

 
Δζabcd  =  ∫ 0

t
Δxabcd

.
(τ) dτ

 (46) 
 

in which Δxabcd

.
 is provided by (39).  From (39) and (46) we see that on a linearized basis, a 

Δζabcd type navigation parity vector is proportional to the propagated Pabcd scalar sensor parity 
equation for the abcd sensors, propagated through the navigation error state dynamic equations. 
 
 
HEXAD EXAMPLE 
 

As an example of how skewed sensor parallel navigation solution redundancy might be 
implemented, consider a skewed hexad sensor array configuration (i.e. 6 skewed 
gyro/accelerometer sets).  In a hexad there are 15 potential tetrad (four) skewed sensor sets (i.e., the 
number of combinations of 4 contained in 6 is 6 ! / [4 ! (6 - 4) !] = 15).  For the 1, 2, 3, 4, 5, and 6 
skewed hexad sensors, the fifteen tetrad sensor groups are as follows: 
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 Tetrad 56 = 1234 
 Tetrad 46 = 1235 
 Tetrad 45 = 1236 
 Tetrad 36 = 1245 
 Tetrad 35 = 1246 
 Tetrad 34 = 1256 
 Tetrad 26 = 1345 (47) 
 Tetrad 25 = 1346 
 Tetrad 24 = 1356 
 Tetrad 23 = 1456 
 Tetrad 16 = 2345 
 Tetrad 15 = 2346 
 Tetrad 14 = 2356 
 Tetrad 13 = 2456 
 Tetrad 12 = 3456 
 
where 
 
 Tetrad IJ  =  Set of 4 of the 6 skewed sensors that does not include sensors I and J. 
 

For each tetrad, two (of the possible four) triads are selected for navigation solution generation, 
for Tetrad 34 in Eqs. (47) for example, triads 156 and 256.  The 156 and 256 skewed triads would 
be Eq. (11) orthogonalized, each then used to generate a navigation solution.  The navigation parity 
vector for Tetrad 34 would then be obtained by comparing the two triad 156 and 256 generated 
navigation solutions.  Fifteen navigation parity vectors would thereby be defined, one for each of 
the Eq. (47) sensor tetrads: 

 

 Tetrad 56 = 1234 ⇒ ΔX56 

 Tetrad 46 = 1235 ⇒ ΔX46 

 Tetrad 45 = 1236 ⇒ ΔX45 

 Tetrad 36 = 1245 ⇒ ΔX36 

 Tetrad 35 = 1246 ⇒ ΔX35 

 Tetrad 34 = 1256 ⇒ ΔX34 

 Tetrad 26 = 1345 ⇒ ΔX26 (48) 

 Tetrad 25 = 1346 ⇒ ΔX25 

 Tetrad 24 = 1356 ⇒ ΔX24 

 Tetrad 23 = 1456 ⇒ ΔX23 

 Tetrad 16 = 2345 ⇒ ΔX16 

 Tetrad 15 = 2346 ⇒ ΔX15 

 Tetrad 14 = 2356 ⇒ ΔX14 

 Tetrad 13 = 2456 ⇒ ΔX13 

 Tetrad 12 = 3456 ⇒ ΔX12 
 
where 
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ΔXIJ  =  Navigation parity vector formed by differencing navigation solution parameters 
generated from the sensor triads selected within each Tetrad IJ (defined as the tetrad 
that does not contain sensors I and J). 

 
There are 20 potential triads that can be defined in a hexad (i.e., the number of combinations of 3 
contained in a hexad is 6 ! / [3 ! (6 - 3) !] = 20).  Note - More than one tetrad contains the same 
triad, e.g., the 123 triad can be found in the 1234, 1235, and 1236 tetrads.  This enables less than 
20 triad generated navigation solutions to form all 15 possible navigation parity vectors.  For 
example, by analytical experimentation it has been determined that the 15 Eq. (47) tetrads can be 
formed from the following 12 of 20 possible triads: 
 

 X123  X134  X145  X146  X156  X235  X236  X245  X246  X256  X345  X356 (49) 
 
where 
 

XIJK  =  Navigation parameter vector solution generated using IJK skewed sensor triad derived 
inertial sensor inputs. 

 
The navigation parameter parity vectors in (48) are formed by differencing navigation solutions 

in (49) generated using sensor triads within each parity vector's tetrad: 
 

 ΔX56 = X123 - X134 
 ΔX46 = X123 - X235 

 ΔX45 = X123 - X236 
 ΔX36 = X145 - X245 
 ΔX35 = X146 - X246 
 ΔX34 = X156 - X256 
 ΔX26 = X134 - X145 (50) 

 ΔX25 = X134 - X146 
 ΔX24 = X156 - X356 

 ΔX23 = X145 - X156 
 ΔX16 = X235 - X245 
 ΔX15 = X236 - X246 
 ΔX14 = X235 - X236 
 ΔX13 = X245 - X256 
 ΔX12 = X345 - X356 
 
Failure detection/isolation logic using the (50) navigation parity equations would be as follows. 
 

For the first sensor failure, 5 of the Eqs. (50) navigation parity vectors would remain within 

accuracy limits.  For example, for a sensor 1 failure, parity vectors ΔX16, ΔX15, ΔX14, ΔX13, and 

ΔX12 would remain within accuracy limits because none have used a triad navigation solution 
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derived using sensor 1.  The other 10 parity vectors would have exceeded their accuracy limits 
which, for this example set of 10 (those for which I or J is not 1), identifies sensor 1 as the failed 

sensor.  Following the sensor 1 failure, only the triads that generated the ΔX16, ΔX15, ΔX14, 

ΔX13, ΔX12 parity vectors in Eq. (50) would be used to generate navigation outputs (i.e., X235, 

X236, X245, X246, X256, X345, X356). The ΔX16, ΔX15, ΔX14, ΔX13, ΔX12 parity vectors would 
continue to be monitored to detect the next failure. 

 
For the second sensor failure, only one of the remaining parity vectors will continue to meet 

accuracy requirements (i.e., the ΔXIJ in which I and J correspond to the two failed sensors).  The 
parity vector that continued to satisfy accuracy limits, identifies (isolates) the second failed sensor 
(i.e., given that I was identified as the first sensor to fail, the second failed sensor would be J in the 

unfailed ΔXIJ parity vector).  After the second sensor failure, the two navigation solutions used in 
the remaining "failure-free" navigation parity vector would continue to be used to generate 
navigation outputs.  The remaining parity vector would then be monitored to detect another failure. 

 
A third failure will cause the remaining parity vector to exceed accuracy limits, but that failure 

cannot be isolated to a particular sensor (or triad navigation solution).  Consequently, accuracy 
assured navigation outputs could not be generated following the third detected failure without an 
alternative navigation device for comparison (e.g., GPS). 
 

For soft failures, the previous patterns may not develop simultaneously for sensor failure 
identification.  However, the triads with identified failure-free navigation parity vectors would still 
be satisfactory for output generation.  For hard or soft failures, the output navigation parameters 
would be obtained by averaging the navigation parameters from triads that were used in the failure-
free navigation parity vectors. 
 
 

APPENDIX A 
 

EQUIVALENCY BETWEEN A NAVIGATION PARITY VECTOR AND ITS 
ASSOCIATED TETRAD SENSOR PARITY EQUATION 

 
A sensor parity vector for the abcd sensor tetrad was defined in Eq. (35) as: 

 

 pabcd  =
_  sInabc - sInbcd (A-1) 

 
Expanding (A-1) along sensor assembly j axes finds: 
 

 pabcd  = Σ
j = 1,3

pabcd/j uj (A-2) 

 
in which 
 

 pabcd/j  =
_  uj ⋅  sInabc - sInbcd  (A-3) 

 
where 
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 pabcd/j  =  Component of pabcd along sensor assembly axis j. 
 

uj  =  Unit vector along the sensor assembly j coordinate axis.  Sensor assembly coordinates 
are defined as an orthogonal right hand set fixed to the sensor assembly. 

 
Using (9), Eq. (A-3) is equivalently: 

 

 pabcd/j  =  uj
T

 Dabc
-1

 sOutabc-  Dbcd
-1

 sOutbcd  (A-4) 
 
where 
 

 VT  =  Transpose of the column matrix formed from the components of V. 
 

For derivations to follow, the following identities will be useful: 
 

 Vk ⋅ Vl × Vm   =  Vm ⋅ Vk × Vl   =  Vl ⋅ Vm × Vk  
 

 Vk ⋅ Vl × Vm   =  - Vk ⋅ Vm × Vl  
 

 Vk × Vl × Vm   =  Vl Vk ⋅ Vm  - Vm Vk ⋅  Vl  (A-5) 
 

 Vk × Vl  ×   =  Vl Vk
T
 - Vk Vl

T
 

 

 V × 
T

  =  - V ×  
 

From the Dabc, Dbcd definitions in (8) and the classical analytical equations for the elements 
of a matrix inverse [10 Chpt. 4 Sect. 17] it can be shown that 
 

 

Dabc
- 1

  =  
1

ua⋅ ub × uc

 ub × uc, uc × ua, ua × ub

 

Dbcd
- 1

  =  
1

ub⋅ uc × ud

 uc × ud, ud × ub, ub × uc

 (A-6) 

 
(With Dabc, Dbcd from (8), (A-6) can be demonstrated to be correct by analytically showing that 

Babc Babc
- 1

 and Bbcd Bbcd
- 1

 equal the identity matrix.)  Substituting (A-6) in (A-4) with (8) and 
expanding finds 
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pabcd/j  =  uj
T

 
1

ua ⋅ ub × uc

 ub × uc, uc × ua, ua × ub  sOuta, sOutb, sOutc
T

- uj
T

 
1

ub ⋅ uc × ud

 uc × ud, ud × ub, ub × uc  sOutb, sOutc, sOutd
T

=  uj
T

 
1

ua ⋅ ub × uc

 ub × uc  sOuta, uc × ua  sOutb, ua × ub  sOutc

- uj
T

 
1

ub ⋅ uc × ud

 uc × ud  sOutb, ud × ub  sOutc, ub × uc  sOutd

=  
1

ua ⋅ ub × uc

 uj ⋅ ub × uc  sOuta + uj ⋅ uc × ua  sOutb + uj ⋅ ua × ub  sOutc

- 
1

ub ⋅ uc × ud

 uj ⋅ uc × ud  sOutb + uj ⋅ ud × ub  sOutc + uj ⋅ ub × uc  sOutd

 

(A-7)

 

 
For simplicity, we adopt the following notation: 

 

 αj l m  =
_  uj ⋅ ul × um            αk l m  =

_  uk ⋅ ul × um  (A-8) 
 
where 
 
 uk, ul, um  =  Unit vectors along skewed sensor k, l, and m input axes. 
 
With (A-8), (A-7) becomes: 
 

 

            pabcd/j  =  
1

αabc

 αjbc sOuta + αjca sOutb + αjab sOutc

                           - 
1

αbcd

 αjcd sOutb + αjdb sOutc + αjbc sOutd

 

 

(A-9)

 

             =  
αjbc

αabc

 sOuta + 
αjca

αabc

 - 
αjcd

αbcd

 sOutb + 
αjab

αabc

 - 
αjdb

αbcd

 sOutc - 
αjbc

αbcd

 sOutd

 

=  
αjbc

αabc

 sOuta + 
αjca αbcd - αjcd αabc

αabc αbcd

 sOutb + 
αjab αbcd - αjdb αabc

αabc αbcd

 sOutc - 
αjbc

αbcd

 sOutd
 

 
Using (A-5) and (A-8), the first bracketed term in (A-9) simplifies as follows.  First, 
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αjca αbcd - αjcd αabc  =
 

uj ⋅ uc × ua  ub ⋅ uc × ud  - uj ⋅ uc × ud  ua ⋅ ub × uc
 

=  uc × ua  ⋅ uj  uc × ud  ⋅ ub  - uc × ud  ⋅ uj  uc × ua  ⋅ ub
 

=  uc × ua
T

 uj uc × ud  ⋅ ub  - ub uc × ud  ⋅ uj
 

=  uc × ua
T

 uc × ud  × uj × ub
 

=  uc × ua
T

 uc × ud  ×  uj × ub

 (A-10) 

 

Then for the term uc × ua
T
 uc × ud  ×  in (A-10), 

 

 

uc × ua
T

 uc × ud  ×   =  uc × ud  × 
T
 uc × ua

T

 

=  - uc × ud  × uc × ua
T

 

=  - uc uc × ud  ⋅  ua  - ua uc × ud  ⋅  uc
T

 

=  - uc
T

 ua ⋅  uc × ud

 (A-11) 

 
Substituting (A-11) in (A-10) yields the simplified result 
 

 

αjca αbcd - αjcd αabc  =
 

=  - uc
T
 ua ⋅  uc × ud  uj × ub

 

=  - ua ⋅  uc × ud  uc ⋅  uj × ub
 

=  - αacd αcjb  =  - αcda αjbc

 (A-12) 

 
Similarly, for the second bracketed term in (A-9): 
 

 αjab αbcd - αjdb αabc  =  αdab αjbc (A-13) 
 

With (A-12) and (A-13), (A-9) simplifies to 
 

 

pabcd/j  =  
αjbc

αabc

 sOuta - 
αcda αjbc

αabc αbcd

 sOutb + 
αdab αjbc

αabc αbcd

 sOutc - 
αjbc

αbcd

 sOutd

=  
αjbc

αabc αbcd

 αbcd sOuta - αcda sOutb + αdab sOutc - αabc sOutd

 (A-14) 

 
Identifying the bracketed term in (A-14) as a scalar abcd sensor parity equation, 
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 Pabcd  =
_  αbcd sOuta - αcda sOutb + αdab sOutc - αabc sOutd (A-15) 

 
Eq. (A-14) becomes 
 

 pabcd/j  =  
αjbc

αabc αbcd

 Pabcd (A-16) 

 
Eq. (A-16) is then substituted into (A-2) to obtain the final result: 
 

 pabcd  =  
Pabcd

αabc αbcd

 Σ
j = 1,3

αj bc uj  (A-17) 
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