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ABSTRACT

This paper provides an overview of the primary strapdown inertial system computational
elements and their interrelationship.  Using an aircraft type strapdown inertial navigation system
as a representative example, the paper provides differential equations for attitude, velocity,
position determination, associated integral solution functions, and representative algorithms for
system computer implementation.  For the inertial sensor errors, angular rate sensor and
accelerometer analytical models are presented including associated compensation algorithms for
correction in the system computer.  Sensor compensation techniques are discussed for coning,
sculling, scrolling computation algorithms and for accelerometer output adjustment for physical
size effect separation and anisoinertia error.  Navigation error parameters are described and
related to errors in the system computed attitude, velocity, position solutions.  Differential
equations for the navigation error parameters are presented showing error parameter propagation
in response to residual inertial sensor errors (following sensor compensation) and to errors in the
gravity model used in the system computer.

COORDINATE FRAMES

As used in this paper, a coordinate frame is an analytical abstraction defined by three mutually
perpendicular unit vectors.  A coordinate frame can be visualized as a set of three perpendicular
lines (axes) passing through a common point (origin) with the unit vectors emanating from the
origin along the axes.  In this paper, the physical position of each coordinate frame’s origin is
arbitrary.  The principal coordinate frames utilized are the following:

B Frame  =  "Body" coordinate frame parallel to strapdown inertial sensor axes.
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N Frame  =  "Navigation" coordinate frame having Z axis parallel to the upward vertical
at the local position location.  A "wander azimuth" N Frame has the
horizontal X, Y axes rotating relative to non-rotating inertial space at the
local vertical component of earth's rate about the Z axis.  A "free azimuth" N
Frame would have zero inertial rotation rate of the X, Y axes around the Z
axis. A "geographic" N Frame would have the X, Y axes rotated around Z to
maintain the Y axis parallel to local true north.

E Frame  =  "Earth" referenced coordinate frame with fixed angular geometry relative to
the rotating earth.

I Frame  =  "Inertial" non-rotating coordinate frame.

NOTATION

V  =  Vector without specific coordinate frame designation.  A vector is a parameter that
has length and direction.  Vectors used in the paper are classified as “free vectors”,
hence, have no preferred location in coordinate frames in which they are
analytically described.

VA  =  Column matrix with elements equal to the projection of V on Coordinate Frame A
axes.  The projection of V on each Frame A axis equals the dot product of V with
the coordinate Frame A axis unit vector.

VA ×   =  Skew symmetric (or cross-product) form of VA represented by the square

matrix 

0 - VZA VYA

VZA 0 - VXA

- VYA VXA 0

 in which VXA , VYA , VZA are the

components of VA.  The matrix product of VA ×  with another A Frame

vector equals the cross-product of VA with the vector in the A Frame.

CA2

A1  =  Direction cosine matrix that transforms a vector from its Coordinate Frame A2

projection form to its Coordinate Frame A1 projection form.

ωA1A2  =  Angular rate of Coordinate Frame A2 relative to Coordinate Frame A1.  When

A1 is non-rotating, ωA1A2 is the angular rate that would be measured by

angular rate sensors mounted on Frame A2.

 
.

  =  
d  
dt

  =  Derivative with respect to time.

t  =  Time.
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1.  INTRODUCTION

The primary computational elements in a strapdown inertial navigation system (INS) consist
of integration operations for calculating attitude, velocity and position navigation parameters
using strapdown angular rate and specific force acceleration for input.  The computational form
of these operations originate from two basic sources: time rate differential equations for the
navigation parameters and analytical error models describing the error characteristics of the
strapdown inertial angular rate sensors and accelerometers providing the angular rate and specific
force acceleration measurement data.  The latter is the source for compensation algorithms used
in the system computer to correct predictable errors in the inertial sensor outputs.  The former is
the source for digital integration algorithms resident in system software for computing the
navigation parameters.  Both are the source for error propagation equations used to describe the
behavior of navigation parameter errors in the presence of residual sensor errors remaining after
compensation.

This paper provides examples of each of the aforementioned computational elements and their
interrelationship.  For the digital integration algorithms, the examples are selected to emphasize
a structural goal of being based (to the greatest extent possible) on closed-form analytically exact
integral solutions to the navigation parameter time rate differential equations.  Such a structure
significantly simplifies the integration algorithm software validation process based on a
comparison with closed-form exact solution dynamic model simulators designed to thoroughly
exercise the exact solution algorithms under test (Reference 26).  For properly derived and
programmed algorithms, the comparison will yield identically zero difference, thereby providing
a clear unambiguous algorithm software validation.  Once validated, such algorithms can be used
as a generic set suitable for all strapdown inertial applications.  Associated algorithm
documentation is also simplified because algorithm derivations are classical analytical
formulations and explanations/numerical-error-analysis justification for application dependent
approximations are not required because there are none.  Modern day strapdown system
computer technology (high throughput, long floating point word-length) allows the general use
of such exact solution algorithms without penalty.  Similarly, the sensor compensation
algorithms shown in the paper are a generic set based on the exact inverse of classical sensor
error models without first order approximations (as has been commonly used in the past to save
on computer throughput).

The form of the navigation error propagation equations are based on analytical definitions of
the attitude, velocity, position error parameters.  Several choices are possible.  Two of the most
common sets are illustrated in the paper and equivalencies between the two described.  An
example of the error propagation equations based on one of the sets is provided.

This paper is an updated version of Reference 22.  Reference 22 is a condensed summary of
material originally published in the two volume textbook Strapdown Analytics (Ref. 20), the
second edition of which has been recently published (Reference 25).  Strapdown Analytics
provides a broad detailed exposition of the analytical aspects of strapdown inertial navigation
technology.  This version of the Reference 22 paper also incorporates new material from the
recently published paper A Unified Mathematical Framework For Strapdown Algorithm Design
(Reference 23) - also provided in Section 19.1 of the second edition of Strapdown Analytics
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(Reference 25).  Equations in this paper (as in Reference 22) are presented without proof.  Their
derivations are provided in Reference 20 (or 25) and in Reference 23 as delineated throughout
the paper (by Reference 20 or 25 section number and by Reference 23 equation number).
Documents delineated in the paper's References listing that are not cited in the body of the paper
are those cited in Reference 20 (or 25) that are specifically related to the paper's subject matter.

2.  REPRESENTATIVE STRAPDOWN INERTIAL NAVIGATION
DIFFERENTIAL EQUATIONS

This section describes a typical set of basic attitude/velocity/position integration and
acceleration transformation operations performed in a strapdown INS.  The integration
operations are described in the form of continuous differential equations that when integrated in
the classical analytical continuous sense, provide the attitude, velocity and position data
generated digitally in the strapdown system computer.  The algorithms described in Section 4 are
designed to achieve the same numerical result by digital integration as the continuous integration
of the differential equations presented in this section.

2.1  Attitude

For a terrestrial (earth) based inertial navigation system (e.g., for aircraft), sensor assembly
angular attitude orientation is usually described as an “attitude direction cosine matrix” (or
attitude quaternion) relating sensor assembly axes (the “body” or B Frame) to locally level
attitude reference coordinates (N Frame).  Attitude determination consists of integrating the
associated time rate differential equations for the selected attitude parameters.  For an attitude
reference formulation based on direction cosines the attitude time rate differential equations are
given by (Ref. 20 (or 25) Sects. 4.1 and 4.1.1):

CB

.N
  =  CB

N
 ωIB

B
 ×  - ωIN

N
 ×  CB

N

ωIE
N

  =  CN
E T

 ωIE 
E

 ωEN
N

  ≡  ρN
  =  FC

N
 uUp

N
 × vN  + ρZN uZN

N
 (1)

ωIN
N

  =  ωIE
N

 + ωEN
N

where

ρN
  =  Conventional notation for ωEN

N
, also known as “transport rate”, and analytically

defined as the angular rate of Frame N relative to Frame E.

ρZN  =  Vertical component of ρN
.  For a "wander azimuth" N Frame, ρZN is zero.  For a

"free azimuth" N Frame, ρZN is the downward vertical component of earth's

inertial angular rate.

4



FC
N

  =  Curvature matrix in the N Frame that is a function of position location over the

earth.

v  =  Velocity (rate of change of position) relative to the earth.

uUp  =  Unit vector upward at the current position location (parallel to the N Frame Z

axis).

The equivalent quaternion formulation (Ref. 20 (or 25) Sect. 4.1) is as follows:

qB

.N   =  
1
2

 qB
N

 ωIB
B

 - 
1
2

 ωIN
N

 qB
N

(2)

where

qB
N

  =  Attitude quaternion relating coordinate Frames B and N.

ωIB
B

, ωIN
N

  =  Quaternions with vector components equal to ωIB
B

, ωIN
N

 and zero for the

scalar components.

The CN
E

 matrix in Equations (1) defines the system angular position location in earth reference

coordinates, hence, is sometimes denoted as the “position” direction cosine matrix (or the

equivalent position quaternion).  The CN
E

 matrix is calculated by integrating its differential

equation (described in Section 2.3) using ωIN
N

 (N Frame "platform" rotation rate) as input.  For

earth's zero altitude surface reference modeled as an ellipsoid of revolution around earth's
rotation axis (i.e., the conventional approach), Reference 20 (or 25) Sections 5.2.4 and 5.3

develop the following exact expression for the FC
N

 curvature matrix in Equations (1) based on an

E Frame definition having Y axis parallel to earth's axis of rotation:

FC
N

  =  

FC11 FC12 0

FC21 FC22 0

0 0 0

FC11  =  
1
rl

 1 + D21
2

 feh FC12  =  
1
rl

 D21 D22 feh (3)

FC21  =  
1
rl

 D21 D22 feh FC22  =  
1
rl

 1 + D22
2

 feh

(Continued)
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rl  =  R0 
(1 - e) 2

1 + D23
2

 1 - e  2 - 1
 3 / 2

 + h 

(3) (Continued)

feh  ≡   
1 - e  2 - 1

1 + D23
2

 1 - e  2 - 1  1 + 
h

R0
 1 + D23

2
 1 - e  2 - 1

where

Dij  =  Element in row i column j of CN
E

.

e  =  Ellipticity of earth's reference surface ellipsoid.

R0  =  Earth's equatorial radius.

rl  =  Local radius of curvature at altitude in the North/South (latitude change) direction.

h  =  Altitude from earth's reference surface ellipsoid to the current position location
(positive above the earth's surface).

2.2  Velocity

The velocity data in an inertial navigation system is typically computed as an integration of
velocity rate described in the navigation N Frame.  The velocity of interest is usually defined as
the time rate of change of position relative to the earth in a coordinate frame that rotates at earth's
rotation rates (i.e., the E Frame):

vE  ≡  R
.

E (4)

where

R  =  Position vector from earth's center to the current position location.

In the N Frame, the velocity is then:

vN  =  CE
N

 vE (5)

Based on this definition, the time rate differential equation for velocity is (Ref. 20 (or 25) Sect.
4.3):

v
.N  =  CB

N
 aSF

B
  + gN - ωIE

N
 × ωIE 

N
 × RN  - ωIN

N
 + ωIE

N
 × vN (6)

where
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aSF   =  Specific force acceleration defined as the instantaneous time rate of change of

velocity imparted to a body relative to the velocity it would have sustained
without disturbances in local gravitational vacuum space.  Sometimes defined as
total velocity change rate minus gravity.  Accelerometers measure aSF .

g  =  Mass attraction gravity at the current position location minus mass attraction gravity

at the center of the earth.  Sometimes denoted as "gravitation" (Ref. 2 Sect. 4.4).

For the quaternion attitude formulation approach in Section 2.1, the CB
N

 aSF
B

 term in Equation

(6) would be replaced by the vector part of the quaternion product qB
N

 aSF
B

 qB
N

* in which qB
N

* is

the conjugate of qB
N

 and aSF
B

 is the quaternion with aSF
B

 for its vector component and zero for its

scalar component.  Alternatively, once qB
N

 is calculated by integrating Equation (2), it can be

converted to the equivalent CB
N

 direction cosine matrix (Ref. 20 (or 25) Sect. 7.1.2.4) which is

then directly compatible with Equation (6) as shown.

Reference 20 (or 25) Section 5.4.1 shows how gN - ωIE
N

 × ωIE 
N

 × RN  in Equation (6) can be

calculated without singularities based on a classical gravity model defined in the E Frame (Ref. 2
Sect. 4.4 and Ref. 3).  The latter references model gravity on and above earth's zero altitude
surface.  Reference 20 (25) Section 5.4 extends the model for negative altitudes (i.e., below
earth's surface).

2.3  Position

Position relative to the earth is often described by altitude above the earth and the angular
orientation of the current local vertical direction in earth coordinates (the E Frame).  The angular
position parameters are commonly represented by latitude and longitude, however, to avoid
mathematical singularities, the angular position parameters are frequently represented in the form
of the N to E position direction cosine matrix (or the equivalent quaternion).  The time rate
differential equations for the position direction cosine matrix and altitude are as follows (Ref. 20
(or 25) Sects. 4.4.1.1 and 4.4.1.2):

CN

. E   =  CN
E

  ρN× h
.
  =  uUp

N
 ⋅ vN (7)

2.4  Attitude, Velocity, Position Output Conversion

An advantage for using CB
N

, CN
E

 (or their quaternion equivalents), vN, and h as the basic

navigation parameters calculated by integration is that the associated differential equations have
no singularities for all INS attitude orientations and position locations.  Once calculated, they can
be output from the INS directly and/or converted into other formats for output (e.g., roll, pitch,
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heading attitude; north, east, vertical velocity; latitude, longitude, altitude position - Ref. 20 (or
25) Sects. 4.1.2, 4.3.1, and 4.4.2.1).

3.  Integral Solutions For The Navigation Parameters

The digital integration algorithms resident in the strapdown system computer are based on
integrated forms of the Section 2 navigation parameter differential equations over a digital
integration update cycle.  For modern day algorithms, the integrated form is structured into two
operations; 1. Basic digital updating operations used to increment the attitude/velocity/position
parameters over each update cycle, and 2. High speed integration operations that account for high
frequency angular-rate/acceleration inputs between each update cycle (coning effects in attitude
determination, sculling effects in velocity determination, and scrolling effects in position
determination).  The bulk of the computations are contained in the basic operations that can be
structured based on closed-form exact integral solutions to the Section 2 differential equations.
Use of exact closed-form solutions for the basic operations translates directly into computer
integration algorithm forms that are easily verified by simple and direct simulation techniques
(Ref. 26).

3.1  Attitude

The classical exact integral solution to the Section 2.1 direction cosine attitude rate equation is
as follows (Ref. 20 (or 25) Sects. 7.1.1, 7.1.1.1, and 7.1.1.2):

CBm

Nm-1  =  CBm-1

Nm-1 CBI(m)

BI(m-1)

CBm

Nm  =  CNI(m-1)

NI(m)  CBm

Nm-1

CBI(m)

BI(m-1)  =  I + f1(φm) φm×  + f2(φm) φm×
 2

(8)

CNI(m-1)

NI(m)   =  I - f1(ζm) ζm×  + f2(ζm) ζm×
 2

f1 (χ)  ≡  
sin χ

χ
          f2 (χ)  ≡  

1 - cos χ

χ2

where

m  =  System computer cycle time index for basic navigation parameter updating.

Bm, Nm  =  Coordinate Frame B and N orientations at navigation computer cycle time m.
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BI(m) , NI(m)  =  Discrete orientation of the B and N Frames in non-rotating inertial space

(I) at computer cycle time tm.

I  =  Identity matrix.

φm, ζm  =  Rotation vector equivalents to the CBI(m)

BI(m-1)
 and CNI(m-1)

NI(m)
 direction cosine

matrices (See Reference 20 (or 25) Section 3.2.2 for rotation vector
definition).

φm, ζm  =  Magnitudes of φm, ζm.

χ  =  Dummy angle parameter.

Reference 20 (or 25) Sections 7.1.2, 7.1.2.1 and 7.1.2.2 provide the equivalent quaternion

formulation integral solution which also is a function of the identical φm, ζm rotation vectors.

Under constant inertial angular rates of the B and N Frames (ωIB
B

 and ωIN
N

), the φm, ζm rotation

vectors equal the simple integral of the B and N Frame inertial angular rates over the tm-1 to tm

time interval.  Under dynamic angular rate conditions, φm, ζm contain small additional "coning"

terms that account for dynamic variations.  The computation of φm and ζm is discussed in

Section 3.4.

All of Equations (8) are analytically exact under general dynamic angular-rate conditions.  An
important point to recognize is that both direction cosine and quaternion based attitude

algorithms have exact solutions using the identical φm, ζm rotation vector inputs.  Hence,

contrary to outdated popular belief, modern day quaternion and direction cosine attitude
algorithm formulations have equal accuracy.

3.2  Velocity

The velocity algorithm implemented in the navigation software can be formulated from the
integral of Equation (6) using a trapezoidal integration approximation for the small and/or slowly
varying terms (Ref. 20 (or 25) Sects. 7.2, 7.2.2, 7.2.2.2 and 7.2.2.2.1 - note correction to
Equation (7.2.2-4)):

vm
N

  =  vm-1
N

 + ΔvSFm

N
 + ΔvG/CORm

N

ΔvG/CORm

N
  =  vG/COR

.N  dt
tm-1

tm

  ≈  
1
2

 3 vG/CORm-1

.N  - vG/CORm-2

.N  Tm (9)

(Conntinued)
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vG/COR

. N   ≡  gN - ωIE
N

 × ωIE 
N

 × RN  - ωIN
N

 + ωIE
N

 × vN

ΔvSFm

N
  =  

1
2

 CNI(m-1)

NI(m)  + I  ΔvSFm

Nm-1
  ≈  

1
2

 2 CNI(m-2)

NI(m-1) - CNI(m-3)

NI(m-2) + I  ΔvSFm

Nm-1

ΔvSFm

Nm-1
  =  CBm-1

Nm-1 ΔvSFm

Bm-1
(9) (Continued)

ΔvSFm

Bm-1
  =  CBI (t)

BI(m-1) aSF
B

 dt
tm-1

tm

  =  I + f2(φm) φm×  + f3(φm) φm×
 2

 ηm

CBI (t)
BI(m-1)  =  I + CBI (t)

BI(m-1) ωIB
B

 ×  dτ
tm-1

t

f3 (χ)  ≡  
1

χ2
 1 - 

sin χ

χ

where

BI(t)  =  B Frame orientation in non-rotating inertial space at time t after tm-1.

ΔvSFm  =  Velocity change from computer cycle m-1 to m due to specific force

acceleration.

ΔvG/CORm  =  Velocity change from computer cycle m-1 to m due to gravity and Coriolis

acceleration.  The approximate form shown is an extrapolation based on
past (not yet updated) values of velocity and position.

ηm  =  Velocity translation vector from computer cycle m-1 to m.

t  =  General time in navigation.

τ  =  Dummy time parameter.

The approximate form shown for ΔvSFm

N
 is based on CNI(m-1)

NI(m)
 (part of the Equations (8) with (18)

attitude computations) being updated following the velocity and position update.

The ΔvSFm

Bm-1
 expression in Equations (9) utilizes a velocity translation vector ηm (analogous to

the rotation vector φm) to generate an analytically exact solution for ΔvSFm

Bm-1
 under general

dynamic angular-rate/specific-force conditions.  The velocity translation vector concept was
introduced by the author in Reference 23 as part of a unified framework for strapdown
attitude/velocity/position integration algorithm formulation.  Under constant B Frame specific

force and inertial angular rate (aSF
B

 and ωIB
B

), the ηm velocity translation vector equals the simple

integral of B Frame specific force over the tm-1 to tm time interval.  Under dynamic angular-
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rate/specific-force conditions, ηm contains a small additional "sculling" term that accounts for

dynamic variations.  The computation of ηm is discussed in Section 3.4.

Except for trapezoidal integration error in the small and/or slowly varying terms, all of
Equations (9) are analytically exact under general dynamic angular-rate/specific-force
conditions.

3.3  Position

The position algorithm implemented in the navigation software can be formulated from the
integral of Equations (7) using an extrapolated trapezoidal integration approximation for the
small and/or slowly varying terms (Ref. 20 (or 25) Sects. 7.3.1, 7.3.3 and 7.3.3.1 - note
correction to Equations (7.3.3-4)):

hm  =  hm-1 + Δhm

CNE(m)

E
  =  CNE(m-1)

E
 CNE(m)

NE(m-1)

CNE(m)

NE(m-1)  =  I + f1 ξm  + f2 ξm  ξm×  ξm×

ξm ≈ ρN
 dt

tm-1

tm

 ≈ 
1
2

 3 ρZNm-1 - ρZNm-2  uUp
N

 Tm + 3 FCm-1

N
 - FCm-2

N
 uUp

N
 × ΔRm

N

Δhm  =  uUp
N

 ⋅ ΔRm
N

(10)

ΔRm
N

  ≡  vN dt
tm-1

tm

  ≈  vm-1
N

 + 
1
2

 ΔvG/CORm

N
 Tm + ΔRSFm

N

ΔRSFm

N
  =  

1
6

 CNm-1

Nm  - I  ΔvSFm

Nm-1
 Tm + CBm-1

Nm-1 ΔRSFm

Bm-1

             ≈  
1
6

 2 CNm-2

Nm-1 - CNm-3

Nm-2 - I  ΔvSFm

Nm-1
 Tm + CBm-1

Nm-1 ΔRSFm

Bm-1 

ΔRSFm

Bm-1  =   
tm-1

t

CBI(τ1)
BI(m-1) aSF

B
 dτ1 dτ

tm-1

τ

  =  I + 2 f3(φm) φm ×  + 2 f4(φm) φm × 2
 κm

f4 (χ)  ≡  
1

χ2
 

1
2

 -  
1 - cos χ

χ2

where
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NE(m)  =  Discrete orientation of the N Frame in rotating earth space (E) at computer

cycle time tm.

ξm  =  Rotation vector equivalent to the CNE(m)

NE(m-1)
 direction cosine matrix.  The

computation is an extrapolated trapezoidal approximation to the exact integral of

ξ
.

 over an m cycle (similar to the Section 3.4 Equation (18) approximation for the

integral of ζ
.

 in Equation (11), but using ρN
 in place of ωIN

N
).

ξm  =  Magnitude of ξm.

ζm  =  Calculated in Section 3.4 Equations (18).

Δhm  =  Altitude change from computer cycle m-1 to m.

ΔRm  =  Position vector change from computer cycle m-1 to m.

ΔRSFm  =  Specific force acceleration contribution to ΔRm.

κm  =  Position translation vector from cycle m-1 to m.

The ΔRSFm

Bm-1
 expression in Equations (10) utilizes a position translation vector κm (analogous

to the rotation vector φm) to generate an analytically exact solution for ΔRSFm

Bm-1
 under general

dynamic angular-rate/specific-force conditions.  The position translation vector concept was
introduced by the author in Reference 23 as part of a unified framework for strapdown
attitude/velocity/position integration algorithm formulation.  Under constant B Frame specific

force and inertial angular rate (aSF
B

 and ωIB
B

), the κm position translation vector equals the simple

double integral of B Frame specific force over the tm-1 to tm time interval.  Under dynamic

angular-rate/specific-force conditions, κm contains a small additional "scrolling" term that

accounts for dynamic variations.  The computation of κm  is discussed in Section 3.4.

Except for trapezoidal integration error in the small and/or slowly varying terms, all of
Equations (10) are analytically exact under general dynamic angular-rate/specific-force
conditions.

3.4  Computing The Rotation And Translation Vectors

The form of the CBI(m)

BI(m-1)
, CNI(m-1)

NI(m)
 expressions in (8) can be derived as the exact solution to

Equations (1) under constant B and N Frame inertial angular rate (Ref. 20 (or 25) Sects. 3.2.2
and 3.2.2.1).  The result would be identical to (8), but with the rotation vectors replaced by the
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integrals of the B and N Frame inertial rotation rates.  Similarly, the forms of the ΔvSFm

Bm-1
and

ΔRSFm

Bm-1
 expressions in (9) and (10) can be derived as the exact analytic solution to the integrals

in these expressions under constant B Frame inertial angular rate and specific force (Refs. 19 and

20 (or 25) Sects. 7.2.2.2 and 7.3.3).  The result would be identical to the ΔvSFm

Bm-1
 and ΔRSFm

Bm-1

expressions in (9) and (10), but with the rotation vector replaced by integrated B Frame angular
rate and the velocity/position translation vectors replaced by the integral and double integral of B

Frame specific force.  In fact, the ΔvSFm

Bm-1
 and ΔRSFm

Bm-1
 expressions in (9) and (10) were derived in

Reference 23 as the aforementioned exact solution under constant B Frame angular-rate/specific-
force solution, but for general motion having the integrated B Frame angular rate term replaced
by the rotation vector and the integrated/doubly-integrated B Frame specific force terms replaced
by the translation vectors.  This is the same approach used by Jordan in Reference 8 for

introducing the CBI(m)

BI(m-1)
 expression in (8) (which has been extended in this paper to also include

CNI(m-1)

NI(m)
).  For the Jordan case, the rotation vector was formulated by approximation as integrated

angular rate plus a coning correction based on the Goodman-Robinson theorem (Ref. 4).  The
rotation vector concept was introduced by Euler and utilized by Laning in 1949 (Ref. 10) to
develop the classical exact rotation vector rate of change equation (shown subsequently in this
section) for strapdown inertial navigation application.  Note: In 1971 Bortz reintroduced and
applied the exact Laning rotation vector rate equation in a strapdown system/software
implementation (Ref. 1) for which it has since been known as the "Bortz equation".

The integral of the Laning rotation vector rate equation provides an exact solution for the

rotation vector input to the CBI(m)

BI(m-1)
, CNI(m-1)

NI(m)
 expressions in (8).  Based on the previous

discussion, the velocity/ position translation vectors ηm, κm can be analytically defined as the

vectors that satisfy the ΔvSFm

Bm-1
 expression in (9) and the ΔRSFm

Bm-1
 expression in (10).  Using this

definition, References 23 or 25 (Section 19.1.5) derive analytically exact equations for the
translation vector rates of change (shown subsequently) which, when integrated from time tm-1 to

tm, provide exact solutions for ηm and κm.  References 23, 25 Sect. 19.1, and 20 (or 25) Sect.

7.1.1.2 then show that the following simplified forms can be utilized as accurate approximations

for the φ
.

, ζ
.

, η
.

 and κ
.

 rotation/translation vector rates (Ref. 23  Equations (31) or Ref. 25

Equations (19.1.8-3), and Ref. 20 (or 25) Equation (7.1.1.2-4)):
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φ
.

  ≈  ωIB
B  + 

1
2

 α(t) × ωIB
B                α(t)  ≡  ωIB

B
 dτ

tm-1

t

ζ
.

  ≈  ωIN
N

η
.

  ≈  aSF
B  + 

1
2

 α(t) × aSF
B

 - ωIB
B

 × υ(t)                υ(t)  ≡  aSF
B

 dτ
tm-1

t (11)

κ
.

  =  η(t) + 
1
6

 α(t) × υ(t) - 2 ωIB
B

 × Sυ(t)                Sυ(t)  ≡  υ dτ
tm-1

t

The error in the Equations (11) approximation is minimized by using a small value for the

computer update cycle time interval tm-1 to tm, thereby assuring small values of φ and ζ.  Using

Equations (1) for ωIN
N

 with a trapezoidal integration algorithm (Ref. 20 (or 25) Sect. 7.1.1.2.1),

the integral of Equations (11) over a computer update cycle then becomes for the
rotation/translation vector inputs to Equations (8), (9) and (10):

φm  =  αm + ΔφConem       ηm  =  υm + ΔηSculm

κm  =  Sυm + ΔκScrlm 
(12)

ΔφConem  =  
1
2

 α t  × ωIB
B

 dt
tm-1

tm

Coning (13)

ΔηScul(t)  =  
1
2

 α(τ) × aSF
B

 + υ(τ) × ωIB
B

 dτ
tm-1

t

ΔηSculm  =  ΔηScul(tm)

Sculling (14)

ΔκScrlm  =  
1
6

 6 ΔηScul(t) + α(t) × υ(t) - 2 ωIB
B

 × Sυ(t)  dt
tm-1

tm

Scrolling (15)

Sυ(t)  =  υ(τ) dτ
tm-1

t

Sυm = Sυ(tm)
Doubly integrated

specifice force acceleration
(16)
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α(t)  =  ωIB
B

 dτ
tm-1

t

        υ(t)  =  aSF
B

 dτ
tm-1

t

αm  =  α(tm)          υm  =  υ(tm)

Integrated inertial
sensor inputs

(17)

ζm  ≈  ωIN
N

 dt
tm-1

tm

  ≈  
1
2

 ωIEm-1

N
 + ωIEm

N
 + ρZNm-1 + ρZNm uUp

N
 Tm

                             + 
1
2

 FCm-1

N
 + FCm

N
 uUp

N
 × ΔRm

N

         ΔRm
N

  ≡  vN dt
tm-1

tm

(18)

where

Tm  =  Time interval between m cycle updates.

tm  =  Time t at computer cycle m.

αm  =  Integrated sensed B Frame angular rate vector from computer cycle m-1 to m.

ΔφConem  =  Coning contribution to φm.

υm  =  Integrated sensed B Frame specific force vector from computer cycle m-1 to m.

ΔvSculm  =  Sculling contribution to ηm.

Sυm  =  Doubly integrated sensed B Frame specific force vector from computer cycle

m-1 to m.

ΔκScrlm   =  Scrolling contribution to κm.

The ΔRm
N

 term in (18) is calculated as part of position updating operations (See Section 3.3,

Equation (10)).  The approximate form shown for ζm is based on position being updated before

attitude.

The ΔφConem term in (13) has been coined the “coning” term because it measures the effect of

“coning motion” components present in ωIB
B

.  “Coning motion” is defined as the condition when

an angular rate vector is itself rotating.  For ωIB
B

 exhibiting pure coning motion (the ωIB
B

magnitude being constant but the vector rotating) a fixed axis in the B Frame that is

approximately perpendicular to the plane of the rotating ωIB
B

 vector will generate a conical
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surface in the I Frame as the angular rate motion ensues (hence, the term “coning” to describe the

motion).  Under coning angular motion conditions, B Frame axes perpendicular to ωIB
B

 appear to

oscillate (in contrast with non-coning or “spinning” angular motion in which axes perpendicular

to ωIB
B

  rotate around ωIB
B

).  Note that the neglected terms in the ζ equation can also be identified

as coning associated with the ωIN
N

 rate vector.

The ΔηSculm term in Equations (14), denoted as “sculling”, measures the “constant”

contribution to ηm created by combined dynamic angular-rate/specific-force rectification.  The

rectification is a maximum under classical sculling motion defined as sinusoidal angular-

rate/specific-force in which the α(t) angular excursion about one B Frame axis is at the same

frequency and in phase with the aSF
B

 specific force along another B Frame axis (with a constant

acceleration component then produced along the average third axis direction).  This is the same
principle used by mariners to propel a boat in the forward direction using a single oar operated
with an undulating motion (also denoted as “sculling", the original use of the term).

The Δκ Scrlm term in (15), denoted as “scrolling”, is analogous to sculling in the velocity

translation vector update equations.  It measures the “constant” contribution to κm created by

combined dynamic angular-rate/specific-force rectification.  (The term “scrolling” was coined by
the author merely to have a name for the term and also to have one that sounds like “sculling”,
but for position integration - change in the position vector R stressing the “R” sound.  The
complex mathematical formulations that accompany “scrolling” may be a more appropriate

reason for the name).  For all but the most exacting positioning applications, ΔRScrlm can be

safely neglected.

Equations (11) (the basis for Equations (12) - (18)) are approximate forms of the following
exact rotation/translation vector rate equations (Ref. 10, Ref. 20 (and 25) Sect. 7.1.1.1, Ref. 23,
Equations (15) - (16) and Ref. 25 Sect. 19.1.5):

φ
.

= ωIB
B

 + 
1
2

 φ × ωIB
B

 + f5(φ) φ × φ × ωIB
B

        ζ
.

 = ωIN
N

 + 
1
2

 ζ × ωIN
N

 + f5(ζ) ζ × ζ × ωIN
N

η
.

= aSF
B

 + 
1
2

 φ × aSF - φ
.

× η  + f5(φ) φ × φ × aSF
B

 - φ
.

× η  + f3(φ) φ × φ
.

 × η

+ 
1
2

 f3(φ) φ × φ × φ
.

 × η - φ ⋅  η φ × φ
.

 + f6(φ) φ ⋅   φ
.

 × η  φ - f7(φ) φ ⋅  η φ × φ × φ
.

(19)

κ
.

= η + 
1
6

 φ × η - 2 φ
.

× κ  + f8(φ) φ × φ × η - 2 φ
.

× κ  + 2 f4(φ) φ × φ
.

 × κ 

       - f9(φ) φ × φ × φ
.

 × κ  - f10(φ) φ2
 φ × η - 2 φ

.
 × κ  + f11(φ) φ ⋅   φ

.
 × κ  φ

       + f12(φ) φ × φ × φ
.

 × κ - f13(φ) φ ⋅  κ φ × φ × φ
.
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with

f5 (χ)  ≡  
1

χ2
 1 - 

χ sin χ

2 1- cos χ
        f6 (χ)  ≡  

1

χ2
 1 - 

1
2

 f1 (χ) - f2 (χ)

f7 (χ)  ≡  
1

χ4
  f1 (χ) + 2 f5 (χ) χ2

 - 1

f8 (χ)  ≡  f3 (χ) - f2 (χ) h1(χ) + f1 (χ) h2(χ) f9 (χ)  ≡  2 f4 (χ) h1 (χ)

f10 (χ)  ≡  
1

(χ)
2

 f1 (χ) h1 (χ) - f2 (χ ) 1 - h2 (χ) (χ)
2

 + 
1
6

f11 (χ)  ≡  2 2 f4 (χ) h1 (χ) - f3 (χ) h2 (χ) (20)

f12 (χ)  ≡  
1

(χ)
4

 
2 h1 (χ)

f3 (χ)
 1 - f1

2
 (χ)  - f2 (χ) f2 (χ) + f3 (χ)  φ2

f13 (χ)  ≡  
1

(χ)
2

 
2 h1 (χ)

f3 (χ)
 2 f3

2
 (χ) f2 (χ) + 1  - f2 (χ) f4 (χ) 3 + 2 f2 (χ)

h1 (χ)  ≡  
f3 (χ)

2 f2
2

 (χ) + f3
2

 (χ) (χ)
2

h2 (χ)  ≡  
f3
2

 (χ) - f2 (χ) f4 (χ)

f2
2

 (χ) + f3
2

 (χ) φ2
 (χ)

and

φ(t) = φ
.

(τ) dτ
tm-1

t

      φm = φ(tm)       ζ(t) = ζ
.

(τ) dτ
tm-1

t

        ζm = ζ(tm)

η(t) = η
.

(τ) dτ
tm-1

t

    ηm = η(tm)         κ(t) = κ
.

(τ) dτ
tm-1

t

        κm = κ(tm)

(21)

It is to be noted that the (19) with (20) translation vector rate equations are exact simplified
analytically equivalent versions of Reference 23, Equations (15) - (16) (based on refined analysis
since publication of Reference 23) - However, Equations (19) and (20) are identical to Reference
25, Equations (19.1.5-7) which were updated after publication of Reference 23.  Note also that

the η
.

, κ
.

 translation vector rates in (19) are functions of aSF
B

 and rotation vector rate φ
.

 which is a

function of inertial angular rate ωIB
B

.  In Reference 27 using dual-quaternion/screw-vector theory,

Wu shows that the velocity translation vector rate is analytically equivalent to the following

further simplified exact version which is a function of aSF
B

 and angular rate ωIB
B

 rather than φ
.
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η
.

  =  aSF
B

 + 
1
2

 φ × aSF - ωIB
B

 × η  + f5 (φ) φ × φ × aSF
B

 - ωIB
B

 × η  - φ × ωIB
B

 × η

+ f14 (φ) φ ⋅  η φ × φ × ωIB
B

with (22)

f14 (χ)  ≡  
χ + sin χ

2 χ3
 1 - cos χ

 - 
2

χ4

As of this writing, a further simplified version of the exact position translation vector rate
equation in (19) has yet to be found (Ref. 24).

Equations (19) - (22) are analytically exact under general angular-rate/specific-force dynamic
conditions.  It is easily verified by inspection that under constant B and N Frame inertial angular
rate and constant B Frame specific force, the rotation/translation vectors reduce identically to the

integrals of the first term in their respective rate equations (i.e., integrated ωIB
B

, ωIN
N

 for φ, ζ,

integrated aSF
B

 for η, and doubly integrated aSF
B

 for κ), as they should in light of the discussion at

the beginning of this section on their derivation.  The additional terms in these equations (i.e.,
coning, sculling and scrolling) are small contributions excited by dynamic high frequency inputs
(e.g., vibration), and not by lower frequency dynamic inputs that impact the leading terms.  For
example, in a 7.6 g root-mean-square aircraft vibration environment, Reference 20 (or 25),
Section 7.4 shows that coning/sculling rates on the sensor assembly could be 9.9 deg/hr and 1.3
milli-gs worst case for a typically mounted INS (compared to lower frequency dynamic
maneuver angular-rates/accelerations (e.g., 200 deg/sec and 10 gs) impacting the leading terms).
Because the coning/sculling/scrolling terms are small, they can be accurately approximated by
simplified versions of these terms in Equations (19) - (20).  The principal benefit afforded by the
use of rotation/translation vectors in structuring general strapdown navigation equations is that
their rate equations can thereby be drastically simplified with virtually negligible error (Ref. 23).
The utility of the exact rotation/translation rate representations in (19) - (22) is to provide a valid
exact base from which to formulate simplified versions (e.g., Equations (11)) used for
subsequent algorithm development, and as a reference for accuracy assessment of the simplified
versions (Ref. 23).

3.5  Summary of Main Terms Requiring Integration Algorithms

Equations (8), (9) and (10) with (12) - (18) are integral solutions to Equations (3), (6) and (7)
over a computer update cycle.  For the most part, they consist of exact closed form expressions

fed by the integrated sensor output terms in Equations (13) - (17).  The α, υ integrated angular

rate and specific force acceleration signals in (17) (measured by summing (integrating) angular
rate sensor and accelerometer integrated output increments) are the normal basic inputs to most
strapdown inertial system algorithms.  The Equations (13) - (16) terms (coning, sculling,
scrolling, doubly integrated accelerometer signals) represent functions to be implemented by
high speed digital computation algorithms operating within the basic m cycle update period.
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4.  DIGITAL INTEGRATION ALGORITHMS

Digital algorithms in the strapdown system computer are structured to provide integral
solutions to the Section 2 differential equations based on repetitive processing at a specified
computation rate.  The integral solutions in Section 3 to the Section 2 equations have such a
repetitive processing structure, hence, for the most part, are the digital algorithm forms to be
programmed directly in the strapdown computer.  These are exact solution forms, hence, have no
algorithm error if programmed as shown (except for minor trapezoidal integration algorithm
errors for the small/slowly varying terms).  Exceptions are the coning, sculling, scrolling and
doubly integrated sensor signal integrals in Section 3.4, Equations (13 - (16) needing high speed
digital integration algorithms for implementation.  The high speed algorithm errors are a function
of the high speed digital integration update frequency.  Additionally, Taylor series expansion
algorithms are needed for the trigonometric function coefficients in Equations (8), (9) and (10)

that avoid singularities when φm  or ζm  are near zero.  Taylor series truncation error can be

designed to be negligible by carrying sufficient terms.

Integration algorithms for the coning, sculling, scrolling and doubly integrated sensor signal
terms are typically designed based on assumed approximate forms for the angular rate and
specific force acceleration history during the computer update period.  Commonly assumed

forms for ωIB
B

 and aSF
B

 are general polynomials in time:

ωIB
B   =  A0l + A1l t - t l-1  + A2l t - t l-1

2 + 
 

aSF
B   =  B0l + B1l t - t l-1  + B2l t - t l-1

2 + 
(23)

where

l  =  High speed computer cycle time index for high speed digital integration algorithms
(within the slower m cycles).

Ail, Bil  = Coefficient vectors selected to match the ωIB
B

 and aSF
B

 signals from computer

cycle l-1 to l.

The high speed updating algorithms can be structured based on truncated versions of
Equations (23).  The advantage of this approach is that the resulting digital algorithms are easily
validated by simulation testing using the truncated forms they have been designed for as inputs.
The algorithm solution should match the equivalent result obtained by analytical evaluation of
the Section 3.4, Equation (11) integrals under the same truncated polynomial inputs (Ref. 26 and
Ref. 20 (or 25) Sect. 11.1).  Exact numerical correspondence should be the result for correctly
structured and programmed algorithms.

Subsections to follow describe coning, sculling, scrolling and doubly integrated sensor signal
digital integration algorithms designed to exactly match the Section 3.4, Equations (11)
continuous integrals under Equations (23) polynomial inputs truncated after the A1 and B1 terms.

Based on the discussion in the previous paragraph, Reference 26 Section 2.3 describes
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specialized simulators for validating algorithms of this structure.  Following subsections also

discuss singularity free algorithms for computing the f1 (χ) - f4 (χ) trigonometric functions in

Sections 3.1-3.3 and whether orthogonality/normalization corrections are needed for the attitude
algorithms.

4.1  Coning Digital Integration Algorithm

A coning digital computation algorithm for Equation (13) is given by (Ref. 20 (or 25) Sect.
7.1.1.1.1):

ΔφConem  =  
1
2

 αl-1 + 
1
6

 Δαl-1  × Δαl∑
l

     From tm-1 to tm

αl  =  Δαl∑
l

      From tm-1 to tl               Δαl  =  dα
t l-1

t l
(24)

where

Δαl  =  Summation of integrated angular rate sensor output increments from cycle l-1 to

l.

Equations (24) have been designed to be exact under Equations (23) angular rate input with

the ωIB
B

 polynomial truncated after the A1 term.

4.2  Sculling Digital Integration Algorithm

A sculling digital computation algorithm for Equation (14) is given by (Ref. 20 (or 25) Sect.
7.2.2.2.2):

ΔηSculm  =  ΔηScull      At tm

ΔηScull  = 
1
2

 α l-1 + 
1
6

 Δαl-1  × Δυ l + υ l-1 + 
1
6

 Δυl-1  × Δα l∑
l

    From tm-1 to tl (25)

υl  =  Δυl∑
l

      From tm-1 to tl Δυl  =  dυ
t l-1

t l

where

Δυl  =  Summation of integrated accelerometer output increments from cycle l-1 to l.
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Equations (25) have been designed to be exact under Equations (23) angular rate and specific

force inputs with the ωIB
B

, aSF
B

 polynomials truncated after the A1, B1 terms.

Note the similarity in form between the Equations (24) coning algorithm and Equations (25)
sculling algorithm.  Reference 14 provides a general formula for deriving the equivalent sculling
algorithm (e.g., Equations (25)) from a previously derived coning algorithm (e.g., Equations
(24)).

4.3  Scrolling And Doubly Integrated Sensor Signal Algorithms

Digital algorithms for scrolling computation and doubly integrated sensor signals for
Equations (15) - (16) are given by Reference 25, Equations (19.1.11-1) (based on a similar
development in Ref. 20 (or 25) Sect. 7.3.3.2 for an alternative scrolling formula):

ΔκScrlm  =  δκScrlAl + δκScrlBl∑
l

      From tm-1 to tm

δκScrlAl  =  ΔηScull-1 Tl + 
1
2

 αl-1 - 
1
12

 Δαl - Δαl-1  × ΔSυl - υl-1 Tl

                    + 
1
2

 υl-1 - 
1
12

 Δυl - Δυl-1  × ΔSαl - αl-1 Tl

ΔδζScrlBl  =  
1
3

 Sυl-1 - 
1
8

 Δυl Tl  × Δαl

        + 
1
6

 αl-1 - 
3
4

 Δαl + 
1
4

 Δαl-1  × υl-1 + 
5
12

 Δυl + 
1
12

 Δυl-1  Tl

        + 
1

1440
 Δαl - Δαl-1  × Δυl - Δυl-1  Tl

(26)

ΔSαl  =  αl-1Tl + 
Tl

12
 5 Δαl + Δ αl-1 ΔSυl  =  υl-1Tl + 

Tl

12
 5 Δυl + Δυl-1  

Sυl  =  ΔSυl∑
l

      From tm-1 to tl Sυm = Sυl     at  tm

where

Tl   =  Time interval between computer high speed l cycles.

Equations (26) have been designed to be exact under Equations (23) angular rate and specific

force inputs with the ωIB
B

, aSF
B

 polynomials truncated after the A1, B1 terms.
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4.4  Trigonometric Coefficient Algorithms

To assure that no singularities occur when φm  or ζm  are near zero, the following Taylor series

expansion formulas can be used for the Equations (8), (9) and (10) CBI(m)

BI(m-1)
, CNI(m-1)

NI(m)
, ΔvSFm

Bm-1
,

ΔRSFm

Bm-1
, trigonometric function coefficients:

f1 (χ) = 
sin χ

χ
 = 1 - 

χ2

3 !
  + 

χ4

5 !
 -            f2 (χ) = 

(1 - cos χ)

χ2
 = 

1
2 !

 - 
χ2

4 !
 + 

χ4

6 !
 - (27)

f3 (χ) = 
1

χ2
 1 - 

sin χ

χ
 = 

1
3 !

 - 
χ2

5 !
 + 

χ4

7 !
 -      f4 (χ) = 

1

χ2
 

1
2

 -  
1 - cos χ

χ2
 = 

1
4 !

 - 
χ2

6 !
 + 

χ4

8 !
 - 

Corresponding computational algorithms are then structured from truncated versions of the
former.  The series can be truncated with a sufficient number of terms to assure "error free"

performance.  For example, to assure overall eleventh order accuracy in CBI(m)

BI(m-1)
 (Equations (8)),

this would entail carrying f1(χ) out to tenth order (in φm) and f2(χ) out to eighth order (note,

there is no ninth order term in f2(χ) ).

4.5  Orthogonality and Normalization Algorithms

Orthogonality and normalization correction algorithms can be applied to computed direction

cosine matrices (e.g., CB
N

 and CN
E

) to preserve the proper characteristics of their rows and

columns (Ref. 20 (or 25) Sect. 7.1.1.3).  Similarly, normalization algorithms can be applied to
quaternion attitude representations (Ref. 20 (or 25) Sect. 7.1.2.3).  One of the advantages in using
exact formulated attitude updating algorithms (e.g., Equations (8)) is that direction cosines and
equivalent quaternion formulations calculated by integration, will remain orthogonal and normal
if initialized as such, independent of sensor error (Ref. 20 (or 25) Sect. 3.5.1).  Consequently, if
computer register round-off error is negligible (as it is for most applications using modern day
processors), there is no need for orthogonality/normality compensation.

5.  STRAPDOWN SENSOR ERROR COMPENSATION

A fundamental problem with all inertial navigation systems is the inability to manufacture
inertial components with the inherent accuracy required to meet system requirements.  To correct
for this deficiency, compensation algorithms are included in the INS software for correcting
sensor outputs for known predictable error effects.  The compensation algorithms represent the
inverse of the inertial sensor analytical model equations.
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This section describes error models and compensation algorithms that can be used to correct
for errors in the strapdown inertial sensors (angular rate sensors and accelerometers), relative
displacement between accelerometers (“size effect”), misalignment of the strapdown sensor
assembly relative to the system mount, and alignment of the system mount in the user vehicle
relative to vehicle reference axes.  Included is a discussion of the application of the sensor
compensation algorithms to the Section 4 strapdown inertial navigation integration routines and
their associated coning, sculling, scrolling and accelerometer size-effect/anisoinertia elements.

5.1  Sensor Error Models

This section characterizes the errors typically present in the raw inertial sensor outputs
(angular rate sensors and accelerometers) and then describes a general form of compensation
equations for correcting the errors.  All vectors in this section are represented in the B Frame, the
designation for which has been omitted for analytical simplicity.

The output vector from strapdown angular rate sensor and accelerometer triads can be
characterized as a function of their inputs as (Ref. 20 (or 25) Sects. 8.1.1.1 and 8.1.1.2):

ωIBPuls = 
1

ΩWt0
 I + FScal  FAlgn ωIB + δωBias + δωQuant + δωRand

 

aSFPuls = 
1

AWt0
 I + GScal  GAlgn aSF + δaBias + δaSize + δaAniso + δaQuant + δaRand

(28)

where

ωIBPuls, aSFPuls  =  Angular rate sensor and accelerometer triad output vector in pulses per

second.  Each axis output pulse is a digital indication that the sensor
associated with that axis has received an integrated input increment
equal to that particular sensor’s pulse size.

ΩWt 0, AWt 0  =  Nominal pulse weight (a positive value) for each angular rate sensor

(radians per pulse) and accelerometer (fps per pulse).

FScal, GScal  =  Angular rate sensor and accelerometer triad scale factor correction

matrices; diagonal matrices in which each element adjusts the output
pulse scaling to correspond to the actual scaling for the particular sensor
output.  May include non-linear scale factor effects and temperature
dependency.  Nominally, FScal  and GScal  are zero.

FAlgn , GAlgn   =  Alignment matrices for the angular rate sensor and accelerometer

triads.  Each row represents a unit vector along a particular sensor
input axis as projected onto the B-Frame.  May include specific force
acceleration dependency.  Nominally, FAlgn  and GAlgn  are identity.

23



δωBias, δ aBias  =  Angular rate sensor and accelerometer triad bias vectors.  Each

element equals the systematic output from a sensor under zero input
conditions.  May have environmental sensitivities (e.g., temperature,
specific force acceleration for angular rate sensors, angular rate for
accelerometers).

δωQuant, δaQuant  =  Instantaneous angular rate sensor and accelerometer triad pulse

quantization error vectors associated with the output only being
provided when the cumulative input equals the pulse weight per
axis.

δωRand, δaRand  =  Angular rate sensor and accelerometer triad random error output

vectors.

δ aSize  =  Accelerometer triad size effect error created by the fact that due to physical

size, the accelerometers in the triad cannot be collocated, hence, do not
measure components of identically the same acceleration vector.

δaAniso  =  Accelerometer triad anisoinertia error effect (present in pendulous

accelerometers) created by mismatch in the moments of inertia around the
input and pendulum axes.

References 21 and 20 (or 25) Section 8.1.3 analytically describe the Equations (28) δωQuant,

δaQuant quantization error effects in strapdown inertial sensors.  The δaSize size effect term (Ref.

20 (or 25) Sect. 8.1.4.1) and for pendulous accelerometers, the δaAniso anisoinertia term (Ref. 16

and Ref. 20 (or 25) Sect. 8.1.4.2), are given by :

δ  aSize  ≡   GAlgnk

T
 ⋅  ωIB

. B  × l k + ωIB × ωIB × l k  uk∑
k=1,3

 

δaAniso  =  KAniso ωIBk ωIBkp uk∑
k=1,3

(29)

where

uk  =  Unit vector parallel to the accelerometer k input axis.

l k  =  Position vector from INS navigation center to accelerometer k center of seismic

mass.

GAlgnk

T
  =  Vector formed from the kth column of GAlgn

T
, the transpose of the GAlgn

accelerometer triad alignment matrix.

KAniso  =  Accelerometer anisoinertia coefficient (a generic property of the accelerometer

design).
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ωIBk, ωIBkp  =  Angular rate ωIB projections on the accelerometer k input and kp

pendulum axes.

5.2  Generic Strapdown Sensor Compensation Forms

The inverse of Equations (28) form the basis for compensating the ωIBPuls, aSFPuls raw sensor

outputs to calculate the true ωIB, aSF angular-rate/specific-force-acceleration inputs for the

strapdown inertial integration operations (Ref. 20 (or 25) Sects. 8.1.1.1 and 8.1.1.2).  First,
Equations (28) are solved for the B Frame angular rate and acceleration input vector:

ωIB
′   =  ΩWt0 I + FScal

 -1 ωIBPuls
 

aSF
′   =  AWt0 I + GScal

 -1 aSFPuls

(30)

ωIB  =  FAlgn
 -1  ωIB

′  - δωBias - δωQuant - δωRand
 

aSF  =  GAlgn
 -1  aSF

′  - δaBias - δaSize - δ aAniso - δaQuant - δaRand

(31)

where

ωIB
′ , aSF

′   =  Scale factor compensated angular rate sensor and accelerometer output

vectors.

Equations (30) represent the scale factor compensation equation for the raw angular rate sensor

and accelerometer triad ωIBPuls, aSFPuls outputs.  Compensation for the remaining predictable

errors in ωIBPuls and aSFPuls is achieved using a simplified form of (31) in which it is recognized

that the δωRand and δaRand components are unpredictable, hence, can only be approximated by

zero:

ωIB  ≈  FAlgn
 -1  ωIB

′  - δωBias - δωQuant
 

aSF  =  GAlgn
 -1  aSF

′  - δaBias - δaSize - δ aAniso - δaQuant

(32)

Compensation Equations (32) are further refined to a more familiar form by introducing the
following definitions:

ΩWt  ≡  ΩWt0 I + FScal
 -1 AWt  ≡  AWt0 I + GScal

 -1

KMis  ≡  I - FAlgn
 -1

LMis  ≡  I - GAlgn
 -1

(33)

KBias  ≡  FAlgn
 -1  δ ωBias LBias  ≡  GAlgn

 -1
 δ a Bias
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Substituting (33) into (30) and (32) obtains the equivalent compensation equations:

ωIB
′   =  ΩWt ωIBPuls

ωIB  ≈  ωIB
′  - KMis ω′ - KBias - FAlgn

 -1
 δωQuant

(34)

aSF
′   =  AWt aSFPuls

aSF  ≈  aSF
′  - LMis aSF

′  - LBias - GAlgn
 -1

 δaSize + δaAniso + δaQuant

In many systems, the form of the compensation equations so derived contain linearization
approximations to the exact inverse relations (to conserve on computer throughput).  The
approach taken above is the analytically simpler expedient of using the exact inverse of the
complete error model (without linearization approximation) based on the assumption that modern
day computers can easily handle the workload.

5.3  Generic Strapdown Sensor Compensation Algorithms

Equations (34) are the basis for the following algorithms used to form the inputs to the Section
3 navigation parameter m cycle updating operations (Ref. 20 (or 25) Sects. 8.1.2.1 and 8.1.2.2):

α′m  =  ΩWt αCntm

αm  ≈  α′m - KMis α′m - KBias Tm - δαQuantCm 

Sαm

   ′   =  ΩWt SαCntm

Sαm  ≈  Sαm

   ′  - KMis Sαm

   ′  - 
1
2

 KBias Tm + δαQuantCm  Tm (35)

υ′m  =  AWt υCntm

υm  ≈  υ′m - LMis υ′m - LBias Tm - δ υSizeCm - δ υAnisoCm - δ υQuantC m

Sυm

   ′   =  AWt SυCntm

Sυm  ≈  Sυm

   ′  - LMis Sυm

   ′  - 
1
2

 LBias Tm + δυSizeCm  + δυAnisoCm + δυQuantCm  Tm 

in which (with Equations (29)) the following definitions apply:
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δυSizeCm  ≡  GAlgn
 -1

 δ aSize dt
tm-1

tm

  ≈  δ aSize dt
tm-1

tm

=   uk ⋅  ωIB
.

 × l k + ωIB × ωIB × l k  uk dt

tm-1

tm

∑
k

δυAnisoCm  ≡  GAlgn
 -1

 δ aAniso dt
tm-1

tm

  ≈  δ aAniso dt
tm-1

tm

=  KAniso uk ωIBk ωIBkp dt
tm-1

tm

∑
k=1,3

(36)

δαQuantCm  ≡  FAlgn
 -1

 δωQuant dt
tm-1

tm

  ≈  δωQuant dt
tm-1

tm

δ υQuantC m  ≡  GAlgn
 -1

 δaQuant dt
tm-1

tm

  ≈  δaQuant dt
tm-1

tm

αCntm  ≡    dαCnt
tm-1

tm

υCntm  ≡    dυCnt
tm-1

tm Summation of raw
sensor output pulses

over computer cycle m

where

dαCnt, dυCnt  =  Angular rate sensor and accelerometer instantaneous pulse output

vectors.

Reference 20 (or 25) Sect. 8.1.3 (and its subsections) describe various methods for calculating

the δαQuantCm, δ υQuantC m sensor quantization compensation terms.  Representative algorithms

for the δ υSizeCm, δ υAnisoCm accelerometer size effect and anisoinertia compensation terms are

described next.

5.3.1  Representative Accelerometer Size Effect And Anisoinertia
Computation Algorithms

 The size effect and anisoinertia terms in Equations (36) can be calculated at the high speed l
cycle rate within each m cycle as follows (Ref. 20 (or 25) Sects. 8.1.4.1.1.1 and 8.1.4.2):
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βijm  ≡  Δαil Δαjl∑
l

          From tm-1 to tm 

δυSizeCYm  =  fSize  - lZ2 ΔαXm - ΔαXm-1  + lX2 ΔαZm - ΔαZm-1

                                 + lZ2 βYZm +  lX2 βXYm - lY2 βZZm + βXXm
 

δυSizeCZm, δυSizeCXm   =   Similarly by permuting subscripts.

(37)

δυAnisoCm  =  fSize KAniso βkpm uk∑
k=1,3

 

where

lik   =  Component of lk along B Frame axis i.

fSize   =  Size effect algorithm computation frequency which equals the reciprocal of Tl.

Δαil  =  Integrated angular rate around B Frame axis i over the l-1 to l computer cycle

time interval.

Δαim, Δαim-1  =  Δαil for the l-1 to l cycle time intervals immediately preceding the m

and m-1 cycle times.

δυSizeCim   =  ith B Frame component of δυSizeCm .

The previous algorithm is designed to compute the high frequency dependent terms (βij) at the

l cycle rate, use them to calculate size effect at the m cycle rate, and apply the size effect
correction at the m cycle rate in Equations (35).  This implies that size-effect compensation is not
being applied at the l cycle rate, hence, will not be provided on the acceleration data used for
high speed sculling calculations (Equations (25)).  The associated sculling error is of the same
order of magnitude as the basic Equations (37) size-effect correction, thus, cannot be ignored.
Section 5.4 describes an algorithm for correcting the associated sculling error at the m cycle rate.
Alternatively, the full Equations (37) size-effect correction can be computed and applied at the

high speed l cycle rate with βijm replaced by Δαil Δαjj.  The sculling computation would then be

performed with the size-effect compensated accelerometer data, thereby eliminating the
previously described sculling error.

5.4  Compensation Of High Speed Algorithms For Sensor Error

The high speed algorithms described in Sections 4.1- 4.3 and 5.3.1 for coning, sculling,
scrolling, doubly integrated sensor signals, size effect and anisoinertia are based on error free

values for the Δαl and Δυl integrated angular rate sensor and accelerometer increment inputs.

This implies that compensated sensor signals are being used, thereby implying sensor
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compensation to be performed at the l cycle rate in forming Δαl and Δυl.  The equivalent result

can also be obtained by performing the high speed computations with uncompensated sensor
data, then compensating the result at the slower m cycle rate.  A savings in throughput can
thereby be achieved if needed for a particular application.  For the coning algorithm, the
associated operations would be as follows (Ref. 20 (or 25) Sect. 8.2.1.1):

ΔφConeCntm ≡ 
1
2

 αCnt(t) × dαCnt
tm-1

tm

Δφ ′Conem = ΩConeWt ΔφConeCntm         ΔφConem = I - KMisCone  Δφ ′Conem

(38)

in which

KMisCone ≡ 

KMisYY + KMisZZ - KMisYX - KMisZX

- KMisXY KMisZZ + KMisXX - KMisZY

- KMisXZ - KMisYZ KMisXX + KMisYY

 

(39)

ΩConeWt ≡ 

ΩWtY ΩWtZ 0 0

0 ΩWtZ ΩWtX 0

0 0 ΩWtX ΩWtY

where

αCnt(t)  =  α(t) as defined in Equations (11) but based on angular rate sensor output

counts.

ΩWti , KMisij  =  Elements in row i of column i of ΩWt and row i column j of KMis.

Sensor compensation applied at the m cycle rate on uncompensated computed inputs to the
accelerometer size effect and anisoinertia routines in Equations (37) would be (Ref. 20 (or 25)
Sect. 8.1.4.1.4):

βijm  =  ΩWti ΩWtj βijCntm Δαim  =  ΩWti ΔαiCntm (40)

where

βijCntm, ΔαiCntm  =  βijm, Δαim computed with uncompensated sensor pulse output data.

Similar but more complicated operations are required for post l cycle sculling and scrolling
compensation for sensor error (Ref. 20 (or 25) Sects. 8.2.2.1 and 8.2.3.1).  In most applications,
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however, ignoring sensor misalignment effects in the sculling, scrolling (and size-
effect/anisoinertia) calculations introduces negligible error.  Based on this assumption, it then is
reasonable to use the direct approach of performing scale factor compensation on the raw angular

rate sensor and accelerometer input data (i.e., applying ΩWt and AWt) at the l cycle rate, and

then applying the scale factor compensated signals as input to the sculling, scrolling (and
accelerometer size effect/anisoinertia) l cycle computation algorithms (Equations (25), (25) and
(37)).  However, such an approach can still leave significant error in the sculling/scrolling
computations executed using scale factor compensated sensor data without accelerometer size-
effect compensation.  Reference 20 (or 25), Section 8.1.4.1 shows that the residual sculling error
can be accurately approximated and corrected with:

δΔηScul-SizeCm  ≈ 
1
2

 α(t) × δaSize + δυSizeC(t) × ωIB  dt
tm-1

tm

δυSizeC(t)  ≈ δaSize dτ
tm-1

t
(41)

where

δΔηScul-SizeCm  =  Size effect correction to be applied to a ΔηSculm sculling term

calculated with accelerometer data not containing size effect
compensation.

The δΔηScul-SizeCm correction is applied at the m cycle rate by augmenting the translation

vectors in Equations (12) as follows:

ηm  =  υm + ΔηSculm - δΔηScul-SizeCm
 

κm  =  Sυm + ΔκScrlm - 
1
2

 δΔηScul-SizeCm Tm

(42)

Reference 20 (or 25) Section 8.1.4.1.2 shows that δΔηScul-SizeCm in (41) can be accurately

approximated by the following algorithm whose form and magnitude is similar to the basic
Equation (37) size-effect compensation algorithm:

δΔηScul-SizeCYm = fSize  
1
2

 αZm Δα′Ym + Δα′Ym-1 lZ1 - Δα′Zm + Δα′Zm-1 lY1

                               - 
1
2

 αXm Δα′Xm + Δα′Xm-1 lY3 - Δα′Ym + Δα′Ym-1 lX3

                           
 

+ βXXm lY3 + βZZm lY1 - βXYm lX3 - βYZm lZ1 
(43)

δΔηScul-SizeCZm , δΔηScul-SizeCXm   =  Similarly by permuting subscripts.
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where

δΔηScul-SizeCim   =  ith B Frame component of δΔηScul-SizeCm .

Δα′im   =  ith component of Δαim  with only scale factor compensation.

αim  =  ith component of αm.

The alternative to using (42) with (43) is to apply the Equations (37) size-effect compensation at
the high speed l cycle rate to the scale factor compensated accelerometer data (i.e., using scale

factor compensated Δα l angular rate sensor data for Δαim  with βijm replaced by Δαil Δαjj).  The

sculling computation would then be performed with the size-effect compensated accelerometer
data, thereby eliminating the Equations (41) error effect.

5.5  Compensation For Sensor Triad Attitude Error

The KMis and LMis  misalignment error compensation coefficients described in Section 5.2

represent misalignment of the strapdown sensor axes relative to nominally defined B Frame
sensor coordinates.  An additional misalignment to be compensated in the INS is misalignment
of the nominal B Frame relative to the reference axes of the user vehicle in which the INS is
installed.

The attitude of the vehicle in which the strapdown inertial navigation system (INS) is installed

is determined from the attitude direction matrix CB
N

, inertial sensor assembly mounting

misalignments (relative to the INS mount), and the orientation of the INS mount relative to user
vehicle reference axes.  An attitude direction cosine matrix relating the user vehicle and locally
level attitude reference axes can be written as (Ref. 20 (or 25) Sect. 8.3):

CVRF
N

  =  CB
N

 CB
M T

 CVRF
M

(44)

where

M  =  INS mount coordinate frame (the B Frame is nominally aligned to the M Frame).

VRF  =  User vehicle reference axes.

The CB
M

 direction cosine matrix can be defined without approximation in terms of the associated

rotation vector components as follows:

CB
M

  =  I + 
sin J

J
 J ×  + 

(1 - cos J)

J2
 J × 2

(45)

where
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J, J  =  Sensor triad mount misalignment rotation error vector and its magnitude.

The J components are compensation coefficients measured during system calibration (Ref. 20 (or

25) Sect. 18.4.7.4).  The CVRF
M

 matrix is a function of the particular mount orientation in the user

vehicle.

6.  STRAPDOWN INERTIAL NAVIGATION ERROR
PROPAGATION EQUATIONS

The overall strapdown INS design process requires supporting analyses to develop and verify
performance specifications.  This generally entails the use of a strapdown INS error model in the
form of time rate differential equations that describe the error response of INS computed
attitude/velocity/position data.  Such error models are also fundamental to the design of Kalman
filters used, in conjunction with other system inputs, for correcting the INS errors.  This section
describes strapdown INS error model equations that represent the INS attitude/velocity/position
navigation parameter integration routine response to sensor errors (i.e., excluding the effect of
algorithm and computer finite word-length error, errors that are generally negligible in a well
designed modern day INS compared to sensor error effects).  The term "sensor error" used in this
section refers to the residual error in the sensor signals after applying the Section 5 compensation
corrections.  It is only the residual sensor errors that generate INS navigation parameter output
errors.  The residual sensor errors arise from inaccuracy in measuring the sensor compensation
coefficients, sensor random noise outputs that are not accounted for in the compensation
algorithms, short and long term sensor instabilities, and variations in actual sensor performance
from the analytical models in Section 5.1 that formed the basis for the sensor compensation
algorithms.

6.1  Typical Strapdown Error Parameters

An important part of strapdown INS error model development is the definition (and selection)
of attitude/velocity/position error parameters used in the error model and their relationship to the
INS integration computed navigation parameters (or to a hypothetical set of INS navigation
parameters that are analytically related to the INS computed set).  The INS computed navigation

parameters described in Sections 2 - 4 are the CB
N

 matrix for attitude, the vN vector for velocity,

the CN
E

 matrix for horizontal earth referenced position, and altitude h for vertical earth referenced

position.  These contain 20 individual scalar parameters, each of which develop errors in

response to sensor error.  Furthermore, the 18 error parameters associated with the CB
N

 and CN
E

matrices (9 elements each) are not independent due to natural orthogonality/normality constraints
that govern all direction cosine matrices.  To circumvent the problem of dealing with the
attendant complexities, navigation error is typically described in terms of three navigation error
vectors (for attitude, velocity, and position), each consisting of three independent error

components.  The error in the INS computed navigation parameters (in this case, CB
N

, vN, CN
E

 and
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h) are analytical functions of the independent error vector parameters.  For example, the N Frame
components of a commonly used set of attitude, velocity, and position error parameters is (Ref.
20 or 25 - Sects. 12.2.1-12.2.3 and 12.5) :

ψN×   ≡  CE
N

  I - CB
E

 CE
B

 CN
E

 + CB
N

 δαQuant
B

 × 

δVN  ≡  CE
N

 v
E

 - vE  - CB
N

 δυQuant
B

(46)

δRN  ≡  CE
N

 R
E

 - RE   =  R CE
N

 CN
E

 - I  uUp
N

 + δh uUp
N

where

     =  Designator for a system computer calculated quantity containing error.  The

quantity without the   designation is by definition error free (e.g., CB
A

 is error free

and CB
A

 contains errors).

ψ  =  Small angle error rotation vector associated with the computed CB
E

 attitude matrix.

δV  =  Error in the computed v velocity vector relative to the earth measured in the E

Frame.

δR   =  Error in the computed position vector from earth's center R measured in the E

Frame.

δαQuant, δυQuant  =  Angular rate sensor and accelerometer triad quantization error

residual (remaining after applying quantization compensation -
Ref. 20 (or 25) Sect. 8.1.3 and subsections).

The quantization terms in the ψ and δV equations are included to facilitate differential error

equation modeling (See further explanation at conclusion of Section 6.2 to follow).

An equivalent set of attitude, velocity, position error parameters can also be defined that are

more directly related to the CB
N

, vN, CN
E

, h navigation parameters computed by direct integration

of Equations (1), (6) and (7) (previous references):

γN×   ≡  I - CB
N

 CN
B

 + CB
N

 δαQuant
B

 × 

δvN  ≡  v
N

 - vN - CB
N

 δυQuant
B

(47)

εN×   ≡  CE
N

 CN
E

 - I

δh  ≡  h - h
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where

γ   =  Small angle error rotation vector in the computed CB
N

 attitude matrix.

δv  =  Error in computed velocity measured in the N Frame.

ε  =  Small angle error rotation vector in the computed CN
E

 position matrix.

δh  =  Error in computed altitude.

The two sets of navigation error parameters are analytically related through (previous
references):

ψN
  =  γN

- εN

δVN  =  δvN + εN
 × vN (48)

δRN  =  R εN
 × uUp

N
 + δh uUp

N

or the equivalent inverse relationships:

εN
  =  

1
R

 uUp
N

 × δRN  + εZN uUp
N

δh  =  uUp
N

 ⋅ δRN

(49)

δvN  =  δVN - εN
 × vN

γN
  =  ψN

 + εN

where

εZN  =  Local vertical component of ε (projection on the N Frame Z axis along uUp).

R  =  Distance from earth's center to the current position location (magnitude of R).

6.2  Inertial Sensor Error Parameters

Classical error models for the angular rate sensor and accelerometer triad outputs following
compensation (in which the error in accelerometer size effect and anisoinertia compensation is
ignored as negligible) are as follows (Ref. 20 (or 25) Sects. 12.4 - 12.5):

δωIB
B

  =  δKScal/Mis ωIB
B

 + δKBias + δ ωRand
 

δaSF
B

  =  δLScal/Mis aSF
B

 + δLBias + δaRand

(50)
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where

δωIB
B

, δaSF
B

  =  Angular rate sensor and accelerometer triad vector error residuals

following sensor compensation but excluding δαQuant, δυQuant
quantization compensation error residuals.

δKScal/Mis, δLScal/Mis  =  Residual angular rate sensor and accelerometer scale-

factor/misalignment error matrices remaining after applying

ΩWt, KMis, AWt, LMis  compensation in Equations (34).

δKBias, δLBias  =  Residual angular rate sensor and accelerometer bias error vectors

remaining after applying KBias, LBias compensation in Equations (34).

Note that the δαQuant, δυQuant quantization compensation error residuals do not appear in the

Equations (50) δωIB
B

, δaSF
B

 error definitions, but instead, show in the Equations (46) - (47)

navigation parameter error vectors.  Reference 21 and Reference 20 (or 25) Section 12.5 show
that this form results in the navigation error parameter time rate propagation equations being in
standard error state dynamic format (with quantization noise inputs appearing directly, not as
their derivatives) as shown next.

6.3  Error Parameter Propagation Equations

 The ψ, δV, δR error parameters defined in Section 6.1 propagate in N Frame coordinates as

(Ref. 20 (or 25) Sects. 12.3.3 and 12.5.1):

ψ
. N

  =  - CB
N

 δωIB 
B

 - ωIN
N

 × ψ 
N

 + CB
N

 ωIB 
B

× δαQuant

δV
.

N   =  CB
N

 δaSF
B

 + aSF
N

 × ψN
 - 

g
R

 δRH
N

 + F(h) 
g
R

 δR uUp
N

 - ωIE
N

 + ωIN
N

 × δVN + δgMdl
N

- aSF 
N ×  CB

N
 δαQuant - CB

N
 ωIB

B
 + ωIE

N
 ×  CB

N
 δυQuant

F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0 (51)

δR
.

N   =  δVN - ωEN
N

 × δRN + CB
N

 δυQuant

δRH
N

  =  δRN - δR uUp
N

δR  =  uUp
N

 ⋅ δRN

where
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δRH, δR  =  Horizontal and upward vertical components of δR.

δgMdl  =  Modeling error in g produced by variations in true gravity from the model used

in the system computer.

Equations (51) are based on attitude/velocity/position being updated in the strapdown computer
at the same algorithm repetition rate.  For different repetition rates the quantization terms in these
equations have revised coefficients.  Note also that the vertical velocity error equations in (51)
are different for positive compared to negative altitudes.  This is a manifestation of the difference
in gravity model below versus above the earth's surface (Ref. 20 (or 25) Sect. 5.4).

Equations (51) can be integrated to calculate the response of the attitude, velocity, position
errors in a strapdown INS as impacted by accelerometer, angular rate sensor, and gravity model
approximation errors.  The equations are based on the assumption that the INS navigation
parameter integration algorithm error and computer round-off error is negligibly small.

A similar set of N Frame error propagation equations exist for the Equations (47) γ, δv, ε, δh

error parameters (Ref. 20 (or 25) Sects. 12.3.4 and 12.5.2).  Equations (51) for ψ, δV, δR and the

equivalent set for γ, δv, ε, δh can be derived from the differential of any set of strapdown inertial

navigation error propagation equations (e.g., the set given in Section 2) with the appropriate
definitions substituted for the navigation parameter error terms (e.g., Equations (46) or (47)).
Alternatively, Reference 20 (or 25) Section 12.3.6 (and subsections) shows that one set of error
parameter propagation equations can be derived from another by applying the equivalency
equations relating the parameters (e.g., Equations (48) or (49)).  It is important to recognize that
the parameters selected to describe the error characteristics of a particular INS can be any
convenient set and not necessarily those derived from the navigation parameter differential
equations actually implemented in the INS software.  Thus, any set of error propagation
equations can be used to model the error characteristics of any INS, provided that the error
propagation equations and INS navigation parameter integration algorithms are analytically
correct without singularities over the range of interest, and that the sensor error models are
appropriate for the application.

7.  CONCLUDING REMARKS

Computational operations in strapdown inertial navigation systems are analytically traceable
to basic time rate differential equations of rotational and translational motion as a function of
angular-rate/specific-force-acceleration vectors and local gravitation.  Modern day strapdown
INS computer capabilities allow the use of navigation parameter integration algorithms based on
exact solutions to the differential equations.  This considerably simplifies the software validation
process and can result in a single set of universal algorithms that can be used over a broad range
of strapdown applications.  Exact attitude updating algorithms based on direction cosines or an
attitude quaternion are analytically equivalent with identical error characteristics that are a
function of the error in the same computed attitude rotation vector inputs to each.  Modern day
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strapdown computational algorithms and computer capabilities render the computational error
negligible compared to sensor error effects.

The angular-rate/specific-force-acceleration vectors input to the strapdown INS digital
integration algorithms are measured by angular rate sensors and accelerometers whose errors are
compensated in the strapdown system computer based on classical error models for the inertial
sensors.  Strapdown INS attitude/velocity/position output errors are produced by errors
remaining in the inertial sensor signals following compensation (due to sensor error model
inaccuracies, sensor error instabilities, sensor calibration errors) and to gravity modeling errors.
Resulting INS navigation error characteristics can be defined by various attitude, velocity,
position error parameters that are analytically equivalent.  Any set of navigation parameter error
propagation equations can be used to predict the error performance of any strapdown INS.  The
navigation error parameters used in the error propagation equations do not have to be directly
related to the navigation parameters used in the strapdown INS computer integration algorithms.
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