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ABSTRACT 

 
A reference trajectory is commonly used for inertial navigation system (INS) performance 

evaluation, depicting the attitude/velocity/position profile of a reference source in a moving 
vehicle (land, sea, or air-borne), and  generated by direct previous INS recordings or simulation. 
Since the advent of Kalman filter INS aiding, it has been typically required to also generate a 
precision “variation trajectory” from the reference, depicting angular-rate/specific-force and 
corresponding attitude/velocity/position navigation state at a specified linear-position/angular-
orientation relative to the reference.  The reference might represent a “master” reference 
navigation state at a particular location in a moving vehicle, the variation trajectory angular-
rate/specific-force would represent inputs to simulated gyros/accelerometers driving the inertial 
navigation solution in a simulated Kalman aided INS.  Comparing the master and aided INS 
outputs would form the Kalman filter “measurement” input, the output then used to update the 
INS being aided.  The variation trajectory data would also be used to represent the “true” 
navigation state at the offset location for aided INS performance comparison.   

 
  This article analytically derives a new exact formulation for variation trajectory angular-

rate/specific-force and the corresponding navigation state as a function of the reference trajectory 
navigation state and specified attitude/position offsets thereof.  The new approach is designed to 
eliminate unrealistic velocity oscillations created with previous approaches when applying the 
offset constraints.  For performance evaluation, an analytical test example is defined, then used 
to generate/compare new versus previous variation trajectory solutions relative to the theoretical 
test example.  Results are analytically presented at successive trajectory data update cycles so 
that detailed performance characteristics can be clearly exposed. 

 
 

INTRODUCTION 
 

An important element in strapdown INS performance analysis is a reference trajectory used 
to generate simulated strapdown gyro/accelerometer signals with corresponding navigational 
attitude/velocity/position for INS software validation and covariance simulation routines.  
Developing a trajectory that replicates a realistic scenario is a complex computer design process 
involving maneuver shaping, results prediction, and trajectory generation using previously 
developed design aids, e.g., [1, Sects. 17.1, 17.2.1, & 17.2.2].  In general, the trajectory 
generation operation is achieved by processing simulated gyro/accelerometer signals through a 
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precision set of strapdown inertial navigation integration algorithms designed to provide an exact 
navigation solution response.  The trajectory design operation must also assure that the resulting 
navigation solution properly depicts realistic performance characteristics. 

Since the evolution of Kalman aiding for real-time INS calibration/performance-updating, 
the Kalman filter design process has commonly used a “reference trajectory” to simulate an 
aiding reference navigation input to the Kalman filter “measurement”.  A “variation” trajectory is 
then used to simulate the INS being aided, providing simulated INS gyro/accelerometer inputs 
(angular-rate/specific-force), their outputs then processed by aided INS integration routines.  
Computed aided INS navigation data is provided for user output and “feedback” to the Kalman 
measurement for comparison with the aiding reference data. 

 
Design of a variation trajectory requires the merging of reference trajectory inputs with 

variation trajectory constraints to generate a precision solution that realistically represents the 
navigation state at the aided INS location subject to specified constraints.  The variation trajectory 
constraints might specify a specified offset in aided INS position location in the vehicle relative to 
the reference navigation data location (including potential vehicle bending effects), and a 
specified angular orientation of the aided INS relative to reference attitude ( including relative 
angular motion, e.g., simulating a scanning platform).   

 
Ref. [1, Sect. 17.2.3] analytically describes how a variation trajectory can be constructed 

from a reference trajectory to meet specified attitude/position constraints.  However, users who 
have implemented that approach have reported unusual unexplainable performance anomalies.  
Even though results exactly satisfied the specified attitude/position constraints, the 
corresponding angular-rate/specific-force/velocity profile contained unexpected sustained high-
frequency oscillations triggered by maneuvers.  This article analytically reconstructs the 
sustained oscillations experienced, and develops an alternate approach for elimination. 

 
The problem with the original [1] approach (identified herein as “Method 1”) stems from the 

lack of velocity control when generating angular-rate/specific-force (two vector quantities) to 
meet two specified attitude/position constraints.  This is a general problem of defining two vector 
parameters (angular-rate/specific-force) to satisfy three constraints, attitude/position and an 
accompanying velocity without unrealistic oscillations.  The problem is solved in this article 
using a different design approach (“Method 2”):  Specifying that the attitude constraint still be 
met at each trajectory update cycle (as with Method 1), but adding an additional velocity 
constraint that when coupled with the position constraint, is satisfied at alternate (every other) 
update cycle.  The result provides specific-force/angular-rate/attitude/velocity/position at each 
update cycle, that meets the attitude constraint at each update cycle, and the velocity/position 
constraints at alternate (“even”) update cycles.  Subsequent analysis of Method 2 performance 
then centers on the realism of the resulting solution, particularly the velocity/position at alternate 
“odd” update cycles where no velocity/position constraints have been imposed. 

 
The article begins with a general set of exact attitude/velocity/position updating algorithms 

for variation trajectory response to integrated angular-rate/specific-force increments.  
Attitude/position constraints are then specified relative to reference trajectory attitude/position.  
Following is a derivation mimicking the [1] approach, solving for angular-rate/specific-force   to 
meets the attitude/position constraints at each update cycle.  The Method 2 approach is then 
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described showing the form of the added velocity constraint, then solving for integrated angular-
rate/specific-force increments at each update cycle to meet the attitude constraint at each update 
cycle and the velocity/position constraints at alternate update cycles. 

 
To analytically evaluate and compare Method 1 and 2 performance, a continuous form 

sample test example is analytically defined for the reference trajectory with attitude/position 
constraints, and solved on a continuous basis to form a variation trajectory theoretical trajectory.  
The test example defines a constant reference velocity plus a sequence of two different constant 
angular rate maneuvers, with the variation location at a fixed lever arm relative to the reference 
position.  The analytical result defines a constant tangential-velocity/centripetal-acceleration 
proportional to lever-arm displacement during each constant angular rate segment, but requiring 
impulsive specific-force at the angular rate change junctions to instantaneously change the 
associated tangential velocity.  For the Method 1 and 2 test example solutions, integrated 
specific-force increments of finite constant amplitude are used, each spanning an update cycle.  
As a result, the angular rate changes generate a finite time duration transient in place of the 
theoretical solution impulse.  For Method 1, each transient produces a sustained specific-
force/velocity oscillation.  For Method 2, the solution matches the theoretical result following the 
transient (i.e., without sustaining oscillations). 

 
Method 2, however, still contains a small bounded oscillation effect produced by specific-

force reaction to balance gravity.  That effect remains during constant rotation periods.  It is 
produced by the requirement to meet the velocity/position constraint at alternate (even) update 
cycles using two sets of specific-force (an odd cycle set followed by an even cycle set).  A 
difference in specific-force gravity balancing (from the theoretical solution) thereby occurs at 
odd update cycles.  The result is a small difference in variation trajectory specific-force from the 
theoretical solution.  The article includes a section showing how the gravity oscillation effect can 
be effectively removed.  The method is by modifying the reference trajectory to contain a 
matching gravity oscillation.  Then, when forming a simulated Kalman filter input 
“measurement”, comparison between the variation and reference trajectories will cancel the 
gravity oscillation effect.  

 
Preparation of the Method 1 and 2 analytical test model responses was complicated.  To simplify 
the article, only the final test example results are presented here with derivation details provided 
as Appendices G and H in a separate article [2] directly accessible at 
http://www.strapdownassociates.com/Appendices%20F,%20G,%20H%20to%20Variation%20Tr
ajectory%20Generator.pdf.  

 
 

NOTATION 
 
General Notation 
 
V  = Arbitrary vector without specific coordinate frame component definition. 

AV  = Column matrix with elements equal to general vector V  projections on general coordinate 
frame A axes. 
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( AV ×)  = Cross-product (or skew symmetric) form of AV  defined such that for the cross-product 

of V with another arbitrary vector W in the general A frame: ( )A A AV W V W× = × A . 

 D
AC  = Generalized direction cosine matrix that transforms vectors from general coordinate 

frame A to general coordinate frame D (i.e., D AD
AV VC= ). 

  
Coordinate Frames 
 
B = “Body” coordinate frame aligned with orthogonal strapdown inertial sensor axes fixed in the 

rotating body. 
B(t)  = Frame B at time t. 
E = Earth frame fixed to the rotating earth. 
E0 = Inertial non-rotating inertial frame aligned with E at trajectory start time t = 0. 
I = General inertially non-rotating coordinate frame. 
N = Coordinate frame aligned with locally level navigation coordinates having one axis vertical. 
 
Trajectory Generator Update Cycle Indices 
 
m = Trajectory generator update cycle index (  at trajectory start time t = 0). 0m =
n = Trajectory generator even (or alternate) update cycle index (i.e., ). 2m n=
Important Note: Each cycle index subscript identifies the m cycle time instant value for that 

parameter (e.g., subscript 2n indicates a parameter value as cycle , and 2n-1 
indicates a parameter value at cycle . 

2m = n
2 1m n= −

 
Trajectory Type Subscripts 
 
ref  = Parameter or coordinate frame identifier for the variation trajectory. 
var = Parameter or coordinate frame identifier for the variation trajectory. 
 
Parameter Definitions 
 

Parameters are listed next in alphabetical order with Greek letters ordered using the English 
translation (i.e., Delta  under D, muΔ μ  under m, omega  under o, phi ω φ  under p, upsilon  
under u).  Parameters used exclusively in the appendices are defined separately in the appendices 
where they appear. 

υ

 
B
SFa =  Specific force acceleration vector of the rotating body (that would be measured by 

strapdown accelerometers attached to the rotating body and aligned with body axes). 

m
D
AC = Direction cosine matrix D

AC  at the end of update cycle m. 
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B
mαΔ = Integral over an m cycle of B frame measured inertial angular rate Bω  (that would be 

measured by strapdown gyros attached to the rotating body and aligned with body axes,  

i.e., 
1

tB Bm
m tm

dtα ω
−

Δ = ∫ . 

Bvar
varαΔ = Particular value of B

mαΔ  defined for the sample to be constant for . 0 9m≥ > −

'Bvar
varαΔ = Particular value of B

mαΔ  defined for the sample to be constant for .   0m >
( )mg tRΔ = Change in R over the  to  time interval caused by 1mt − mt g  gravitational 

( )mSF tRΔ = Change in R over the  to  time interval caused by specific force 1mt − mt SFa
acceleration. 

B
mυΔ  = Integral over an m cycle of B frame measured specific-force (acceleration) B

SFa (i.e.,

1
tB Bm

m SFtm
dtaυ

−
Δ = ∫ ). 

( )mg tVΔ = Change in V over the  to  time interval caused by caused by 1mt − mt g  gravitational 

acceleration. 
( )mSF tVΔ = Change in V over the  to  time interval caused by specific force 1mt − mt SFa
acceleration. 

g  = Earth’s mass attraction gravity vector (relative to earth’s center) at trajectory position 
location R. 

avgg  = Constant average approximation of g to simplify the test example model. 

I = Identity matrix. 
l  = Specified position displacement vector component of S. 

Bω  =  Rotating body angular rate vector relative to non-rotating space (that would be measured 
by strapdown gyros attached to the body and aligned with rotating body axes). 

R = Position vector from earth’s center to the trajectory designated position location (“navigation 
center” ). 

mR = Position vector R at the end of update cycle m. 
S = Specified vector displacement of varR  relative to refR . 

s  = Specified additional displacement vector component of S. 
t = Elapsed time from the start of a trajectory. 

mt  = Time t at the end of trajectory update cycle m. 

mT  = Time interval from  to  (assumed constant for this article). 1mt − mt
V  = Velocity of trajectory position relative to non-rotating inertial space defined as the time rate 

of change of position evaluated in inertially non-rotating 0E  coordinates: 
0

0
E

E d RV
dt

≡ . 

mV = Velocity vector V at the end of update cycle m. 
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BASIC INERTIAL NAVIGATION OPERATIONS 
 
The general equations of kinematic motion for a rotating body travelling in non-rotating 

inertial space are provided by the fundamental Newtonian vector expressions [3, Eqs. (1) & (2)]: 
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 (1) 

         
Eqs. (1) are the basis for design of a strapdown inertial navigation system (INS) in which 

angular-rate/specific force (ω , SFa ) are measured for input, and attitude, velocity, position ( I
BC

, IV , 
IR  ) are computed in the non-rotating inertial I frame for output.  In most INSs, (1) is 

defined for integration in an intermediate locally level “navigation” N frame with velocity 
defined as the rate of change of position relative to the rotating earth, and position is designated 
by altitude and angular position in an earth based coordinate frame (e.g., latitude/longitude or the 
equivalent direction cosine matrix representation).  The resulting equations are equivalent to (1), 
but with additional terms associated with angular velocity of the locally level N frame and 
earth’s angular rotation rate (i.e., the so-called centripetal and Coriolis acceleration terms added 
to the velocity rate equations).  Integration of the N frame equations, however, yields exactly the 
same solution as integration of (1), after the results are converted to the I frame attitude, velocity, 
position definitions (and assuming the use of “exact” (error free) integration algorithms). 

 
Trajectory generator simulators have also been based on the integration of (1) (or their 

equivalent N frame version) with one notable difference, for a trajectory generator, angular-
rate/specific-force (ω , SFa ) are programmed functions that have been previously determined to 

yield an attitude/velocity/position ( I
BC , IV , 

IR ) profile representative of user operations.  

Design of ω , SFa  to generate a representative I
BC , IV , 

IR profile is a complicated process that 
can be simplified by a fundamental premise in the trajectory profile structure: to consist of a 
sequence of trajectory segments, each based on constant ω , SFa values during successive 
trajectory update m cycles of (1) within the segment. 

 
This article describes the design of a “variation trajectory” generator that produces a 

trajectory at specified attitude/position variation from an existing “reference” trajectory.  The 
variation trajectory is assumed to be created by a trajectory generator structured as described 
previously, by a sequence of constant specific force/angular-rate segments, each spanning an m 
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cycle of (1).  The result (for an I frame representation) will be an exact solution of (1) for each m 
cycle as described in [3, Eqs. (2) – (5) ]: 

      

 ( ) ( )
1
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(4) 

 
The 0E

varg  gravity groupings in (3) and (4) are based on a linearly varying gravity vector over 

each m cycle as derived in Appendix A.  For each m cycle,
 

0E
varg  (specifically, 0

m
E
var

g at the end 

of the m cycle) is a function of variation trajectory position vector 0
m

E
varR , and can be calculated 

directly from 0
m

E
varR  (as shown in Appendix B), or as a first order expansion around the 

reference trajectory gravity vector (as shown in Appendix C). 
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SPECIFIED VARIATION TRAJECTORY CONSTRAINTS 
 

The variation trajectory is defined to vary from the reference trajectory by defined attitude 
and position offsets (constraints) at each m time point. 

 
The attitude constraint is defined as a specified angular orientation relative to the reference 

trajectory attitude matrix: 
 

  (5) 0 0 m
m m

BrefE E
Bvar Bref BvarC C C=

m

 
The position constraint is defined as a specified linear translation relative to the reference 

trajectory position location: 
 

 0 0 0
m m

E E E
mrefvar SR R= +  (6) 

 
For flexibility in use, the 0E

mS  displacement vector is further defined to be composed of two 
components, each represented by a different coordinate frame projection: 
 

 ( )00 mm
m

TBref BrefE BvarE
m Bvar BvarmS lC C

⎡ ⎤
≡ ⎢

⎣ ⎦
s+ ⎥  (7) 

If the reference trajectory was defined to represent a master INS in an aircraft, the mBrefl vector 
might represent a lever arm from the master INS location to a second INS location in the aircraft, 
and mBvars could represent an additional displacement of the second INS location when 

mounted on a controlled rotating platform at instantaneous orientation relative to the 

master INS attitude. 

Bref
BvarmC

 
For complete flexibility, , Bref

BvarmC mBrefl , and mBvars can be represented by constant and 

time varying terms,  changes with time representing (for example) a scanning operation, 

and the 

Bref
BvarmC

mBrefl , mBvars  variations representing (for example) fixed plus bending oscillations.  
(Ref. [1, Sect. 17.2.3.2.3] describes how random finite bandwidth lever arm bending effects can 
be analytically modeled.)    For realism in their use, the time change effects can be filtered to 
eliminate (for example) unrealistically abrupt changes in their movement at programmed model 
time junctions, e.g., changing the scan rate from one value to another.  Based on [1, 

Sect. 17.2.1], Appendix D describes how filtering can be easily incorporated in  for 

smoothing while retaining bounded specified offset characteristics and the traditional 
orthogonality/normality properties of a direction cosine matrix.  

Bref
armBvC

Bref
BvarmC
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DESIGNING THE VARIATION TRAJECTORY TO MEET THE SPECIFIED 
CONSTRAINTS 

 
Designing the variation trajectory requires solving for Bvar

varm
αΔ , 

m
Bvar
varυΔ  in (2) – (4) to meet 

the (5) – (7) constraints.  Once Bvar
varm

αΔ , 
m

Bvar
varυΔ  are determined, the variation trajectory can be 

generated by processing (2) – (4) in non-rotating inertial 0E  coordinates (or an equivalent in 
locally level navigation coordinates, e.g., azimuth wander [1, Sect. 4.5 & Table 5.6-1]. 
 

  Solving for Bvar
varm

αΔ  is a straight-forward matrix transformation operation of (2) using 

constraint (5) for .  Substituting from (5) into the third equation in (2), then 

multiplying by the inverse of (while recognizing that the inverse of a direction cosine 

matrix equals its transpose), finds .  Identifying 

0
m

E
BvarC 0

m
E
BvarC

mr

0
1

E
BvarmC −

CvaG Bvar
varm

αΔ  as a rotation vector (based on 

its definition in (2) and the assumed constant angular rate Bvar
varω over an m cycle for the variation 

trajectory), G  is solved for mrCva
Bvar

rmvaαΔ  using a direction cosine matrix to rotation vector 

inversion routine [1, Sect. 3.2.2.2].  Thus, attitude constraint (5) is implemented in the variation 
trajectory simulator by replacing (2) with 

 

 
0 0 0

10

Rotation Vector Extraction From 

m
mm mm m

m

BrefE E EBvar
CvarBvar Bref Bvar BvarE

Bvar
Cvarvarm

C C C G C C

Gα
−

= =

=Δ

m  (8) 

 
With Bvar

varm
αΔ  so determined,  and  (both functions of mVvarG mRvarG Bvar

varm
αΔ ) are 

calculated from their definitions in (3) and (4), then applied to find a 
m

Bvar
varυΔ specific force that 

generates a 0
m

E
varR   position profile meeting the specified position constraints.  Two methods 

have been analyzed for finding 
m

Bvar
varυΔ  that satisfy position constraint (6) - (7): 

 
1. Solving for 

m
Bvar
varυΔ  over each m cycle with 0

m
E
varR  satisfying position constraint (6) – 

(7), but without specific control of velocity 0
m

E
varV . 

 
2. Solving for 

m
Bvar
varυΔ  over each m cycle so that position 0

m
E
varR  satisfies (6) - (7) at 

alternate cycles, and including specific control of velocity 0
m

E
varV at the alternate m 

cycles. 
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Each is discussed next followed by an example for analytically comparing the 
m

Bvar
varυΔ , 0

m
E
varV , 

0
m

E
varR  profiles generated by each method. 

 
METHOD 1 – SATISFYING THE POSITION CONSTRAINT AT EACH m CYCLE 
 

Method 1 is an inertial frame version of the locally level frame equivalent in [1, Eq. 
(17.2.3.2-24)] whereby 

m
Bvar
varυΔ  is defined by direct inversion of (4): 

 

 ( ) ( )
0 0 0

1 1

0 0
1

1
0

1 2
/1

2
6

m m m

m

m m

E E E
mvar var varBvar E

mRvarBvarvar mm E E
mvar var

VR R T
C G T

g g T
υ

− −

−

−

−

⎡ ⎤− −
⎢ ⎥

=Δ ⎢ ⎥
− +⎢ ⎥

⎣ ⎦

 (9) 

 
In (9), 0

m
E
varR  and 0

1m
E
varR

−
are set to the current and previous value specified by position 

constraint (6) with (7).  The previous m cycle velocity 0
1m

E
varV

−
 in (9) would be provided from 

the past cycle of (3), necessitating that (3) be included as part of 
m

Bvar
varυΔ  determination.  The 

0
m

E
var

g  gravity terms in (9) are functions of 0
m

E
varR specified position constraint (6), and can be 

calculated using either of the Appendix B or C approaches. 
 
Variation position 0

m
E
varR  in (9) is calculated in (6) - (7) with  from (8) using 

reference position 

0
m

E
BvarC

0
m

E
refR  and attitude provided from the reference trajectory.  If not 

directly available in (6) and (8) format,

0
m

E
BrefC

0
m

E
refR , can be obtained by conversion of 

available reference position data (e.g., body frame Bref  attitude relative to a locally-level 
wander azimuth coordinate frame, altitude, and wander azimuth frame position angle, as 
described in Appendix E).  The G  term in (9) would be calculated as in (4). 

0
m

E
BrefC

Rvarm
 
Once 

m
Bvar
varυΔ  is determined, velocity 0

m
E
varV  and position 0

m
E
varR  are obtained using (3) and 

(4).  (Note: Since Method 1 specific force is based on meeting position constraint (6) with (7), 
(6) rather than (4) can be used directly for 0

m
E
varR ).  Attitude/velocity/position results can then 

be output directly in 0E  inertial coordinates, or after conversion to another desired format as 
required (e.g., Appendix E).  

 
The problem with the Method 1 approach is that even though integrated specific force 

increment 
m

Bvar
varυΔ  calculated by (9) will correctly generate 0

m
E
varR  that meets constraint (6), the 
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resulting 
m

Bvar
varυΔ  and 0

m
E
varV  obtained from 

m
Bvar
varυΔ  in (3), may not look realistic.  (This was 

unexpected by the author when applying [1, Sect. 17.2.3.2] in actual simulations, and which 
motivated the publication of this article for mitigation.)  The Method 1 problem is described in 
more detail subsequently by test example, showing that even though position constraint (6) is 
satisfied at each m cycle, an unrealistic oscillation is generated in the accompanying 

m
Bvar
varυΔ  and 

0
m

E
varV  solutions. 

 
By adding a velocity constraint to go with position constraint (6), Method 2 (described next) 

mitigates the Method 1 oscillation effect, but at sacrifice of position constraint (6) only being 
satisfied at alternate m cycles.  Method 2 performance is then demonstrated subsequently in this 
article when applied to the same test example used for Method 1. 
 
METHOD 2 – SATISFYING THE POSITION CONSTRAINT AT ALTERNATE m CYCLES 
 

Method 2 uses two sequential cycles of 
m

Bvar
varυΔ  , each based on constant rate/acceleration, 

that meet the (6) specified position constraint on 0
m

E
varR  at alternate m cycles, but also satisfy an 

additional constraint on 0
m

E
varV  velocity.  The velocity constraint sets 0

m
E
varV to the time 

derivative of position constraint (6) at time instant m, with the derivative of 0ES  in (6) 

approximated as the average change of 0ES  over two m cycles: 
 

 

0

0 0
0

0 00 0

1 1

Estimated 

2

m

m

E EE Eref refE
var

m mm m

E E
E m m
ref

m

d dR Rd dS SV
dt dt dt dt

S S
V

T
+ −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟= + ≈ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠

−
= +

⎠  (10) 

Because 0E
mS  is specified by (6) at each m cycle, 0

1
E
mS +  in (10) requires a computation of (6) one 

m cycle in advance (to be built into the variation trajectory generator non-real-time structure). 
 

Deriving two m cycles of 
m

Bvar
varυΔ  expressions that satisfy (6) and (10) requires the m-1 cycle 

version of (3) and (4) for 0
1m

E
varV

−
, 0

1m
E
varR

−
 to go with 0

m
E
varV , 0

m
E
varR  in (3) and (4).  Permuting 

subscripts in (4) first finds for 0
1m

E
varR

−
: 
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( )

0 0 0 0
121 2 2 1

0 0
1 2

21 2
6

mmm m m m

m m

BvarE E E E
m mRvarBvarvar var var var

E E
mvar var

VR R C GT T

g g T

υ−−− − − −

− −

= + + Δ

+ +
 (11) 

 
Substituting (11) for 0

1m
E
varR

−
 in the (4) 0

m
E
varR  expression obtains 

 

 

( )
( )

( )

0 0 0 0
2 1 2

0 0
12 11

0 0 0
1 2

21 3 2
6

m m m m

m mm mm m

m m m

E E E E
mvar var var var

Bvar BvarE E
mRvar RvarBvar Bvarvar var

E E E
mvar var var

V VR R T

C G C G T

g g g T

υ υ

− − −

−− −−

− −

= + +

+ +Δ Δ

+ + +

 (12) 

 
or upon rearrangement: 
 

( )
( ) ( )

0 0
12 11

0 0 00 0 0 0
2 1 2 1 2

21 3 2
6

m mm mm m

m m m m m m m

Bvar BvarE E
mRvar RvarBvar Bvarvar var

E E EE E E E
m mvar var var var var var var

C G C G T

g g gV VR R T T

υ υ−− −−

− − − − −

+Δ Δ

= − − + − + +
 

(13) 

 
Similarly, permuting subscripts in (3) finds for 0

1m
E
varV

−
: 

 

( )0 00 0 0
121 2 1 1 2

1
2mmm m m m m

Bvar E EE E E
mVvarBvarvar var var var var

g gV V C G Tυ−−− − − − −
= + + +Δ  (14) 

 
which when substituted in (3) obtains 
 

 
( )

( )
0 00 0 0

122 1 1 2

0 00
1 1

1
2

1
2

mmm m m m m

mm m m m

Bvar E EE E E
mVvarBvarvar var var var var

Bvar E EE
mVvarBvar var var var

g gV V C G T

g gC G T

υ

υ

−−− − − −

− −

= + + +Δ

+ + +Δ
 (15) 

 
With rearrangement, (15) becomes 
 

( )
0 0 0

11 2 1 2

0 0 0
1 2

1 2
2

m mm mm m

m m m

Bvar BvarE E E
Vvar VvarBvar Bvarvar var var var

E E E
mvar var var

V VC G C G

g g g T

υ υ−− − − −

− −

+ =Δ Δ

− + +

0
m m

E−
 (16) 

 
A rearranged form of (14) will also prove useful: 
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( )0 00 0 0 0
121 2 2 1 1 2

12
2mmm m m m m m

Bvar E EE E E E
mVvarBvarvar var var var var var

g gV V V C G Tυ−−− − − − − −
+ = + + +Δ  (17) 

 
Substituting ( )0 0

1m m
E E
var varV V

−
+

2−
 from (17) in (12) obtains after rearrangement: 

 

         
( )

( )
( )

0 0
12 11

0 0 0 0
122 2 1

0 0 0
1 2

2

2

1 6 5
6

m mm mm m

mmm m m m

m m m

Bvar BvarE E
mRvar RvarBvar Bvarvar var

BvarE E E E
mVvarBvarvar var var var

E E E
mvar var var

C G C G T

VR R C G T

g g g T

υ υ

υ

−− −−

−−− − −

− −

+Δ Δ

= − − + Δ

− + +

 (18) 

 
which combines into  
 

( )
( )

0 0
1 12 11

0 0 00 0 0
2 2 1 2

212 6 5
6

m m mm mm m

m m m m m m

Bvar BvarE E
mRvar Vvar RvarBvar Bvarvar var

E E EE E E
m mvar var var var var var

C G G C G T

g g gVR R T T

υ υ− −− −−

− − − −

⎡ ⎤+ +Δ Δ⎢ ⎥⎣ ⎦

= − − − + +
 (19) 

 
Eqs. (16) and (19) are now in a convenient form to find 

m
Bvar
varυΔ  and 

1m
Bvar
varυ

−
Δ .  First (16) 

and (19) are solved for 
m

Bvar
mvar TυΔ : 

 

( ) ( )

( )

0 0
2

0 0 0
1 2

0
12 1

0 0 0
2 2

1
0

1

1
0

1

1 2
2

2

1
6

m m

m m m m

mm m

m m m

m m

E E
var var

BvarBvar E E E
m mVvarBvarvar m var var varm

BvarE
VvarBvar var

E E E
mvar var var

Bvar E
m RvarBvarvar m vam

V V

g g gC GT T

C G

VR R T

C GT

υ

υ

υ

−

− −

−− −

− −

−

−

−

−

⎡ ⎤−
⎢ ⎥
⎢ ⎥

= − + +Δ ⎢ ⎥
⎢ ⎥
⎢ ⎥− Δ⎢ ⎥⎣ ⎦

− −

= −Δ

mT

( )
( )

0 0 0
1 2

0
1 12 1

26 5
m m

m mm m

E E E
mr var var

BvarE
mRvar VvarBvar var

g g g T

C G G Tυ

− −

− −− −

⎡ ⎤
⎢ ⎥
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥
⎢ ⎥− + Δ⎢ ⎥⎣ ⎦

 (20) 

 
Equating the 

m
Bvar

mvar TυΔ  expressions in (20) yields 
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( ) ( )

( ) ( )

0 0 00 0
2 1 2

0
12 1

0 0 0
2 2

0 0 0
1 2

1
0

1

1
20

1

1 2
2

2

1 6 5
6

m m m m m

mm m

m m m

m m m

m

E E EE E
mvar var var var varBvar

mVvarBvar mm BvarE
VvarBvar var

E E E
mvar var var

E E E E
mRvarBvar m var var varm

g g gV V T
C G T

C G

VR R T

g g gC G T

υ

− − −

−− −

− −

− −

−

−

−

−

⎡ ⎤− − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− Δ⎣ ⎦

− −

= − + +

− ( )0
1 12 1m m m

BvarE
mRvar VvarBvar varC G G Tυ− −− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ Δ⎢ ⎥⎣ ⎦

 (21) 

 
or upon rearrangement: 
 

( )
( )

( ) ( )

0 0 00 0 0
2 2 1 2

0
1 12 1

0 0
2

0 0 00
1 1 2

2

2

1
0

1

12 6 5
6

1 2
2

m m m m m m

m mm m

m m

mm m m m

m

E E EE E E
m mvar var var var var var

BvarE
mRvar VvarBvar var

E E
var var

E E E EE
mRvar VvarBvar Bvar m var var varm

Bvar

g g gVR R T T

C G G T

V V

g g gC G C G T

υ

− − − −

− −− −

−

− − −

−

−

−

− − − + +

− + Δ

−

= − +

−

+

0
1 1m m

m

BvarBvar
Vvar var

T

C G υ− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Δ⎢ ⎥⎣ ⎦

(22) 

 
Define 

  (23) ( )0
1

1
01 1mm

EE
m Rvar VvarBvar Bvar mmC G C GA −

−
− −

≡

 
with which (22) becomes 
 

 

( )
( )

( )

0 0 00 0 0
2 2 1 2

0
1 12 1

0 0
2

0 0 0
1 2

0
12 1

2

1

12 6 5
6

1 2
2

m m m m m m

m mm m

m m

m m m

mm m

E E EE E E
m mvar var var var var var

BvarE
mRvar VvarBvar var

E E
var var

E E E
m mvar var var

BvarE
VvarBvar var

g g gVR R T T

C G G T

V V

g g gA T

C G

υ

υ

− − − −

− −− −

−

− −

−− −

−

− − − + +

− + Δ

⎡ −
⎢
⎢

= − + +⎢
⎢
⎢ − Δ
⎣

mT

⎤
⎥
⎥
⎥
⎥
⎥

⎢ ⎥⎦

 (24) 

 
Equivalently, after grouping like terms: 
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( )
( )

( )

0 0
1 1 12 2 1

0 0 0 0 0
2 2 2

0 0 0
1 2

1

1

1 1 2
1

2

1 5
2 6 2 6

m m mm m m

m m m m m

m m m

BvarE E
m mRvar Vvar VvarBvar Bvar var

E E E E E
m m mvar var var var var

E E Em m
m mvar var var

C G G C GA T

V V VR R T A T

A Ag g gI IIA T

υ− − −− − −

− − −

− −

−

−

− −
−

⎡ ⎤+ − Δ⎢ ⎥⎣ ⎦

= − − − −

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − + − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (25) 

 
Defining particular groupings in (25) as 
 

( )
( )

( )

0 0
1 1 1 12 2

0 0 0 0 0
1 2 2 2

0 0 0
1 2

1

1

1 1 2
1

2

1 5
2 6 2 6

m m m mm m

m m m m m m

m m m

E E
m mden Rvar Vvar VvarBvar Bvar

E E E E E
m m mnum var var var var var

E E Em m
m mvar var var

C G G C GB A T

V V VR RB T A

A Ag g gI IIA

− − − −− −

− − − −

− −

−

−

− −
−

⎡ ⎤≡ + −⎢ ⎥⎣ ⎦

≡ − − − −

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − + − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
T

T  (26) 

 
allows (25) to be solved for 

1m
Bvar
varυ

−
Δ : 

 
 111

1
mmm

Bvar
numdenvar B Bυ −−−

−=Δ  (27) 

 
The same process is used to obtain

m
Bvar
varυΔ  by returning to (16) and (19), but first solving 

each for 
1m

Bvar
mvar Tυ

−
Δ .  Following the methodology leading to (23), (26), and (27), the 

equivalent solution for 
m

Bvar
varυΔ  is given by 

 

  (28) ( ) ( )0
1 12

1
0

12m mm
EE

m Rvar Vvar VvarBvar Bvar mmC G G C GA − −−

−

−−
≡ +

 

 

( )
( )

( )

0 0
1 1

0 0 0 0 0
2 2 2

0 0 0
1 2

2

2

1 5
2 6 2 6

m m mm m

m m m m m

m m m

E E
m mden Rvar VvarBvar Bvar

E E E E E
m mnum var var var var var

E E Em m
m mvar var var

C G C GB A

V V VR R
m m

T

B T A T

A Ag g gI I IA T

− −

− − −

− −

≡ −

≡ − − − −

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − + − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (29) 

 
 1

mmm
Bvar

numdenvar B Bυ −=Δ  (30) 

 
Eq. (27) for 

1m
Bvar
varυ

−
Δ with (23) and (26),  and (30) for 

m
Bvar
varυΔ with (28) and (29), are the 

integrated specific force increments for Method 2, both functions of  variation trajectory position 
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0E
varR  and velocity 0E

varV  at the end of cycles m and m-2.   It is important to understand that these 

equations must be processed as a set, once every other m cycle using 0
m

E
varR , 0

2m
E
varR

−
, 0

m
E
varV , 

0
2m

E
varV

−
values prescribed by position/velocity constraints (6) – (7) and (10).   This assures that 

the basis for (27) and (30), the specified position/velocity constraints will both be satisfied at m-2 
and m, when the computed 

1m
Bvar
varυ

−
Δ , 

m
Bvar
varυΔ integrated specific force increments are applied 

sequentially (at time interval m-1 followed by m).  To clarify this point, it is expeditious to define 
another cycle n representing the occurrence of even m cycles, i.e., at m = , 0, +2, etc.  With 
this definition we can write that at even m cycles, , and at odd m cycles, .  
Using this representation, (23), (26) - (27), (28), and (29) – (30) then summarize as follows: 

2−
2m = n 2 1m n= −

 

( )
( )

( )

0
22 1

0 0
2 1 2 1 2 12 2 2 2

0 0 0 0
2 1 2 2 2 2 2 2

1
02 1 2

2 1

2

1
2 6

nn

n n nn n

n n n n n

EE
n Rvar VvarBvar Bv n

E E
den Rvar Vvar VvBvar Bvar

E E E E
num var var var var var

n

C GA

C G G C 2 1

0
2 2

ar

E

G

2 1

2 1

2 1

ar n

m n

C G

n

n

n m

m

B A T−

V V VR RB T T

A I

−

− − −− −

− −

−
−

−

≡

⎡ ⎤≡ + −⎢ ⎥⎣ ⎦

≡ − − −

⎛+ −⎜
⎝

A− −

−

−

−−    

( )0 0
2 2 1

2 12 12 1

2 1 2
2 1

1

5
2 6n n

nnn

E E En
n mvar var var

Bvar
numdenvar

Ag g gII

B Bυ −−−

−
−

−

⎞ ⎛+ − + −⎟ ⎜
⎠ ⎝

=Δ

0
2 2n

⎞
⎟
⎠

A T
− −

⎡ ⎤
⎢ ⎥
⎣ ⎦

)
   (31) 

 

( ) (
( )

( )
( )

0
2 1 2 12 2

0 0
2 2 22 1 2 1

0 0 0 0
2 2 2 2 2 2 2 2

0
2 2

02 2 12 2

2

2

2
2

2

1
2 6

n nn

n n nn n

n n n n n

n

EE
n Rvar Vvar VvarBvar Bvar nn

E E
n mden Rvar VvarBvar Bvar

E E E E E
m nnum var var var var var

En
nvar

C G G C GA

C G C GB A

V VR R 0
2

1

V
n m

T

T A T

A gI IA

− −−

− −

−

−−
≡ +

≡ −

≡ − − − −

⎛ ⎞+ − + −⎜ ⎟
⎝ ⎠

− −

−

   B

0 0
1 2

222

2

1

5
2 6n n

nnn

E En
var var

Bvar
numdenvar

Ag gI

B Bυ

− −

−

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

=Δ

2
2
mT

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
Importantly, each subscript in (31) identifies the m cycle time instant value for that parameter.   
   

Execution of (31) requires , , , 0E
BvarC VvarG RvarG 0E

varg   at each m cycle, and 0E
varR , 0E

varV  at 

each n cycle.  The , G  parameters are computed with (3) and (4) using VvarG Rvar
Bvar
varm

αΔ

0E
Bvarm

from 

(8).  Eq. (8) for C  is a function of the previous cycle transposed value of C , 0E
Bvarm
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0
m

E
BrefC from reference trajectory attitude, and , a user specified variation in the  

frame attitude relative to the 
m

Bref
BvarC Bvar

Bref  frame.  The 0E
varR , 0E

varV  parameters are functions of 0ES  , 
0E

refR  , 0E
refV   in (6) and (10); the n cycle values of 0ES  are used for 0E

varR , the m cycle values 

are used for 0E
varV .  The 0ES  parameter is a function of user specified mBrefl and mBvars lever 

arm data (and ) as calculated with (7).  The 
m

Bref
BvarC 0E

refV  parameter is obtained from the 

reference trajectory, either directly, or as described (for example) in Appendix E.  The 0E
refR  

position parameter is obtained from the reference trajectory, or from Appendix E as described in 
the second paragraph following (9).  The 0E

varg parameter is a function of 0E
varR calculated with (6) 

– (7) from 0E
refR  and 0ES .  Appendices A and B show how 0E

varg  can be determined from 0E
varR , 

either directly, or as a first order expansion around 0E
refR . 

 
GENERATING VARIATION AND REFERENCE TRAJECTORY OUTPUTS 

 
Once 

m
Bvar
varαΔ  and  

m
Bvar
varυΔ  have been determined, they can be processed through an 

appropriate set of integration algorithms to determine attitude/velocity/position navigation data 
for output, e.g., (2), (3), and (4) if outputs are to be provided relative to non-rotating inertial 0E  
coordinates, or the equivalent for a wander azimuth output format as described in Appendix E.  
Outputs would include 

m
Bvar
var  and  

m
Bvar
varυΔ  that generated the navigation data.  αΔ

 
The basic motivation for developing a variation trajectory is for use in Kalman aided INS 

simulations.   Then, variation trajectory data would represent the “true” navigation state at the 
aided INS location with the angular-rate/specific-force representing the aided INS 
gyro/accelerometer inputs.  To complete the simulation, reference trajectory data would also be 
provided as a simulated source of master navigation data for Kalman aiding filter input (for 
comparison with the aided INS output in the Kalman filter “measurement”).  Representative 
error sources would be added to the reference trajectory navigation data to simulate the master 
reference output.  Aided INS gyro/accelerometer outputs for navigation data generation would be 
created by adding representative errors to the variation trajectory angular-rate/specific-force.  
Aided INS outputs would be generated by processing the simulated gyro/accelerometer data 
through the anticipated aided INS navigation algorithms.  Aided INS performance would then be 
evaluated by comparing the aided INS output navigation data with the equivalent variation 
trajectory data. 

 
  It is important to recognize that for the previous process, the computation routines used to 

generate the variation trajectory outputs must be the same as those used in creating the reference 
trajectory.  This is the only way to assure that the difference between the reference and variation 
trajectories will accurately reflect attitude/velocity/position constraints (6), (7), (8), and (10) (for 
Method 2).  For situations where the reference trajectory used in (31) for Method 2 (to generate 
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variation trajectory angular-rate/specific-force) is provided directly (rather than by parallel 
integration), an equivalent reference must be generated, created by an equivalent set of reference 
angular-rate/specific-force operating through the same set of integration algorithms used for 
variation trajectory generation.  The reference angular-rate/specific-force would be created from 
the original reference navigation data using (31), but with original reference position 0

m
E
refR  

replacing 0
m

E
varR  at alternate m cycles (i.e., the equivalent of 0

m
E
varR with zero 0ES  offset), 

original reference attitude for  (i.e.,  from (8) with identity attitude 

offset) at each m cycle, and velocity from (10) (using 

0
m

E
BvarC 0

m
E
BvarC m

m
Bref
BvarC

0
m

E
refR  for 0

m
E
varR ).  

 
 
TEST EXAMPLE FOR EVALUATING METHOD 1 VERSUS METHOD 2 

PERFORMANCE 
 

This section describes a test example used to analytically evaluate Method 1 and Method 2 
specific force algorithm performance and its impact on velocity/position generated with (3) and 
(4).  The section derives theoretical analytical specific-force/velocity/position data for the test 
example for later comparison with equivalent Method 1 and 2 generated results. 
 
TEST EXAMPLE DESCRIPTION 
  

For comparing Method 1 versus Method 2 performance, consider a test example having 
m
m

Bref
Bvar IC =  so that from (5), , and0 0

mm
E E
Bref BvarC C= refω , the angular rate of the Bref frame 

relative to non-rotating 0E  inertial space then represents varω , the angular rate of the variation 
trajectory relative to inertial space.  Also assume for the example that varω  is zero prior to time 
instant , constant from  to  (call it9m = − 9m = − 0m = ω ), and another constant for (call it0m >

'ω ). 
 
Under the variation trajectory structure, the previously defined varω example history (of 

zero, constantω , and constant 'ω angular rates) would be represented in  coordinates by 
integrated angular rate increment sequences of zero for , constant 

Bvar
9m < − Bvar Bvar

mvar Tα ω=Δ  

for , and another constant 0 m≥ > − 9 ' ' ar
mT

0
Bvar
E G

Bvar Bv
varα ω=Δ  for m > 0.  Based on these settings, 

the following equivalent to (2) – (4) will be used for ,  , and   

determination under the example conditions: 
C mVvar mRvarG
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( ) ( ) ( )

( ) ( )

0 0
9

0 0 0
1 1

0 0 0
1 1

2

2

For 9 :

For 0 9 :

1
2

For 0 :

1
' '

2

m

m m m

m m m

E E
Bvar Bvar

Bvar Bvar BvarE E E
var var varBvar Bvar Bvar

Bvar Bvar BvarE E E
var var varBvar Bvar Bvar

m C C

m

I IC C C

m

I IC C C

α α α

α α

−

− −

− −

≤ − =

≥ > −

⎡ ⎤ ⎡ ⎤≈ + × + × ≈ +Δ Δ Δ⎢ ⎥ ×⎢ ⎥⎣ ⎦⎣ ⎦
>

⎡ ⎤≈ + × + × ≈ +Δ Δ Δ⎢ ⎥
⎣ ⎦

( )'α⎡ ⎤×⎢ ⎥⎣ ⎦

 (32) 

 

( ) ( )
( ) ( )

1For 9 :
2

1 1 1For 0 9 :
2 2 3

1 1 1For 0 : ' '
2 2 3

m m

m m

m m

Vvar Rvar

Bvar Bvar
Vvar var Rvar var

Bvar Bvar
Vvar var Rvar var

m I IG G

m I IG G

m I IG G

α α

α α

≤ − = =

⎡ ⎤≥ > − ≈ + × ≈ + ×Δ Δ⎢ ⎥⎣ ⎦
⎡ ⎤> ≈ + × ≈ +Δ Δ ×⎢ ⎥⎣ ⎦

 (33) 

 
To evaluate 0

m
E
varR in (6) for position constraint application requires specifying the form of 

0
m

E
refR and the associated 0E

mS  parameters in (7).  For the test example we specify in (7) that 

m
Bref
Bvar IC = , 0mBvars = , and mBrefl be constant (call it Brefl ), hence, (7) simplifies to: 

 
 00

m
BrefEE

m BvarS C= l  (34) 

 
Reference position 0

m
E
refR in (6) is created by 0

m
E
refV velocity which, for the test example, is set to 

the constant 0
0

E
refV .  Additionally, 0

m
E
refR position is specified to be zero at .  Then 0m = 0

m
E
refR  

in general becomes 
 
 (0 0

0
0

E E
ref ref tVR t= − )  (35) 

 
where  is general time t at m cycle time instant 0.  In terms of variation trajectory fixed  
time interval m cycles, (35) is equivalently: 

0t mT

  
 0 0

0m
E E

mref refm VR T=  (36) 

 
With (34) and (36), position constraint (6) becomes:  
 

19 
 



 0 0 0
0 mm

BrefE E E
mref Bvarvar m VR CT= + l  (37) 

 
Finally, for the test example it is assumed that 0

0
E
refV is slow enough and Brefl  relatively 

small enough that 0
m

E
varR in (37) has only a small change over the duration of the test example 

time period.  Thus, gravity in (3) and (4) (a function of 0
m

E
varR ) can be approximated as constant, 

i.e., 
 0 Constant

m
E

avgvar
g ≈ ≡ 0Eg  (38) 

 
THEORETICAL SOLUTION UNDER TEST EXAMPLE CONDITIONS 
 

On a continuous basis, (6) with (34) – (35) becomes: 
 

 ( )0 00
0

0
BrefE EE

var Bvarref tVR t C= − + l  (39) 

 
With (0 0

. BvarE E
Bvar Bvar varC C ω= )×  from [1, Eq. (3.3.2-6)], the derivative of (39) finds 

 

 
( )

( )
0 0 0 000
0 0

0 0
0

. . Bref Bvar BrefEE E EE E
var Bvar Bvarvar varref ref

Bvar BrefE E
Bvar varref

V V l V lR C C

V lC

ω

ω

≡ = + = + ×

= + ×
 (40) 

 
During the test example time segments of constant angular rate Bvar

varω , the derivative of (40) 

with (0 0
. BvarE E
Bvar Bvar varC C ω= ×)  obtains 0E

vara  , the acceleration of 0E
varR :  

 
 ( ) ( )0 000

.. . Bvar Bref Bvar Bvar BrefE EE E
var Bvar Bvarvar var var vara lR C Cω ω ω l⎡ ⎤≡ = × = × ×⎢ ⎥⎣ ⎦

 (41) 

 
Equating 0E

vara  acceleration in (41) to specific force 0E
SFa  plus gravity, and from (38), 

approximating gravity for the example as constant 0E
avgg , (41) becomes for 0E

SFa : 

 
 ( ) 00 0 Bvar Bvar Bref EE E

Bvar var varSF avgga lC ω ω⎡= × ×⎢⎣
⎤ +⎥⎦

 (42) 

 
Transforming (42) to the frame then obtains the resulting Bvar Bvar

SFa specific force (the 
acceleration that would be measured by accelerometers aligned with coordinates):  Bvar
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 ( ) 0
0

Bvar Bvar Bvar Bref EBvar
SF var var E avgga l Cω ω= × × −  (43) 

 
For the assumed Bvar

varω  values defined at the start of this section, (39), (40), and (43) then 
translate into the following theoretical solution for the test example: 

 

( )

( )

0 0 0 00 0
0 90 0

0
0

9

0

9 0

For

0

For :
m

m

Bvar Bvar BrefE E E EBvar E E
varvar SF varE ref ref Bvaravg

m

Bvar Bvar Bvar Bvar Bvar Bref EBvar
var SF E avg

t t

g ta V V VR tC C

t t t

ga l C

ω

ω ω ω ω

=−

=−

=−

<

= = − = = − +

< <

= = × × −

l
 

 ( ) ( )0 0 0 00 0
0 0

0
Bvar Bref BrefE E E EE E

varBvar Bvarvar ref ref tV V l V lR tC Cω= + × = − +  (44) 

 ( )
( ) ( )

0
0

0 0 0 00 0
0 0

0

0

For :

' ' '

'

Bvar Bvar Bvar Bvar Bvar Bref EBvar
var SF E avg

Bvar Bref BrefE E E EE E
varBvar Bvarvar ref ref

t t

ga l C

tV V l V lR tC C

ω ω ω ω

ω

>

= = × × −

= + × = − +

 

 
where  is time t at the instantaneous ending of m cycle -9, and  is time t at the 
instantaneous ending of m cycle 0.  

9mt =− 0t

 
Note the lack of specificity in (44) for specific force Bvar

SFa  at the  and  time 

instants.  At these times, the 

9mtt =−= 0t t=
Bvar
varω angular rate changes instantaneously from zero to Bvarω and 

from Bvarω  to 'Bvarω .  This is accompanied by a change in 0E
varV  velocity of 

( )0 Bvar BrefE
Bvar lC ω ×  at , followed by a 9mtt =−= 0E

varV  change of ( )Bref0 'BvarE
Bvar lC ω ×  

minus ( )ref t =0 Bvar BE
Bvar lω ×C  at .  For theoretical representation in (44), the instantaneous 

effects can be created by specific force impulses at these time points (i.e., of infinite amplitude 
and zero time width), clearly an unrealistic effect for simulation (or reality). 

0t

 
Under the variation trajectory simulation structure, Bvar

varω values of zero, constant Bvarω , 

and constant 'Bvarω angular rates in (44) are represented by sequences of finite amplitude 
integrated angular rate increments, each increment over the same  fixed time interval (i.e., of 

zero for , constant 
mT

9m < − Bvar Bvar
mvar Tα ω=Δ  for 0 , and constant 9m≥ > −

' ar Bvα ω= 'Bv ar
mvar TΔ  for m > 0).  Similarly, the Bvar

SFa specific force vector in (44) would be 

represented by its equivalent finite integrated specific force increment Bvar Bvar
mvar SFa Tυ =Δ  over 

each m cycle.  Thus, the equivalent to (44) for the variation trajectory would be: 
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0 0 0

09

0 0 0
90

0

For 9 :

0

For 9 < 0 :

m m

m

Bvar Bvar E E EBvar
m mvar refavgvar varE

BrefE E E
mref Bvarvar

m

g V VCT T

m V lR CT

m

ω υ
−

−

≤ −

= = − =Δ

= +

− ≤

 

0
1/2

0 0 0 0 0 0
1/20 0

0m m

m mmm

Bref
Bvar Bvar Bvar Bvar Bvar EBvar

m mvar var var var avgvar Em

Bref
Bvar BrefE E E E E E

mvarref Bvar ref Bvarvarvar
m

l gCT T
T

l mV V V lRC CT
T

ω α υ α α

α

−

−

⎛ ⎞
= ≈ × × −Δ Δ Δ Δ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

≈ + × = +Δ⎜ ⎟⎜ ⎟
⎝ ⎠

 (45) 

0
1/2

0 0 0 0 00
1/20 0

0

For 0 :

' ' '

'

m m

m mm

Bref
Bvar Bvar Bvar Bvar Bvar EBvar

m mvar var var var avgvar Em

Bref
Bvar BrefE E E E EE

mvar varref Bvar ref Bvarvar
m

m

l gCT T
T

l mV V V lRC CT
T

ω α υ α α

α

−

−

>

⎛ ⎞
= ≈ × × −Δ Δ Δ Δ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

≈ + × = +Δ⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
where ,  are values for ,  halfway between , 

and , . 
1/20m

Bvar
EC

−

1m− EC

0
1/2m

E
BvarC −

0m
Bvar 0

m
E
BvarC

0
Bvar
EC 0E

BvarC
10m

Bvar
EC

−

0E
BvarC

 
The problematic effects manifested in (44) at  and  remain in the (45) 

equivalent representation: the unaccounted for change in 

9mtt =−= 0t t=
0

m
E
varV velocity at the  and 

cycle times.  The problem was resolved in (44) by employing 

9m = −

0m = Bvar
SFa  impulses to 

instantaneously transition velocity 0
m

E
varV  to the proper values without impacting 0E

varR  position.  

But with the assumed variation trajectory generator structure, impulsive velocity correction in 
(45) is not a realistic option because specific force is modeled as a finite constant over each 

to m time period, each time period being of the same  time duration.  As a result, 
achieving the required (45) velocity changes can only be accomplished in the trajectory 
generator by modifying the 

1m − mT

m
Bvar
varυΔ increment finite amplitudes.  The realism of the resulting 

modified 
m

Bvar
varυΔ  profile and its impact on 0

m
E
varV , 0

m
E
varR velocity/position is the key distinction 

between the Method 1 approach for 
m

Bvar
varυΔ  based on (9), and the Method 2 approach for 

m
arBv

varυΔ  based on (31).  Appendices H and I in [2] analytically derive the Method 1 and Method 

2 generated performance under the test example conditions.  Results are presented and analyzed 
next. 
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METHOD 1 PERFORMANCE UNDER THE TEST EXAMPLE 
 

The following subsections present and discuss performance results analytically derived in [2, 
Appendix G] for 

m
Bvar
varυΔ  integrated specific force increments generated under test example input 

conditions using the Method 1 design approach: (9) for 
m

Bvar
varυΔ , with substitution in (3) - (4) for the 

0
m

E
varV , 0

m
E
varR velocity/position response. 

 
METHOD 1 SPECIFIC FORCE 
 

The specific force profile generated by (9) with Method 1 is analytically derived in [2, 
Appendix G] leading to (G-14), then renumbered and shown next. 
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( )

0
9

0
1

0
1

0

0

0

For 8 :

For 8, 6, 4, 2, 0 :

12
2

1
6

For 7, 5, 3, 1:

2

m

m m

m

m

Bvar EBvar
mavgvar E

Bref
Bvar Bvar Bvar EBvar

mvar var avgvar Em

Bvar EBvar
mvar avgE

Bvar
var

m

gC T

m

l gI C T
T

gC T

m

υ

υ α α

α

υ

−

−

−

< −

= −Δ

= − − − −

⎡ ⎤⎛ ⎞≈ × − − ×Δ Δ Δ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞− ×Δ ⎜ ⎟
⎝ ⎠

= − − − −

= −Δ ( ) 0
1

0
1

0

0

1
2

1
6

m

m

Bref
Bvar Bvar EBvar

mvar var Em

Bvar EBvar
mvar avgE

l gI C T
T

gC T

α α

α

−

−

⎡ ⎤⎛ ⎞× − − ×Δ Δ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞+ ×Δ ⎜ ⎟
⎝ ⎠

 

  (46) For 1, 3, 5, :m =

 

( )

( ) ( )

0
1

0
1

0
1

0

0

0

12 ' '
2

1
'

6

14 ' '
3

For 2

m m

m

m

Bref
Bvar Bvar Bvar EBvar

mvar var avgvar Em

Bvar EBvar
mvar avgE

Bref
Bvar Bvar Bvar Bvar EBvar

mvar var var var avgEm

l gI C T
T

gC T

l gC T
T

m

υ α α

α

α α α α

−

−

−

⎡ ⎤⎛ ⎞= − × − − ×Δ Δ Δ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞+ ×Δ ⎜ ⎟
⎝ ⎠

⎛ ⎞+ − × − − ×Δ Δ Δ Δ ⎜ ⎟
⎝ ⎠

=

( )

( ) ( )

0
1

0
1

0
1

0

0

0

, 4, 6, :

12 ' '
2

1
'

6

14 ' '
3

m m

m

m

Bref
Bvar Bvar Bvar EBvar

mvar var avgvar Em

Bvar EBvar
mvar avgE

Bref
Bvar Bvar Bvar Bvar EBvar

mvar var var var avgEm

l gI C T
T

gC T

l gC T
T

υ α α

α

α α α α

−

−

−

⎡ ⎤⎛ ⎞= × − − ×Δ Δ Δ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞− ×Δ ⎜ ⎟
⎝ ⎠

⎛ ⎞− − × + − ×Δ Δ Δ Δ ⎜ ⎟
⎝ ⎠

 

 
Based on the theoretical solution in (45), it might be expected that under rotation, each (46) 

integrated specific force 
m

Bvar
varυΔ  increment would contain a component 0

1/20m
EBvar

mavgE
gC T

−
 to 

balance gravity.  Eqs. (46) show that such a component is indeed present, as represented by the 

equivalent ( ) 0
10

1
2 m

Bvar EBvar
mvar avgE

gI C Tα
−

⎡ ⎤⎛ ⎞
⎟ ≤− ×Δ ⎜

⎝ ⎠⎣ ⎦⎢ ⎥  for m  0 and by 

( ) 0
10

1
'

2 m
Bvar EBvar

mvar avgE
gI C Tα

−

⎡ ⎤⎛− ×Δ ⎜⎢ ⎥⎝ ⎠⎣ ⎦
⎞
⎟  for m > 0.  However, (46) differs from (45) by the 

addition of other gravity terms, and in the form of the lever arm ( Brefl )
 
terms. 
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Method 1 Specific force Response To Gravity Effects 
 

In addition to the equivalent 0
1/20m

EBvar
mavgE

gC T
−

 gravity term in (45) discussed previously, 

(46) includes a 0
10

1
6 m

Bvar EBvar
mvar avgE

gC Tα
−

⎛×Δ ⎜
⎝ ⎠

⎞
⎟  term triggered at m cycle -9 (when Bvar

varω

changes from 0 to Bvarω ) that oscillates between m cycles (plus for odd m cycles, minus for 

even m cycles) until m cycle 0.  Similarly, a cyclic 0
10

1
'

6 m
Bvar EBvar

mvar avgE
gC Tα

−

⎛ ⎞×Δ ⎜ ⎟
⎝ ⎠

 gravity term 

is triggered at m cycle 0 (when Bvar
varω changes from Bvarω  to 'Bvarω ) that persists thereafter.  

In addition, a second oscillatory gravity term ( ) 0
10

1
'

3 m
Bvar Bvar EBvar

mvar var avgE
gC Tα α

−

⎛ ⎞− ×Δ Δ ⎜ ⎟
⎝ ⎠

 is 

triggered by the m cycle 0 angular rate transition (from Bvarω  to 'Bvarω ) that persists thereafter.  
It is informative to note how the added gravity terms interact after m = 0 under two conditions, 
when 'Bvar Bvar

var varα α=Δ Δ and when 0'Bvar
varα =Δ . 

 

When 'Bvar Bvar
var varα α=Δ Δ , the ( ) 0

10
1

'
3 m

Bvar Bvar EBvar
mvar var avgE

gC Tα α
−

⎛ ⎞− ×Δ Δ ⎜ ⎟
⎝ ⎠

 term vanishes, 

the 0
10

1
'

6 m
Bvar EBvar

mvar avgE
gC Tα

−

⎛ ⎞×Δ ⎜ ⎟
⎝ ⎠

 term becomes 0
10

1
6 m

Bvar EBvar
mvar avgE

gC Tα
−

⎛ ⎞×Δ ⎜ ⎟
⎝ ⎠

, and the 

( ) 0
10

1
'

2 m
Bvar EBvar

mvar avgE
gI C Tα

−

⎡ ⎤⎛ ⎞− ×Δ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 term goes to ( ) 0

10
1
2 m

Bvar EBvar
mvar avgE

gI C Tα
−

⎡ ⎤⎛ ⎞− ×Δ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
,  

i.e., a continuation of the solution that was operating prior to m = 0.  When 0'Bvar
varα =Δ , the 

0
10

1
'

6 m
Bvar EBvar

mvar avgE
gC Tα

−

⎛×Δ ⎜
⎝ ⎠

⎞
⎟  term vanishes, the ( ) 0

10
1

'
2 m

Bvar EBvar
mvar avgE

gI C Tα
−

⎡ ⎤⎛ ⎞− − ×Δ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

term goes to 0
10m

EBvar
mavgE

gC T
−

⎛−⎜
⎝ ⎠

⎞
⎟  as in the theoretical (45) solution for zero 'Bvar

varαΔ , and the 

( ) 0
10

1
'

3 m
Bvar Bvar EBvar

mvar var avgE
gC Tα α

−

⎛ ⎞− ×Δ Δ ⎜ ⎟
⎝ ⎠

 term becomes 0
10

1
3 m

Bvar EBvar
mvar avgE

gC Tα
−

⎛ ⎞− ×Δ ⎜ ⎟
⎝ ⎠

, 

twice the magnitude of the 0
10

1
6 m

Bvar EBvar
mvar avgE

gC Tα
−

⎛×Δ ⎜
⎝ ⎠

⎞
⎟  oscillatory term operating prior to m 

= 0.  What this represents is the combination of two sustaining  0
10

1
6 m

Bvar EBvar
mvar avgE

gC Tα
−

⎛ ⎞×Δ ⎜ ⎟
⎝ ⎠

 

oscillations, the one triggered at , and the second triggered at m = 0 when 9m = − Bvar
varω  went 

from Bvarω  to zero (i.e., to a zero 'Bvar
varαΔ ). 
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Method 1 Specific force Response To Lever Arm Effects 
 
For the lever arm ( Brefl ) terms, a comparison between the theoretical (45) and Method 1 

(46) solutions shows a significant difference.  For (45), these terms appear in the centripetal 

components 
Bref

Bvar Bvar
var var

m

l
T

α α
⎛ ⎞

× ×Δ Δ⎜ ⎟⎜ ⎟
⎝ ⎠

 and ' '
Bref

Bvar Bvar
var var

m

l
T

α α
⎛ ⎞

× ×Δ Δ⎜⎜
⎝ ⎠

⎟⎟  that are constant 

during the m = -9 to 0 and m > 0 time periods.   Identical terms would be present in (46), 
however, due to the first order approximation accuracy in (46), they have been dropped as 
second order compared to the three more prominent cyclic first order terms that are not present in 

(45). The first cyclic first order term is 2
Bref

Bvar
var

m

l
T

α ×Δ  triggered by the change in angular rate 

at m = -9, the second is 2 '
Bref

Bvar
var

m

l
T

α ×Δ  triggered by the change in angular rate at m = 0, the 

third is ( )4 '
Bref

Bvar Bvar
var var

m

l
T

α α− ×Δ Δ  triggered by the change in angular rate at m = 0.   

As for the additional cyclic gravity terms discussed previously, it is informative to note how the 
sustained Brefl oscillation terms interact after m = 0 in (46) under two conditions, when 

'Bvar Bvar
var varα α=Δ Δ and when 0'Bvar

varα =Δ . 
 

When 'Bvar Bvar
var varα α=Δ Δ , the ( )4 '

Bref
Bvar Bvar
var var

m

l
T

α α− ×Δ Δ  term vanishes, and the 

2 '
Bref

Bvar
var

m

l
T

α ×Δ  term becomes 2
Bref

Bvar
var

m

l
T

α ×Δ , i.e., a continuation of the 2
Bref

Bvar
var

m

l
T

α ×Δ  

oscillatory term that was operating prior to m = 0.  When 0'Bvar
varα =Δ , the 2 '

Bref
Bvar
var

m

l
T

α ×Δ  

term vanishes, and the ( )4 '
Bref

Bvar Bvar
var var

m

l
T

α α− ×Δ Δ  term becomes 4
Bref

Bvar
var

m

l
T

α− ×Δ , twice 

the magnitude of the 2
Bref

Bvar
var

m

l
T

α ×Δ  oscillatory term operating prior to m = 0.  What this 

represents is the combination of two sustaining  2
Bref

Bvar
var

m

l
T

α ×Δ  oscillations, the one triggered 

at , and a second triggered at m = 0. 9m = −
 

METHOD 1 VELOCITY 
 

The [2, Appendix G] derived velocity result in (G-6) for Method 1 velocity under test 
example conditions is renumbered and shown next. 
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⎝ ⎠
( ) 00 Bvar EE

mvarr avggC Tα ×Δ  

 
Comparing Method 1 velocity 0

m
E
varV  in (47) with the equivalent theoretical result in (45), we 

see that the (46) Method 1 specific force oscillations create equivalent unrealistic cyclic velocity 
effects, triggered by transitions in angular rate at m = -9 and m = 0. 

 
For , Method 1 velocity 9 < 0m− ≤ 0

m
E
varV  in (47) oscillates from m cycle to cycle from 

0
0

E
refV at even m cycles to 0 0

10
2

m

Bref
BvarE E
varref Bvar

m

lV C
T

α
−

⎛ ⎞
+ Δ⎜⎜

⎝ ⎠
× ⎟⎟  at odd m cycles, averaging (to 

first order accuracy) the theoretical continuous 0 0
10 m

Bref
BvarE E
varref Bvar

m

lV C
T

α
−

⎛ ⎞
+ Δ⎜ ⎟⎜ ⎟

⎝ ⎠
×  solution in 

(45).  In addition, at only even m cycles, the (47) result contains a 

( ) 01
6

r E
mgC T×0

1m
BvaE
varBvar α

−
− Δ  term not present in the theoretical (45) solution.  (This term is 

required to generate a position solution that meets the (37) position constraint). 
 
For m > 0, (47) shows a Method 1 velocity profile that oscillates from 

( )0 0
10

2 '
m

Bref
Bvar BvarE E
var varref Bvar

m

lV C
T

α α
−

⎡ ⎤
− −Δ Δ⎢ ⎥

⎢ ⎥⎣ ⎦
×  at odd m cycles to  
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0 0
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2
m

Bref
BvarE E
varref Bvar

m

lV C
T

α
−

⎛ ⎞
+ Δ⎜⎜

⎝ ⎠
× ⎟⎟  at even m cycles, plus gravity terms not present in 

theoretical (45): ( ) 00
1

1
'

6 m
Bvar Bvar EE

mvar varBvar gC Tα α
−

⎡+ −Δ Δ⎢⎣
⎤ ×⎥⎦

 at odd m cycles and 

( ) 00
1

1
6 m

Bvar EE
mvarBvar gC Tα

−
− Δ ×  at even m cycles. 

 
As for the previous specific force discussion, it is informative to analyze (47) velocity when 
'Bvar Bvar
var varα α=Δ Δ and when 0'Bvar

varα =Δ .  For 'Bvar Bvar
var varα α=Δ Δ , the ( )'Bvar Bvar

var varα α−Δ Δ  

terms vanish (for ) producing an unrealistic velocity that oscillates from 0m > 0
0

E
refV at odd m 

cycles to ( ) 00 02E E
Bvar

0
1 10

1
6m m

Bref
Bvar Bvar EE

mvar varref Bvar avg
m

l gC C T
T

α α
− −

⎛ ⎞
+ × − ×Δ Δ⎜ ⎟⎜ ⎟

⎝ ⎠
V  at even m 

cycles, i.e., an extension of the Method 1 result in (47) for .   When 9 < 0m− ≤ 0'Bvar
varα =Δ , the 

(47) Method 1 solution for  matches the theoretical (45) 0m > 0
0

E
refV  result, plus a sustained 

( ) 00 0
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2
m m

Bre
Bvar Bvar EE E
var varBvar Bvar avg
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l gC C T
T

α
− −

⎛ ⎞
× − ×Δ Δ⎜ ⎟⎜ ⎟

⎝ ⎠
1

1
6

f
mα  oscillation, clearly an unrealistic 

result. 
 

METHOD 1 POSITION 
 
Method 1 is designed to satisfy position constraint (6) with (7).  For the test example, (37) 

replaces (7), hence, Method 1 position for the test example becomes: 
 

 
0 0 0

90

0 0 0
0

For 9 :

For 9 :

m

mm

BrefE E E
mref Bvarvar

BrefE E E
mref Bvarvar

m m V lR CT

m m V lR CT

−
≤ − = +

> − = +
 (48) 

 
For the Method 1 approach, (48) is implicitly incorporated in (46) – (47) at each m cycle, as can 
be confirmed by substituting (46) – (47) in (4) with (6) and (15.  Thus, (48) for 0

m
E
varR exactly 

matches the (45) theoretical result. 
 

METHOD 1 PERFORMANCE SUMMARY 
 
The sustained additional lever arm oscillatory components present in (46) and (47) illustrate 

the fundamental problem using Method 1 for a variation trajectory generator: creating unrealistic 
sustained oscillations in specific force and velocity.  It is informative to also note for the test 
example, that if the Bvarω  to 'Bvarω change in angular rate occurred one m cycle earlier (or 
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later), the (46) – (47) solution following that change would be of the same form as following the 
 change, but with 9m = − Bvar

varαΔ  replaced by 'Bvar
varαΔ .  Thus, for the Method 1 approach in 

general, each transition in angular rate for the variation trajectory will trigger another sustained 
oscillation that may add to or subtract from those generated previously, depending on the m cycle 
phasing, the vector direction of each integrated angular rate increment component, and the value 
of  attitude. 

1−0m
Bvar
EC

  
 The Method 2 solution discussed next eliminates the Method 1 oscillation effect for lever 

arm terms, but not completely for gravity, an unavoidable consequence of structuring the 
variation trajectory from a sequence of constant integrated angular-rate/specific-force m cycles.   

 
 
METHOD 2 PERFORMANCE UNDER THE TEST EXAMPLE 
 

The following subsections present and discuss Method 2 performance results derived in [2, 
Appendix H] under test example conditions using (31) for specific force increment 

m
Bvar
varυΔ , with 

substitution in (3) - (4) for 0
m

E
varV , 0

m
E
varR velocity/position response. 

 
METHOD 2 SPECIFIC FORCE 
 

The [2, Appendix H] derived (H-45) result for Method 2 specific force under test example 
conditions is renumbered and shown next. 
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(Continued) 
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 (49) Concluded 
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Method 2 Specific Force Response To Lever Arm Effects 
 

From (49) (while recognizing that m = 2n), we see that for , , and  

the Method 2 generated integrated specific force increment 

4n < − 4 n− < < 0 1n >

m
Bvar
varυΔ  response to the Brefl  lever 

arm effect exactly matches the (45) theoretical solution.  This contrasts with the Method 1 result 
in (46) that generates unrealistic oscillatory terms during the , and  rotation time 
periods.  Coupled with the (49) response, Method 2 creates a lever arm effect that transitions 
specific force during 

4 0n− < < 1n >

Bvar
varω  rotation rate change: from zero to Bvarω  at  and from 9m = −

Bvarω  to 'Bvarω at .  For the change, the transient spans m cycles  and , 
for the  change, the transient spans m cycles  to 2.  The transient accommodates the 
finite width/amplitude of the (49) specific force increments compared to the instantaneous 
impulsive increments required in the theoretical (45) solution for instantaneous angular rate 
transition.  Transients are also present in the (46) Method 1 response during angular rate change, 
but these are also the source of sustained oscillations. 

0m = 9m = − 9− 8−
0m = 1−
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Method 2 Specific Force Response To Gravity 
 

The theoretical solution in (45) contains a gravity component 0
1/20m

EBvar
mavgE

gC T
−

 during 

rotation to balance gravity.   Eqs. (49) show for Method 2 (as for Method 1) that such a component 
is also present during rotation periods as represented by the equivalent 

( ) 0
10

1
2 m

Bvar EBvar
mvar avgE

gI C Tα
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⎡ ⎤⎛ ⎞
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mvar avgE
gI C Tα

−

⎡ ⎤⎛ ⎞− ×Δ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

for .  As with Method 1, during rotation, Method 2 also contains oscillatory terms;1n >
0

10
1
6

EBvar
mavgE

gC T
−

⎛ ⎞× ⎜ ⎟
⎝ ⎠

Bvar
varαΔ  during − <  and 4 0n < 0

10
1

'
6

Bvar EBvar
mvar avgE

gC Tα ⎛×Δ ⎜
⎝ ⎠

⎞⎟  during .  

These are the unavoidable consequences of requiring the specific force increments for the variation 
trajectory generator to be based on constant acceleration over each m cycle (versus the theoretical 
(45) solution that allows continuous specific force in time).  Unlike Method 1, Method 2 specific 
force in (49) contains a gravity effect transient spanning m cycles  to  when angular rate 

changes from zero to 

1n >

9− 8−
Bvarω . 

 
METHOD 2 VELOCITY 

 
Having found 

1m
Bvar
varυ

−
Δ , 

m
Bvar
varυΔ  in (49), the Velocity Determination section of [2, 

Appendix H] derives the corresponding velocity history by substitution in (3).  The resulting 
Method 2 velocity under test example conditions is then provided to first order accuracy by (H-
53) of [2, Appendix H] as renumbered and shown next. 
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Comparing the (50) velocity results at “even” m cycles (i.e., ) with (H-21) of [2, 
Appendix H] (at each n cycle) shows identical results within the first order derivation 
approximation accuracy.  This confirms the first order accuracy of (31) for Method 2 in 
generating a specific force profile that meets the specified velocity constraints in (10) at each 
even m cycle, subject to the (37) – (38) test example conditions.  Note, however, that the (50) 
result at even cycle  differs from the theoretical (45), while agreeing with (H-21) velocity  
at this time point.  The reason is that (45) is based on the theoretical exact velocity versus the (H-
21) result based on the (10) velocity approximation.  Since (H-21) derives from specific force in 
(31) subject to the (10) velocity approximation, we should have expected (H-21) to be 
compatible with (10) velocity, not the theoretical (45) value.   

2m = n

1

0m =

 
Since the Method 2 approach only controls to meet velocity constraint (10) at even m cycles, 

we should expect a variation from the (H-21) example test result at odd m cycles (i.e., for 
).  This is manifested for lever arm effects in (50) as a transient during angular rate 

change periods, and as a gravity term addition throughout the profile.  Both are generated by the 
Method 2 specific force variations in (46) compared to the theoretical (45) specific force 
solution. 

2m n= −

A lever arm transient effect manifests in (50) for  as 9m = − 0
9

1
2

Bref
BvarE
varBvar

m
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the tangential velocity change from zero to the steady 
Bref
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m
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ω α× = ×Δ  value at 

 (the theoretical (45) velocity solution).  Similarly, a 8m = − ( )'
Bref

Bvar Bvar
var var

m

l
T

α α− ×Δ Δ  lever 

arm transient appears in (50) from  to  reflecting the theoretical (45) change in 

tangential velocity at m = 0 from 

1m = − 1m =

Breflω ×  to ' '
Bref

Bref Bvar
var

m

ll
T

ω α× = ×Δ .  At odd m cycles, the 

gravity term variation in (50) from the theoretical (45) solution is represented by 

( ) 00
9

1
12

Bvar EE
mvarBvar avggC Tα

−
×Δ  at , and by 9m = − ( ) 00

2 2
1
6 n

Bvar EE
mvarBvar avggC Tα

−
×Δ  thereafter. 

 
Notably absent in the (50) Method 2 velocity solution is the sustained lever arm effect 

oscillation following generated by the (47) Method 1, triggered by angular rate changes at 
 and , both retained following their entry. 

1m =
9m = − 0m =

 
METHOD 2 POSITION 
 

Having found 
1m

Bvar
varυ

−
Δ , 

m
Bvar
varυΔ  in (49) and 0

2 1n
E
varV

−
, 0

2n
E
varV  in (50), the Position 

Determination section of [2, Appendix H] derives the corresponding position history by 
substitution into (4) with (3).  The resulting Method 2 position under test example conditions is 
provided to first order accuracy by (H-54) of [2, Appendix H], as renumbered and shown next. 
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From (51) we see that for the test example, Method 2 position generated by integrated 

specific force increments in (49) and resulting velocity profile in (50), creates a variation 
trajectory position history that satisfies test example position constraint (37) at all even m cycles.  
This confirms the first order accuracy of (31) for Method 2 in generating a specific force profile 
that meets the specified (10) position constraint at each even m cycle, subject to the (37) – (38)   
example problem conditions.  Interestingly (and unexpectedly), note that under conditions of 
constant angular rate (i.e., intervals , , and ), Method 2 position in (51) 
also matches constraint (37) at odd m cycles (i.e., for ). 

4n < − 4 n− < < 1n >
2 1m −n =

 
Method 2 position in (51) only deviates from the theoretical (45) value (and the (37) 

constraint) at odd m cycles around  and during angular rate changes from one 
constant value to another.  Thus, the position response penalty using the Method 2 approach is to 
generate a transient at odd m cycles during angular rate change periods, versus Method 1 position 
in (48) that exactly satisfies (37) at all m cycles due to the (6) – (7) fundamental Method 1 
position design constraint. 

9m = − 0m =
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METHOD 2 RESULTS SUMMARY 
 

The principal advantage of the Method 2 approach is elimination of sustained lever arm and 
gravity effect specific-force/velocity oscillations present with Method 1: oscillations triggered by 
angular rate changes that continue throughout the remaining trajectory, the magnitude being 
substantial, at twice the amplitude of the actual tangential velocity during rotation. 

 
Lever arm transient effects are also present with Method 2, but due to velocity constraint 

(10), they do not propagate into constant angular rate regions.  For most variation trajectory 
simulations, the number of consecutive constant angular-rate/specific-force intervals is typically 
on the order of 40, varying in duration from 2 to 3,600 seconds each.  For a typical m cycle time 
interval of 0.05 seconds (i.e., 20 Hz), the total time for angular-rate/specific-force transitioning is 
much less than for sustained angular-rate/specific-force, hence, the transition effect transient for 
Method 2 is of relatively short time duration. 

 
Method 2, still contains m cycle gravity effect specific-force/velocity oscillations, the 

unavoidable consequence of structuring the variation trajectory generator as a sequence of 
constant angular-rate/specific-force m cycles.  The magnitude, however, is fairly small, being on 

the order of 01
6

Bvar E
mvar g Tα ×Δ  or 01

'
6

Bvar E
mvar g Tα ×Δ .  For 1 rad/sec angular rate and a 0.05 

second m cycle time interval  (typical), the mT Bvar
varαΔ or 'Bvar

varαΔ magnitude would be 0.05 rad.  
Then the magnitude of the velocity oscillation would be on the order of (0.05 × 32.2 × 0.05) / 6 = 
0.013 fps.  For comparison, consider a lever arm magnitude of 50 ft.  Under the hypothesized 1 
rad/sec angular rate, the resulting tangential velocity would be 1 × 50 = 50 fps, considerably 
larger than the 0.013 fps velocity oscillation generated by the gravity effect. 

 
The next section shows how the residual Method 2 gravity effect oscillations in the variation 

trajectory can be mitigated when applied to Kalman aided INS simulation. 
 
 
MITIGATING METHOD 2 GRAVITY EFFECT OSCILLATIONS 
 

Residual gravity oscillation effects generated with Method 2 can impact variation trajectory 
applications in aided INS simulation analyses.  When simulating an INS aiding process, the 
reference trajectory would be used to simulate a “master” INS providing reference data to a 
Kalman aiding filter.  There it would be compared with equivalent navigational data from a 
simulated INS being aided to form the Kalman filter “measurement” input, Kalman filter outputs 
then used to update the aided INS. 

 
The variation trajectory angular-rate/specific-force outputs would be used to simulate 

strapdown gyro/accelerometer inputs to the aided INS; processing the simulated 
gyro/accelerometer outputs provides the aided INS navigational outputs for Kalman filter 
measurement.  Gravity oscillations on the aided INS navigation data impacts the Kalman filter 
measurement, hence, Kalman aided INS performance.  A simple mitigation of Method 2 gravity 
oscillation impact on Kalman filter performance is to add the same gravity oscillation to the 
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master INS navigation dat.  Then when the revised master and aided INS solutions are compared 
in the Kalman filter measurement, the gravity oscillations will cancel. 

 
Gravity oscillations are easily added to the master INS output by creating a new reference 

trajectory from the original, the new version obtained using the same Method 2 approach as for 
the variation trajectory.  The difference would be that the new reference version would use (31) 
for specific-force based on zero for the (6) and (8) attitude/position offset constraint, i.e., setting 

 to identity for all m cycles, and m
m

Bref
BvarC 0E

mS  to zero for alternate m cycles.  The new reference 

would also impose velocity constraint (10) to go with position constraint (6) at alternate m 
cycles.  Method 2 generated specific force would then be calculated with (31) and applied to the 
(3) – (4) updating routines to obtain the new reference trajectory.  The result will contain the 
same gravity effect oscillations as the variation trajectory. 

 
Note that the same mitigation technique would implicitly be created in a previous section - 

Generating Variation And Reference Trajectory Outputs.  There, generating reference navigation 
data using the same integration routines as the variation trajectory, (31) was used to create 
reference trajectory specific-force (and angular-rate) for integration.  The result creates the same 
gravity effect oscillations present in the variation trajectory, thus (as described previously) 
cancelling both in the simulated Kalman aided INS measurement.  

 
 
CONCLUSIONS 

 
Variation trajectories generated using the new Method 2 eliminate sustained lever arm and 

gravity effect specific-force/velocity oscillations present with the original Method 1 approach.  
Lever arm transient effects are still present with Method 2, however, due to the added velocity 
constraint.  But they only appear during angular rate changes, and do not propagate as sustained 
oscillations into the constant angular-rate/specific-force regions.  For most variation trajectories 
the total time for angular-rate transitioning is much less than for constant angular-rate/specific-
force, hence, Method 2 lever-arm transients are of relatively short time duration. 

 
Method 2, still contains gravity effect oscillations (as did Method 1), the unavoidable 

consequence of structuring the variation trajectory as a sequence of constant angular-
rate/specific-force update cycles.  However, the magnitude is small, and can be effectively 
mitigated in Kalman aided INS simulation applications.  The method is to add the same gravity 
oscillation to the reference trajectory data.  Then when data from the reference and variation 
trajectories are differenced in the simulated Kalman filter measurement, the gravity oscillations 
cancel, negating their impact on aided INS performance. 

 
  

APPENDIX A 
 

INTEGRATED GRAVITY INCREMENTS 
 

Eqs. (3) and (4) contain integrated and doubly integrated gravity increments based on a 
model that linearly varies in time over an m cycle: 
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 (0 1

E
mvarg A B t t −= + − )  (A-1) 

 
where A  and B  are constants that can be defined in terms of 0

1m
E
var

g
−

, 0
m

E
var

g , the 0E
varg  values 

at the  and m cycle time instants.  From (A-1): 1m −
 
 ( )0 0

1
1

m m
E E

mm mvar var
g gA A B At t T

−
−= = + − = + B  (A-2) 

 
from which 
 

 ( )0 0 0
1 1

/
m m m

E E E
mvar var var

g g gA B T
− −

= = −  (A-3) 

 
Gravity terms in (3) and (4) ( 0E

vargVΔ , 0E
vargRΔ ) are the integral and double integral of (A-1) 

over an m cycle: 
 

    
( ) ( )

( ) ( )

00
1

00
1

2
1 1

2 3
1 1

1
2

1 1
2 6

m

gm

t EE m mvarg vart

t EE m mvarg vart

g dt A t B tV t t

dt A t B tVR t t

−

−

− −

− −

Δ = = − + −∫

Δ = Δ = − + −∫

 (A-4) 

 
Substituting (A-3) in (A-4) shows that 
 

 

( )
( )

( )
( )

0 0 00
1 1

0 0
1

0 0 00
1 1

0 0
1

2

2 3 2

2

1 1
2 2
1
2

1 1 1 1
2 6 2 6

1 2
6

m m mm

m m

m m mm

m m

E E EE
m mmvarg var var var

E E
mvar var

E E EE
m m mvarg var var var

E E
mvar var

g g gA BV T TT

g g T

g g gA BR T T T

g g T

− −

−

− −

−

Δ = + = + −

= +

Δ = + = + −

= +

2

m

m

T

T
 (A-5) 

 
which are the forms appearing in (3) and (4). 
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APPENDIX B 
 

CALCULATING 0
m

E
var

g  DIRECTLY FROM 0
m

E
varR  

 
This appendix shows how variation trajectory gravity 0

m
E
var

g  can be computed from 0
m

E
varR in 

(6) based on the analytical development in [1, Fig. 5.2-1 & Sect. 5.4].  For the derivation, the 
following definitions will apply: 

 
R  = Position vector from earth’s center to navigation point. 

ru  = Unit vector along R . 

epau  = Unit vector along earth polar axis. 

equ  = Unit vector in earth’s equatorial plane lying in the plane defined by ru  and epau . 

uφ  = Unit vector perpendicular to ru  lying in the plane defined by ru  and epau .   

φ  = Angle from epau  to ru . 

g  = Earth’s mass attraction gravity vector. 

rg  = component of g  along ru . 

gφ  = Component of g  along uφ . 

 
From the previous definitions we first write 

 

 

( ) ( )

/ . cos .

cos sin

. / .

r epa r

r r

eq epa

eq r epa r epa r epa r epa

u R R R u u

g u ug g

u u u

u u u u u u u u u

φ φ

φ

φ

φ φ

= =

= +

= −

⎡ ⎤= − −
⎣ ⎦

 (B-1) 

 
The absolute value parameter in (B-1) can be further defined from 
 

( ) ( ) ( )
( ) ( ) ( )2 2 2 2

. . . .

1 2 . . 1 . 1 sincos

r epa r epa r epa r epa r epa r epa

epa r epa r epa r

u u u u u u u u u u u u

u u u u u u φ φ

⎡ ⎤ ⎡ ⎤− = − −
⎣ ⎦ ⎣ ⎦

= − + = − = − =
 (B-2) 

 
so that equ in (B-1) simplifies to 

 
 ( ). / seq r epa r epau u u u u inφ⎡= −

⎣
⎤
⎦

 (B-3) 
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Hence, the uφ  expression in (B-1) is equivalently 

 

 
( )

2

cos sin cos cos / sin sin

cos cos sin
sin sin

eq epa r epa epa

r epa

u u u u u u

u u

φ φ φ φ φ φ φ

φ φ φ
φ φ

= − = − −

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠

 (B-4) 

 
With (B-3) and (B-4), the g  expression in (B-1) becomes 
 

 

2

2

cos cos sin
sin sin

cos cos sin
sin sin

.
sin sin

r rr r r

r r ep

r epa r r epa

g u u u u ug g g g

u ug g g

g g
u u u ug

φ φφ

φ φ

φ φ

φ φ φ
φ φ

φ φ φ
φ φ

φ φ

epa

a

⎡ ⎤⎛ ⎞
= + = + − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞
= + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (B-5) 

 
Eq. (B-5) is now in a form that can be used to determine 0

m
E
var

g  for the article equations 

based on the classical oblate earth model in [1, Eq. (5.4-1)] and the previous definitions 
translated into the basic nomenclature utilized in this article: 
 

 ( ) ( )

0 0 0 0

0 0 00 0

. /

, cos , cos
sin

.
sin sin

m mm m mm

m mm

m m mm

E E E E
var varvar var varRvar

var varr m mr
m

E E EE E
epa epaRvar Rvarrvar

m m

uR R RR R

g
g f fR R

g g
g u u u ug

φ
φ

φ φ

φ φ
φ

φ φ

= =

⎛ ⎞
⎡ ⎤ ⎡ ⎤= =⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟

⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (B-6) 

 
where the functionals  and ( ), cosmvarr mf R φ⎡ ⎤⎣ ⎦ ( ), cosmvar mf Rφ φ⎡ ⎤⎣ ⎦  represent the  and 

mrg

( /sin
m

gφ )φ  expressions in [1, Eq. (5.4-1)]. 
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APPENDIX C 
 

CALCULATING 0
m

E
var

g  AS A FIRST ORDER EXPANSION AROUND 0
m

E
ref

g  

 
For applications where reference gravity is provided (or computed) at the m cycle rate in 0E  

coordinates (i.e., 0
m

E
ref

g ), variation trajectory gravity 0
m

E
var

g  can be calculated using a first order 

expansion in position displacement 0
m

E
refRδ of variation position 0

m
E
varR from reference position 

0E
refm

R .  The expansion is based on a classical Newtonian earth gravity model, treating the earth 

as a uniform density spherical mass so that reference gravity at 0E
refm

R approximates as 

 0 0
3

0 mm
E E

refref
E
refm

g R
R

μ≈ −   (C-1) 

 
where μ  is the universal gravitational constant multiplied by the mass of the earth.  Expanding 

0
m

E
ref

g around 0E
refm

R then finds for 0
m

E
var

g : 

 
0

0 0 0 0 3
0 m

m m m m

E
E E E E ref

Eref ref refvar
refm

Rg g g g
R

μ
δ δ

⎛ ⎞
⎜ ⎟−⎜= + ≈ +
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎟    (C-2) 

with to first order accuracy: 
 

 
000

0 03
0 3 4

0 0
3 mmm

mm

EEE refrefE Eref
E refref

E Erefm ref refm m

RRRg R
R

R R

μ δδ
δ δ μ μ

⎛ ⎞
⎜ ⎟−⎜ ⎟= = − +
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (C-3) 

 
Now for some analytical manipulation.  First note that 
 

 00 0 0
2

0
3

0 0
. .

m m mm
EEE E E

ref ref ref refref mE E
ref refm m

gR R R
R R

μ μ≈ − = − 3 R  (C-4) 

Thus, 

 
0 00 0

3 2 4
0 0 0 0

. .
m m

E EE E
ref refref ref

E E E E
ref ref ref refm m m m

g gR R

R R R R

μ μ− = = − 3
m m  (C-5) 
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Substituting (C-5) in (C-3) obtains 

 

 

0 0 0

0 00 0
0 0

3 4
0 0

2 3
0 0

3

3
. .

m mm

m mm m
m m

E E E
ref ref refref

E E
ref refm m

E EE E
ref refref refE E

ref ref ref
E E
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0

0

m

m

E

E

R

R

μ μδ δ δ

δ δ
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= −

 (C-6) 

 

The 0
m

E
refRδ  term in (C-6) derives from 0

2
0 .

m m
E E E
ref ref refm

R R R= 0 from which 

 

 ( )0 0 0
2

0 2.
m m m m

E E E E E
ref ref ref ref refm

R R R R Rδ δ δ δ= = 0.  (C-7) 

 

But directly from the differential of 
2

0E
refm

R : 

 

 0
2

0 2
m m

E E E
ref ref refm

R R Rδ = 0δ  (C-8) 

 

Equating (C-7) - (C-8) and solving for 0
m

E
refRδ  thereby obtains 

 

 0 0 0 /.
m m m

E E E E
ref ref ref refR R R Rδ δ= 0

m
 (C-9) 

 
Substituting (C-9) in (C-6) then gives 
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 (C-10) 

 

Lastly, we define a unit vector along 0
m

E
refR as 0 0 /

m m
E E E
Rref ref refu R R≡ 0

m
 with which (C-10) 

substituted in (C-2) becomes 
 

 ( )

0 0 0

00
0 0 0 0 0

0
3

.
.

m m m

m m
m m mm

m

E E E
ref refvar

EE
Rref refE E E E E

ref Rref ref Rrefref E
ref

g g g
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g u uR R

R

δ

δ δ

= +
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m

 (C-11) 

 
Based on small 0E

mS  relative to 0
m

E
refR in position constraint (6), the 0

m
E
refRδ  perturbation from 

0
m

E
refR  is equated to 0E

mS  with which (C-11) then assumes the final form: 

 

 ( )
00

0 0 00 0
0

3
.

.m m
m m mm

m

EE
Rref refE E E EE E

m mRref Rrefrefvar E
ref

gu
g g S u S u

R
= + − 0  (C-12) 

 
 

APPENDIX D 
 

SMOOTHING SPECIFIED ANGULAR DISPLACEMENT OFFSETS 
 

Specifying an angular rate profile characterized by its integrated attitude offset  can 

be accomplished using constant angular rates over specified time intervals, each lasting for 
several m cycle  intervals.  For example, for  representing the angular orientation of a 

m
Bref
BvarC

mT m
Bref
BvarC
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scanning platform mounted in an aircraft, the angular rate generating  might be 

represented by zero over one time segment, one constant over the next time segment, another 
constant over the next time interval, and so on.  This, however, produces unrealistic step changes 
in angular rate at the constant rate interval time junctions.  This appendix shows how the 
specified angular rate segments can be smoothed into a more realistic angular rate profile that 
retains the specified integrated offset characteristics (when dynamics dissipate) and the 

traditional orthogonality/normality characteristics of a direction cosine matrix. 

m
Bref
BvarC

m
Bref
BvarC

 
The development begins by first defining 
 

)
( ) 

( (

1

2 2

2

sin 1 cos
m m

m m
m

m m m

Bvar Bvar
Bvarvar var

Cvar ref Bvar var Bvarvar varm
Bref Bref

Cvar refBvar Bvar

IG

C C G

β β
β β

β β

−

−Δ Δ
Δ Δ≡ + × +

Δ Δ

=

)2Bvar
varm

×
 (D-1) 

 
where Bvar

varm
βΔ  is a rotation vector representing the change in  over an m cycle 

(analogous to 

m
Bref
BvarC

m
Bvar
varαΔ  in (2) for the change in ), and is the direction cosine 

matrix equivalent to 

0
m

E
BvarC 2CvarG mref

Bvar
varm

βΔ  (analogous to  in (2) for updating).  If  is 

specified directly, the equivalent 

mCvarG 0E
BvarC m m

Bref
BvarC

Bvar
varm

βΔ  change each m cycle can be computed from the 

inverse of (D-1): 
 

  (D-2) ( ) 1
2 1 mm

Bref Bref
Cvar ref Bvar BvarmG C C

−

−
=

 
with Bvar

varm
βΔ  then obtained exactly from using the direction cosine to rotation 

vector extraction approach described in [1, Sect. 3.2.2.2].  The  matrix in (D-2) can be 

specified implicitly by a sequence of constant angular rate segments, or more generally, by a 
sequence of fixed 

2 mCvar refG

Bref
BvarC

Bvar
varm

βΔ  values.  For either approach, Bvar
rm

m

va
βΔ  will be obtained.   The 

smoothing operation for  is performed on the 
m

Bref
BvarC Bvar

varm
βΔ  values as described next. 

 
We define 

/ m
Bvar
Flt var

βΔ  as the smoothed (filtered) value of Bvar
mvar

βΔ  and specify that it satisfy 

an exactness constraint that under “steady state” conditions (i.e., during a sequence of fixed 
Bvar
varm

βΔ  values when filter transients have decayed to zero), 
/ m

Bvar
Flt var

βΔ  will equal 
m

Bvar
var

βΔ .  
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Ref. [1, Eq. (17.2.1-4)] translates the exactness constraint into the following requirements for the 
coefficients of a general linear digital filter 

 
  (D-3) 0 1 2 1 2 1a a a b b+ + + + + + =
 
where ,  are constant coefficients in the linear filter: ia ib
 

 1

1 2

0 1 2/

1 2/ /

m m m m

m m

Bvar Bvar Bvar Bvar
Flt var var var var

Bvar Bvar
Flt var Flt var

a a a

b b

β β β β

β β
− −

− −

Δ Δ Δ Δ= + +

Δ Δ+ + +

2
+

 (D-4) 

 
Ref. [1, Eq. (17.2.1-11)] shows that when (D-3) is satisfied, the sum of the 

/ m
Bvar
Flt var

βΔ s will 

equal the sum of the 
m

Bvar
var

βΔ s within a bounded difference mγ  where 

 

 ( )/ /1 1 1m m i

n n mBvar Bvar Bvar Bvar
m iFlt var var Flt var vari i i

γ β β β β
= = =

Δ Δ Δ Δ≡ − = −∑ ∑ ∑  (D-5) 

 
Under that sequence of constant 

m
Bvar
var

βΔ s, the mγ  difference will be proportional to 
m

Bvar
var

βΔ : 

 1 1

0

a b

a m

r r
i i

Bvari i
m r var

i
i

i a ib

i a
γ = =

=

+∑ ∑
Δ= −

∑

β  (D-6) 

 
where ,  are the highest numerical subscript for the filter past value coefficients.  Eq. (D-6) 
can also be expressed in the equivalent form: 

ar br

 

 1 1

0

1  

a b

am

r r
i i

Bvar i i
mFlt Fltm rvarm

i
i

i a ib
T

T i a
γ β τ τ = =

=

+∑ ∑
Δ= − ≡→

∑

 (D-7) 

 
where  is the filter dynamic response-time defined as the time required under a constant Fltτ

m
ar
r

Bv
va

βΔ  sequence for the  frame to rotate through Bvar mγ .  We also define  as being 

positive for a “lag” condition when 

Fltτ

mγ  is negative (i.e., when the sum of the 
/ m

Bvar
Flt var

βΔ s is 
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less than the sum of the 
m

Bvar
var

βΔ s), and as negative under a dynamic “lead” condition (when the 

sum of the 
/ m

Bvar
Flt var

βΔ s is more than the sum of the 
m

Bvar
var

βΔ s). 

 
An example of a simple filter that might be used for the smoothing function is the so-called 

“walking window” filter which has zero for the  coefficients and equal values for the  
coefficients.  Ref. [1, Eq. (17.2.1-26)] shows that  in (D-7) then simplifies to 

ib
τ

ia
Flt

 

 
2
a

mFlt
r

Tτ =  (D-8) 

 
If it is desirable to eliminate the (D-8) lag effect in the variation trajectory simulator, a simple 
expedient would be to time shift the 

m
Bvar
var

βΔ  data input to (D-4) by the  value in (D-8). Fltτ

 
It remains to show, based on the previous discussion, how a filtered direction cosine matrix 

can be generated as a replacement for  in constraint (7).  The method 

recommended in [1, Sect. 17.2.1] is to define C as  rotated through the 

difference between the integrated filtered and unfiltered  angular rates (i.e., by 

m
Bref
Bvar / filtC m

Bref
BvarC

m
ef

r / filt

Bvar

Br
Bva m

Bref
BvarC

mγ , the 

difference between the cumulative 
/ m

Bvar
Flt var

βΔ s and 
m

arBv
va

βΔ
r

s).  This is achieved through the 

exact 
mCG γ  direction cosine equivalent representation of mγ : 

   

 ( ) ( )2
2

sin 1 cos
m

m m
C m m

m m
IG γ

γ γγ γ
γ γ

−
≡ + × + ×  (D-9) 

 
with which 
 
 

m mm
Bref Bref

CBvar / filt BvarC C G γ=  (D-10) 

 
The mγ  rotation vector in (D-9) would be calculated with 

m
Bvar
var

βΔ  and 
/ m

Bvar
Flt var

βΔ  from (D-2) 

using the equivalent recursive difference form of (D-5): 
 
 1 / m m

Bvar Bvar
m m Flt var var

γ γ β β− Δ Δ= + −   (D-11) 
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Since mγ  would be bounded by virtue of the (D-3) exactness constraint, (D-10) guarantees that 

will be angularly close to , only deviating by 
m

Bref
Bvar / filtC m

Bref
BvarC

1
m

Bvar
FltvarmT

β τΔ  in (D-7) 

during periods of steady 
m

Bvar
var

βΔ  inputs, equaling  under zero angular rate (with no 

residual from previous higher order error buildup), and having the natural 
normalization/orthogonalization characteristics of a proper direction cosine matrix.  The result 
will be a smoothed more realistic version of  for use in constraint (7). 

m
Bref
BvarC

m
fBre

BvarC
 
 

APPENDIX E 
 

REFERENCE DATACONVERSION FOR VARIATION TRAJECTORY INPUT AND 
COMPUTED VARIATION DATA CONVERSION FOR OUTPUT 

 
The variation trajectory computation routines developed in this article are executed in 

inertially non-rotating 0E  frame coordinates.  Thus, reference trajectory inputs to the routines 
must be provided in the 0E  frame or, if not directly available, computed using appropriate 
conversion formulas.  Similarly, once the variation trajectory routines are executed in 0E  
coordinates, results must typically be converted into a more traditional format for output.  This 
appendix describes input/output conversion operations from and into a commonly used format:  
where attitude is defined relative to locally level wander azimuth coordinates, velocity is defined 
relative to the rotating earth in the locally level frame, and position is defined by altitude above 
local earth’s and the angular orientation of the local level frame relative to earth fixed reference 
coordinates. 

 
      

CALCULATING 0 ,
m m

E E
Bref refRC 0 FOR INPUT TO THE VARIATION TRAJECTORY 

ANGULAR RATE AND SPECIFIC FORCE FORMULAS 
 

The angular-rate/specific-force solution for the variation trajectory provided in (8), (9), and 
(31) with (6) and (10) require , 0

m
E
BrefC 0

m
E
refR reference trajectory inputs (relative to non-rotating 

inertial coordinates 0E ) that may not be directly available from the reference trajectory data file.  
This section shows how the required data can be generated by analytical conversion of reference 
trajectory data provided for each m cycle in the form of B frame attitude relative to a 

locally level coordinate frame N – e.g., wander azimuth [1, Sect. 4.5], angular orientation of the 
N frame  relative to coordinate frame E fixed relative to the rotating earth, and altitude 

above the local earth surface. 

m
m

N
BrefC

m
m

E
NC mh
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The matrix is easily obtained using the direction cosine product chain rule: 0
m

E
BrefC

 
  (E-1) 0 0 m m

m mm m
NE E E

Bref E N BrefC C C C=

 
where, as before, 0E  is defined as the angular orientation of the E frame in non-rotating inertial 

space at trajectory time zero, and  defines how at cycle time m, earth rate has rotated the E 

frame since time zero.  Recognizing that earth’s rotation rate vector 

0
m

E
EC

E
eω  is constant in the E 

frame, during time interval  the earth rotation angle would bemmT E
me mTω , hence,  as in [1, 

Eq. (3.2.2.1-8)] we can write for  in (E-1): 0
m

E
EC
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m
m me eE EE

mme eE
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ω ω

−= + × + × )  (E-2) 

 
The 0

m
E
refR position vector then derives directly from  and  using [1, Eqs. (5.1-9), 

(5.1-10) & (5.2.1-1)]: 

m
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 (E-3) 

 

Note:  0
m

E
ref

g (for the Appendix C calculation of 0
m

E
var

g ) might be available as a reference 

trajectory output, or can be calculated as in Appendix B using 
m

E
refR from (E-3) and setting 

0
m

E
refR in Appendix B to

m
E
refR (valid due to gravity symmetry around earth’s polar rotation axis). 

 
GENERATING VARIATION TRAJECTORY OUTPUTS 
 

The primary inputs to the variation trajectory generator are integrated angular-rate/specific-
force increments generated (with Method 2) from (8) and (31).  As (8) and (31) are processed 
from cycle-to-cycle, variation trajectory attitude/velocity/position would be generated using an 
appropriate set of updating algorithms: (2), (3), and (4) if outputs are to be provided in non-
rotating inertial coordinates, or by an alternative for a different navigation data format, e.g., 
attitude relative to locally level wander azimuth coordinate frame N, velocity relative to the 
rotating earth in the N frame, angular orientation of the N frame  relative to coordinate m

m
E
NC
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frame E fixed to the rotating earth, and altitude above the local earth surface.  Included in the 
variation trajectory output would be the comparable set of reference trajectory 
attitude/velocity/position data and the integrated angular-rate/specific-force increments that 
created it.  It is important to recognize, however, that computation routines used to generate 
variation trajectory outputs must be the same as those used in creating the reference trajectory.  
This is the only way to assure that the difference between the reference and variation trajectories 
will accurately reflect attitude/velocity/position constraints (6), (7), (8), and (10) (for Method 2). 

mh

 
If the reference trajectory used in creating (8) and (31) is of the previously described wander 

azimuth type (using the previous section conversion routines to the 0E  frame), the variation 
trajectory data would be generated using the identical routines (typically as a parallel operation 
for reference trajectory generation when creating the (8) and (13) integrated angular-
rate/specific-force increments (e.g., [4, Eqs. (3), (8) – (10), (12) & (18)] with, for reference 
trajectory constant angular-rate/specific-force over each m cycle, coning, sculling, scrolling set to 

zero and doubly integrated specific-force 
m

Sυ in [4, Eq. (12) set to 1
2 m

Bref
mref TυΔ ).  If variation 

trajectory outputs are to be relative to non-rotating 0E  inertial coordinates, the (2) - (4) 
algorithms would be used to generate the variation trajectory and a parallel set of reference 
trajectory 0E  frame outputs.  If the reference trajectory data was generated from an unknown set 
of algorithms, it must be recreated using the same computation routines as for the variation 
trajectory.  This would also generally include deriving a set of compatible integrated angular-
rate/specific-force increments for reference trajectory regeneration.  Included in the previous 
options is an initialization requirement.  Each option is discussed next based on using the Method 
2 approach. 

 
INITIALIZATION WHEN OUTPUTTING DATA IN THE 0E  INERTIAL FRAME  

 
The (2) – (4) routines would be used for reference and variation trajectory generation.  

Attitude/velocity/position initialization would be as defined by reference trajectory input data, 
either directly in the 0E  frame or after conversion as described in the previous section.  Eqs. (8) 
and (31) would be used for variation trajectory integrated angular-rate/specific-force.  If not 
provided directly, integrated angular-rate/specific-force increments for the reference trajectory 
would be generated as in (8) and (31) by setting the (6), (8) and (10) variation constraints to zero 

(i.e., 0 0E
mS = , m

m
fBre

Bvar IC = , 0 0
m m

E E
refvarV V= ). 

 
INITIALIZATION WHEN OUTPUTTING DATA RELATIVE TO WANDER AZIMUTH 

COORDINATES 
 
An appropriate set of updating routines would be used for reference and variation trajectory 

generation, e.g., [4, Eqs. (3), (8) – (10), (12) & (18)].  Integrated angular-rate/specific-force 
increments would be generated as described in the previous subsection.  If reference data is 
provided in wander azimuth coordinates, reference trajectory initialization would set 
attitude/velocity/position to the input.  If reference data is provided in the 0E  frame, appropriate 
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conversion for initialization would be required for both the reference and variation trajectories as 
described next. 

 
Reference Trajectory Initialization From Data Provided in the 0E Frame  
 

Reference trajectory input position provided in 0
0

E
refR  format can be converted to the 

equivalent altitude and local level N frame angular orientation in two steps, 1) Finding initial 
altitude  and latitude  directly from 

0refh 0refl 0
0

E
refR , and 2) Setting initial wander angle (an 

arbitrary quantity not impacting navigation accuracy) to zero ( ), then finding initial 
longitude by either of two methods (each described subsequently).  The initial azimuth 

wander  matrix would then be initialized with  and the calculated , .  

0 0refα =

0

0refL

0
0ref

E
NC 0refα = 0refl 0refL

 
In Step 1 Initial altitude and latitude are calculated from the simultaneous solution of [1, Eqs. 

(4.4.2.3-7)]: 
 

( ) ( )

( )
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R R eh uR R R R
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⎡ ⎤ ⎡ ⎤= + − − = + − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞
0h⎡ ⎤= − + + − = − +⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠

 (E-4) 

 
with 

 0 0
/0 00 0

.
epa

E E
ref refeparef ref refuR RR R= = 0 0

0
.E ER  (E-5) 

 
where in the 0E  frame, 0E

epau  is a unit vector along earth’s polar axis, is the projection 

of 

/0eparefR

0
0

E
refR  on 0E

epau , and  is the projection on earth’s
/0epaUpu 0E

epau  polar axis of a unit vector 

upward in the initial locally level N frame, eqR  is earth’s equatorial radius (2.0925604 E7 ft, and 
e  is the ellipticity of earth’s ellipsoidal cross-section shape (1/298.257223563).  Solving (E-4) for 

and  requires an iterative process in the computational sequence shown beginning 

with  set to zero.  The result will converge in less than 5 cycles. 
0refh

u
/0u

epa

epaUp

/0Up

 
It can be verified from [1, Fig. 5.2-1] that  equals the sine of initial reference latitude 

, hence: 
/0epaUpu

0refl

 
0 /0 0 /0

2sin cos 1
epa eparef Up ref Upl u l u= = −  (E-6) 
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Eqs. (E-6) are based on defined to vary between plus and minus π/2, hence, the positive 

polarity of the square root in (E-6) for . 
0refl

0
cos refl

 
For Step 2, finding initial longitude  is most easily accomplished if reference trajectory 

initial position location is restricted to non-polar regions, e.g., for < 0.99.  Then 

longitude can be directly extracted from 

0refL

/0 0
/

eparef refR R

0
0

E
refR using [1, Eqs. (4.4.2.3-6) & (4.4.2.3-4]: 

 

  (E-7) (0 / /0 /
1 /tan eq mrd eq mrdref ref refL R R⊥

−= )/0

0

 
where is the initial projection of 

/ /eq mrdrefR 0
0

E
refR  on the intersection axis of earth’s equatorial 

plane with the Greenwich prime meridian plane and is the initial component of 
/ /eq mrdrefR ⊥ 0

0
0

E
refR along an axis in the equatorial plane perpendicular to the previously defined Greenwich-

meridian/equatorial-plane intersection.  Note: Eq. (E-7) should be properly solved numerically 
using a four-quadrant arc tangent routine. 
 

With initial latitude from (E-4) - (E-6), initial longitude from (E-7), and initial 

wander-angle specified at zero, initial wander azimuth angular position can be 

determined for example, using [1, Eqs. (4.4.2.1-2)] (based on an N frame having Z-axis up, Y-axis 
north at zero wander-angle, and an E frame having Y along earth’s polar axis with Z in the 
Greenwich meridian reference plane).  Including initial altitude from (E-4) completes the 

initial wander azimuth format position conversion process for the reference trajectory.  

0refl 0refL

0refh

0refα 0
0ref

E
NC

 
Initialization of reference trajectory velocity relative to the earth in the wander azimuth N 

frame 0
0

refN
refv can be determined directly from input reference velocity 0

0
E
refV relative to non-

rotating 0E  coordinates.  The method is to use [1, Eq. (4.3-5)] for the 0E  frame equivalent, then 

transforming the result to the N frame using the previously computed : 0
re

E
NC

0f

 ( ) ( )0 0 0 0 00 0
00 0 0 0

1
0

0

ref refN NE E E EE E
e eepa eparef N ref ref E ref refref

v V u V uR RC Cω ω
−

⎛ ⎞= − × = −⎜ ⎟
⎝ ⎠

0
0

E×  (E-7) 

 
where  is earth inertial angular rate magnitude (7.2721150 E-5 rad/sec) directed along earth’s 

polar axis unit vector 
eω

0E
epau  in the 0E  frame, and where it is recognized that the inverse of a 

direction cosine matrix is its transpose. 
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Initialization of reference trajectory attitude relative to the N frame is achieved using input 

inertially referenced attitude , the previously found  matrix, and applying the 

direction cosine matrix multiplication chain rule: 

0
0

E
BrefC 0

0
E
NrefC
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0
0

N E  (E-8) 0 0 0
00 0

1
0

0

ref refN E E
Bref N Bref E BrefrefC C C C C

−
⎛ ⎞= =⎜ ⎟
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Variation Trajectory Initialization 

  
Initialization of the variation trajectory position/velocity/attitude for wander azimuth 

formatting can be achieved using the same method applied for reference trajectory initialization.  
The only difference would be that 0

0
E
refR , 0

0
E
refV , would be replaced by the equivalent 

variation trajectory parameters 

0
0

E
BrefC

0
0

E
varR , 0

0
E
varV ,  to obtain the equivalent wander azimuth 

result: , , 

0
0

E
BvarC

0varh 0
0

E
Nvar

C 0
0

varN
varv , .  The 0

0
varN

BvarC 0
0

E
varR , 0

0
E
varV ,  inputs would be calculated 

as in (6) – (8) and (10).  

0
0

E
BvarC
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