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ABSTRACT

A reference trajectory is commonly used for inertial navigation system (INS) performance
evaluation, depicting the attitude/velocity/position profile of a reference source in a moving
vehicle (land, sea, or air-borne), and generated by direct previous INS recordings or simulation.
Since the advent of Kalman filter INS aiding, it has been typically required to also generate a
precision “‘variation trajectory” from the reference, depicting angular-rate/specific-force and
corresponding attitude/velocity/position navigation state at a specified linear-position/angular-
orientation relative to the reference. The reference might represent a “master” reference
navigation state at a particular location in a moving vehicle, the variation trajectory angular-
rate/specific-force would represent inputs to simulated gyros/accelerometers driving the inertial
navigation solution in a simulated Kalman aided INS. Comparing the master and aided INS
outputs would form the Kalman filter “measurement” input, the output then used to update the
INS being aided. The variation trajectory data would also be used to represent the “true”
navigation state at the offset location for aided INS performance comparison.

This article analytically derives a new exact formulation for variation trajectory angular-
rate/specific-force and the corresponding navigation state as a function of the reference trajectory
navigation state and specified attitude/position offsets thereof. The new approach is designed to
eliminate unrealistic velocity oscillations created with previous approaches when applying the
offset constraints. For performance evaluation, an analytical test example is defined, then used
to generate/compare new versus previous variation trajectory solutions relative to the theoretical
test example. Results are analytically presented at successive trajectory data update cycles so
that detailed performance characteristics can be clearly exposed.

INTRODUCTION

An important element in strapdown INS performance analysis is a reference trajectory used
to generate simulated strapdown gyro/accelerometer signals with corresponding navigational
attitude/velocity/position for INS software validation and covariance simulation routines.
Developing a trajectory that replicates a realistic scenario is a complex computer design process
involving maneuver shaping, results prediction, and trajectory generation using previously
developed design aids, e.g., [1, Sects. 17.1, 17.2.1, & 17.2.2]. In general, the trajectory
generation operation is achieved by processing simulated gyro/accelerometer signals through a



precision set of strapdown inertial navigation integration algorithms designed to provide an exact
navigation solution response. The trajectory design operation must also assure that the resulting
navigation solution properly depicts realistic performance characteristics.

Since the evolution of Kalman aiding for real-time INS calibration/performance-updating,
the Kalman filter design process has commonly used a “reference trajectory” to simulate an
aiding reference navigation input to the Kalman filter “measurement”. A “variation” trajectory is
then used to simulate the INS being aided, providing simulated INS gyro/accelerometer inputs
(angular-rate/specific-force), their outputs then processed by aided INS integration routines.
Computed aided INS navigation data is provided for user output and “feedback” to the Kalman
measurement for comparison with the aiding reference data.

Design of a variation trajectory requires the merging of reference trajectory inputs with
variation trajectory constraints to generate a precision solution that realistically represents the
navigation state at the aided INS location subject to specified constraints. The variation trajectory
constraints might specify a specified offset in aided INS position location in the vehicle relative to
the reference navigation data location (including potential vehicle bending effects), and a
specified angular orientation of the aided INS relative to reference attitude ( including relative
angular motion, e.g., simulating a scanning platform).

Ref. [1, Sect. 17.2.3] analytically describes how a variation trajectory can be constructed
from a reference trajectory to meet specified attitude/position constraints. However, users who
have implemented that approach have reported unusual unexplainable performance anomalies.
Even though results exactly satisfied the specified attitude/position constraints, the
corresponding angular-rate/specific-force/velocity profile contained unexpected sustained high-
frequency oscillations triggered by maneuvers. This article analytically reconstructs the
sustained oscillations experienced, and develops an alternate approach for elimination.

The problem with the original [1] approach (identified herein as “Method 1”’) stems from the
lack of velocity control when generating angular-rate/specific-force (two vector quantities) to
meet two specified attitude/position constraints. This is a general problem of defining two vector
parameters (angular-rate/specific-force) to satisfy three constraints, attitude/position and an
accompanying velocity without unrealistic oscillations. The problem is solved in this article
using a different design approach (“Method 2): Specifying that the attitude constraint still be
met at each trajectory update cycle (as with Method 1), but adding an additional velocity
constraint that when coupled with the position constraint, is satisfied at alternate (every other)
update cycle. The result provides specific-force/angular-rate/attitude/velocity/position at each
update cycle, that meets the attitude constraint at each update cycle, and the velocity/position
constraints at alternate (“‘even”) update cycles. Subsequent analysis of Method 2 performance
then centers on the realism of the resulting solution, particularly the velocity/position at alternate
“odd” update cycles where no velocity/position constraints have been imposed.

The article begins with a general set of exact attitude/velocity/position updating algorithms
for variation trajectory response to integrated angular-rate/specific-force increments.
Attitude/position constraints are then specified relative to reference trajectory attitude/position.
Following is a derivation mimicking the [1] approach, solving for angular-rate/specific-force to
meets the attitude/position constraints at each update cycle. The Method 2 approach is then
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described showing the form of the added velocity constraint, then solving for integrated angular-
rate/specific-force increments at each update cycle to meet the attitude constraint at each update
cycle and the velocity/position constraints at alternate update cycles.

To analytically evaluate and compare Method 1 and 2 performance, a continuous form
sample test example is analytically defined for the reference trajectory with attitude/position
constraints, and solved on a continuous basis to form a variation trajectory theoretical trajectory.
The test example defines a constant reference velocity plus a sequence of two different constant
angular rate maneuvers, with the variation location at a fixed lever arm relative to the reference
position. The analytical result defines a constant tangential-velocity/centripetal-acceleration
proportional to lever-arm displacement during each constant angular rate segment, but requiring
impulsive specific-force at the angular rate change junctions to instantaneously change the
associated tangential velocity. For the Method 1 and 2 test example solutions, integrated
specific-force increments of finite constant amplitude are used, each spanning an update cycle.
As aresult, the angular rate changes generate a finite time duration transient in place of the
theoretical solution impulse. For Method 1, each transient produces a sustained specific-
force/velocity oscillation. For Method 2, the solution matches the theoretical result following the
transient (i.e., without sustaining oscillations).

Method 2, however, still contains a small bounded oscillation effect produced by specific-
force reaction to balance gravity. That effect remains during constant rotation periods. It is
produced by the requirement to meet the velocity/position constraint at alternate (even) update
cycles using two sets of specific-force (an odd cycle set followed by an even cycle set). A
difference in specific-force gravity balancing (from the theoretical solution) thereby occurs at
odd update cycles. The result is a small difference in variation trajectory specific-force from the
theoretical solution. The article includes a section showing how the gravity oscillation effect can
be effectively removed. The method is by modifying the reference trajectory to contain a
matching gravity oscillation. Then, when forming a simulated Kalman filter input
“measurement”, comparison between the variation and reference trajectories will cancel the
gravity oscillation effect.

Preparation of the Method 1 and 2 analytical test model responses was complicated. To simplify
the article, only the final test example results are presented here with derivation details provided
as Appendices G and H in a separate article [2] directly accessible at
http://www.strapdownassociates.com/Appendices%20F.%20G,%20H%20t0%20Variation%20Tr
ajectory%20Generator.pdf.

NOTATION
General Notation

V = Arbitrary vector without specific coordinate frame component definition.

\lA = Column matrix with elements equal to general vector V projections on general coordinate
frame A axes.


http://www.strapdownassociates.com/Appendices%20F,%20G,%20H%20to%20Variation%20Trajectory%20Generator.pdf
http://www.strapdownassociates.com/Appendices%20F,%20G,%20H%20to%20Variation%20Trajectory%20Generator.pdf

(\le) = Cross-product (or skew symmetric) form of \lA defined such that for the cross-product

of V with another arbitrary vector W in the general A frame: \l'%(V_VA = (\le) V_VA.

CE = Generalized direction cosine matrix that transforms vectors from general coordinate

frame A to general coordinate frame D (i.e., \iD = CE\iA).

Coordinate Frames

B = “Body” coordinate frame aligned with orthogonal strapdown inertial sensor axes fixed in the
rotating body.

B(t) = Frame B at time 1.

E = Earth frame fixed to the rotating earth.

Eo = Inertial non-rotating inertial frame aligned with E at trajectory start time t = 0.

| = General inertially non-rotating coordinate frame.

N = Coordinate frame aligned with locally level navigation coordinates having one axis vertical.

Trajectory Generator Update Cycle Indices

m = Trajectory generator update cycle index (m=0 at trajectory start time t = 0).

n = Trajectory generator even (or alternate) update cycle index (i.e., m=2n).

Important Note: Each cycle index subscript identifies the m cycle time instant value for that
parameter (e.g., subscript 2n indicates a parameter value as cycle m=2n, and 2n-1
indicates a parameter value at cycle m=2n-1.

Trajectory Type Subscripts

ref = Parameter or coordinate frame identifier for the variation trajectory.
var = Parameter or coordinate frame identifier for the variation trajectory.

Parameter Definitions

Parameters are listed next in alphabetical order with Greek letters ordered using the English
translation (i.e., Delta A under D, mu ¢ under m, omega @ under o, phi ¢ under p, upsilon v

under u). Parameters used exclusively in the appendices are defined separately in the appendices
where they appear.

gg: = Specific force acceleration vector of the rotating body (that would be measured by

strapdown accelerometers attached to the rotating body and aligned with body axes).
Cam™ Direction cosine matrix CE at the end of update cycle m.



AQE’]: Integral over an mcycle of B frame measured inertial angular rate QB (that would be

measured by strapdown gyros attached to the rotating body and aligned with body axes,
ie., Ag jttm P
m_

Aa\%’rar Particular value of Aa defined for the sample to be constant for 0>m>-9.

Aa'\?grar Particular value of Aa defined for the sample to be constant form>0.

ABg (tm) = Change in R over the tm-] to tm time interval caused by g gravitational

ARge (tm)= Change in Rover the tm-1 to tm time interval caused by specific force ag
acceleration.

Aer?w = Integral over an mcycle of B frame measured specific-force (acceleration) gg: (i.e.,

t B

AV g (tm)= Change in V over the tm-1 to tm time interval caused by caused by g gravitational

acceleration.
AV o (tm)= Change in V over the tm-1 to tm time interval caused by specific force ag

acceleration.
g = Earth’s mass attraction gravity vector (relative to earth’s center) at trajectory position

location R.

g ag = Constant average approximation of g to simplify the test example model.

| = Identity matrix.

| = Specified position displacement vector component of S

B = Rotating body angular rate vector relative to non-rotating space (that would be measured

by strapdown gyros attached to the body and aligned with rotating body axes).

R = Position vector from earth’s center to the trajectory designated position location (“navigation
center” ).

R, = Position vector R at the end of update cycle m.

S= Specified vector displacement of R

var Telativeto Rig .

S = Specified additional displacement vector component of S
t = Elapsed time from the start of a trajectory.
tm = Time t at the end of trajectory update cycle m.

Tm = Time interval from tm-1 to tm (assumed constant for this article).

V = Velocity of trajectory position relative to non-rotating inertial space defined as the time rate
dREo

dt

of change of position evaluated in inertially non-rotating E( coordinates: \lEO =

V = Velocity vector V at the end of update cycle m.



BASIC INERTIAL NAVIGATION OPERATIONS

The general equations of kinematic motion for a rotating body travelling in non-rotating
inertial space are provided by the fundamental Newtonian vector expressions [3, Egs. (1) & (2)]:

Bm- B B B B _
Cal' =Chy(@®x)  cBly=1 +H,, CRY'd

CBm_ CBm ICB(tm)

*Bm— B B B -1 I t I
AV S _(:B(t)laSF =] AV dt AV O =], 9dt 0
\Lln=\i:m+0's v Sm- 1(tm)+Av (tm)
ARSI = Ay Bm- REMIM = ARG™dt  ARLM) =] AV dt
R =R vl Tm+Ch,_ REM- l(tm)+AR (tm)

Eqgs. (1) are the basis for design of a strapdown inertial navigation system (INS) in which
angular-rate/specific force (@, age ) are measured for input, and attitude, velocity, position (C{3

, \LI , Bl ) are computed in the non-rotating inertial | frame for output. In most INSs, (1) is

defined for integration in an intermediate locally level “navigation” N frame with velocity
defined as the rate of change of position relative to the rotating earth, and position is designated
by altitude and angular position in an earth based coordinate frame (e.g., latitude/longitude or the
equivalent direction cosine matrix representation). The resulting equations are equivalent to (1),
but with additional terms associated with angular velocity of the locally level N frame and
earth’s angular rotation rate (i.e., the so-called centripetal and Coriolis acceleration terms added
to the velocity rate equations). Integration of the N frame equations, however, yields exactly the
same solution as integration of (1), after the results are converted to the | frame attitude, velocity,
position definitions (and assuming the use of “exact” (error free) integration algorithms).

Trajectory generator simulators have also been based on the integration of (1) (or their
equivalent N frame version) with one notable difference, for a trajectory generator, angular-
rate/specific-force (@, ag ) are programmed functions that have been previously determined to

yield an attitude/velocity/position (C'B, \il , BI ) profile representative of user operations.

Design of @, ag- to generate a representative CIS , \LI , Bl profile is a complicated process that

can be simplified by a fundamental premise in the trajectory profile structure: to consist of a
sequence of trajectory segments, each based on constant @, ag- values during successive

trajectory update mcycles of (1) within the segment.

This article describes the design of a “variation trajectory” generator that produces a
trajectory at specified attitude/position variation from an existing “reference” trajectory. The
variation trajectory is assumed to be created by a trajectory generator structured as described
previously, by a sequence of constant specific force/angular-rate segments, each spanning an m
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cycle of (1). The result (for an | frame representation) will be an exact solution of (1) for each m
cycle as described in [3, Egs. (2) = (5) ]:

Bvar _ tm Bvar
Alearm_ tm-1 Lvar o

2)

SIN Aoy m(Aanar

1—cos Aty m( Bvar )2
Adtygr,, ©&m

charmEl + ><)+ i 2 —varmx
avarm

Eo _~FEo
CBvarm - CBvarm_1 C':‘Cvarm

_ Bvar Bvar
1 COSAavarm( Bvar x)+ 1 var m ( Bvar )2

2 var 2 Bvar var m><
Evarm (%4
Bvar Aoy, Aoy

(Aavaf m) m m

sin Aq

GVV&I'mEI +

Bvar _ (tm _Bvar
AQvar m_ ‘tm-1 g'Szvar t (3)

Eo _yEo Eo Bvar , 1 (4Eo Eo
\lvarm \lvar m-1 * CBvarm_1 GVVarmAyvarm+ 2 gvarm—'_—var m-1

JTm

: Bvar

1 1 1— SINAG o ( Bvar ><)
) 2 Bvar =varm
e

1—cos Ag BV 2
S S B il Vi (Aanarx) &)

(acger)’|* | (o) )]

Eo _RE0  4\Eo Bvar l(gEo 45 gEO 72

Eo
= + () +—
—varm —varm-1 —varm_lTm CBvarm_1 GR\/arm —varmTrn 6 \=varm =var m—1

The g\% gravity groupings in (3) and (4) are based on a linearly varying gravity vector over

each mcycle as derived in Appendix A. For each mcycle, g\'/Ea(; (specifically, g\lf; at the end
- - m

of the mcycle) is a function of variation trajectory position vector B\'/E(,fr o and can be calculated

directly from E\I/anr . (as shown in Appendix B), or as a first order expansion around the

reference trajectory gravity vector (as shown in Appendix C).



SPECIFIED VARIATION TRAJECTORY CONSTRAINTS

The variation trajectory is defined to vary from the reference trajectory by defined attitude
and position offsets (constraints) at each mtime point.

The attitude constraint is defined as a specified angular orientation relative to the reference
trajectory attitude matrix:

C:Bvarm - CBrefm CBvarm (5)

The position constraint is defined as a specified linear translation relative to the reference
trajectory position location:

Eo _ pEo E
Riam=Rrat + SR (6)

For flexibility in use, the §EO displacement vector is further defined to be composed of two

components, each represented by a different coordinate frame projection:

;
Bref
§EOECE\9arm{(CB\r/arm) |51l +§Bvafm} ™

| Bref

If the reference trajectory was defined to represent a master INS in an aircraft, the m vector

might represent a lever arm from the master INS location to a second INS location in the aircraft,

and §Bvar M could represent an additional displacement of the second INS location when

Bref

Bvar m relative to the

mounted on a controlled rotating platform at instantaneous orientation C

master INS attitude.

Bref | Bref,

Covarm>t ™o and sBYaM can be represented by constant and

For complete flexibility,

Bref

time varying terms, Cg, .- m

| Brefm

changes with time representing (for example) a scanning operation,

and the , §Bvarm variations representing (for example) fixed plus bending oscillations.

(Ref. [1, Sect. 17.2.3.2.3] describes how random finite bandwidth lever arm bending effects can
be analytically modeled.) For realism in their use, the time change effects can be filtered to
eliminate (for example) unrealistically abrupt changes in their movement at programmed model

Bref

time junctions, e.g., changing the Cavar

o Scan rate from one value to another. Based on [1,
Bref
Bvar m
smoothing while retaining bounded specified offset characteristics and the traditional
orthogonality/normality properties of a direction cosine matrix.

Sect. 17.2.1], Appendix D describes how filtering can be easily incorporated in C for



DESIGNING THE VARIATION TRAJECTORY TO MEET THE SPECIFIED
CONSTRAINTS

Designing the variation trajectory requires solving for Agalrar; , AQ\E;/rar; in (2) — (4) to meet
the (5) — (7) constraints. Once Ag\?grar;, Az_)\lla;/ra:n are determined, the variation trajectory can be

generated by processing (2) — (4) in non-rotating inertial E( coordinates (or an equivalent in
locally level navigation coordinates, e.g., azimuth wander [1, Sect. 4.5 & Table 5.6-1].

Bvar

Solving for Aa, is a straight-forward matrix transformation operation of (2) using

constraint (5) for CBvar Substituting CBvar from (5) into the third equation in (2), then

multiplying by the inverse of CBvar 1(while recognizing that the inverse of a direction cosine

Bvar

matrix equals its transpose), finds Gevar - Identifying Aa,.-asa rotation vector (based on

Bvar

its definition in (2) and the assumed constant angular rate @, over an mcycle for the variation

Bvar

trajectory), Gevar m is solved for Aa, us1ng a direction cosine matrix to rotation vector

inversion routine [1, Sect. 3.2.2.2]. Thus, attitude constraint (5) is implemented in the variation
trajectory simulator by replacing (2) with

Brefm, Bvar
CBvarm CBref CBvarm GCV:’:lrm_C CBvarm )
A g\?;ra;q = Rotation Vector Extraction From Gevar n
With Aanar so determined, Gwar m and GRrarm (both functions of Aanar ) are

Bvar

calculated from their definitions in (3) and (4), then applied to find a AV spe01ﬁc force that

generates aBV Eo position profile meeting the specified position constraints. Two methods

Bvar

have been analyzed for finding AD that satisfy position constraint (6) - (7):

Bvar

1. Solving for AV, . over each mcycle with R\'/EO satisfying position constraint (6) —

(7), but without speciﬁc control of Veloci‘[y\l\llza?r .

Bvar

2. Solving for AV, . over each mcycle so that position REO satisfies (6) - (7) at

alternate cycles, and including specific control of velocity \l\ilza(} mat the alternate m

cycles.



Bvar \Vj Eo

Each is discussed next followed by an example for analytically comparing the Avvar Viar m’

E(,fr _ profiles generated by each method.

METHOD 1 - SATISFYING THE POSITION CONSTRAINT AT EACH mCYCLE

Method 1 is an inertial frame version of the locally level frame equivalent in [1, Eq.
(17.2.3.2-24)] whereby Aysgﬁ; is defined by direct inversion of (4):

Eo _ pEo -V Eo

Bvar -1 =varm —varm-1 —var m—le
Av Yvar m (CBvarm 1GRvarm) 1/ E Eo ) ITm ()
_E(gvarm 29varm_ Tm

In (9), REO and are set to the current and previous value specified by position

ar m=1

constraint (6) with (7). The previous mcycle velocity !Ea? .- in (9) would be provided from

the past cycle of (3), necessitating that (3) be included as part of Aysgrar; determination. The

gEo gravity terms in (9) are functions of R\'/EO specified position constraint (6), and can be
=varm —varm

calculated using either of the Appendix B or C approaches.

Variation position R EO 1n 9) is calculated in (6) - (7) with CE_ from (8 using
Bvarm

Eo

reference position R  and attitude CB o provided from the reference trajectory. If not
m

directly available in (6) and (8) format, Br o CBr o can be obtained by conversion of

available reference position data (e.g., body frame Bref attitude relative to a locally-level
wander azimuth coordinate frame, altitude, and wander azimuth frame position angle, as
described in Appendix E). The G,/ o,y term in (9) would be calculated as in (4).

Once A Vua Bvar

1s determined, velocity V V EO and position R\'/EO are obtained using (3) and
(4). (Note: Slnce Method 1 specific force is based on meeting position constraint (6) with (7),
(6) rather than (4) can be used directly for B\',anr m). Attitude/velocity/position results can then
be output directly in E(y inertial coordinates, or after conversion to another desired format as

required (e.g., Appendix E).

The problem with the Method 1 approach is that even though integrated specific force

increment AQE;""; calculated by (9) will correctly generate B\'Izaor . that meets constraint (6), the
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: Bvar Eo : Bvar . e :
resulting AV, o . and \ivarm obtained from AQvarm in (3), may not look realistic. (This was

unexpected by the author when applying [1, Sect. 17.2.3.2] in actual simulations, and which
motivated the publication of this article for mitigation.) The Method 1 problem is described in
more detail subsequently by test example, showing that even though position constraint (6) is

Bvar

satisfied at each mcycle, an unrealistic oscillation is generated in the accompanying AV, fm and

Eo .
Viar . solutions.
By adding a velocity constraint to go with position constraint (6), Method 2 (described next)
mitigates the Method 1 oscillation effect, but at sacrifice of position constraint (6) only being

satisfied at alternate mcycles. Method 2 performance is then demonstrated subsequently in this
article when applied to the same test example used for Method 1.

METHOD 2 — SATISFYING THE POSITION CONSTRAINT AT ALTERNATE mCYCLES

Method 2 uses two sequential cycles of Avaar

each based on constant rate/acceleration,
that meet the (6) specified position constraint on B\I/Ee?r . at alternate m cycles, but also satisfy an
additional constraint on \V E0 velocity. The velocity constraint sets V B0 {6 the time

—Vval'm —Val'm

derivative of position constraint (6) at time instant m, with the derivative of §E0 in (6)

approximated as the average change of §E0 over two mcycles:

dRE? Eo dRYY Eo
vEo — —ref | das=o I + Estimated as=
o da

—Varm dt dt dt
m m (10)
Eo S Srliol
L R e

Because SEO is specified by (6) at each mcycle, S my 10 (10) requires a computation of (6) one

m cycle in advance (to be built into the variation trajectory generator non-real-time structure).

Bvar

Deriving two mcycles of Av expressions that satisfy (6) and (10) requires the m-1 cycle

version of (3) and (4) for \lEO EO to go with \l\l,EaOr in (3) and (4). Permuting

1’ —var m-1 ar

subscripts in (4) first finds for R ar O
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Eo _pEo Eo Bvar
—=varm-1_  — arm_2+\lvar Tm CBvarm zGRVarm 1AQvarm_1Tm

SEApE

—var m-1 —varm-2

(11)

Substituting (11) for in the (4) E\/Ee?r . expression obtains

ar

Eo _ pEo Eo Eo
—varm  —varm-2 + (\lvar m=1 \ivar m—2) Tm

Bvar

Bvar
AU +CBvarm 1GR\/armAQvar )Tm (12)

(CBvarm 2 GRvar m-i
1 Eo Eo Eo ) 2
+g(gvarm +3 gvarm_1+2gvarm_2 T

or upon rearrangement:

Bvar Bvar
(CBvarm 2 GRyar m-1 AQvarm 1 CBvarm 1 GR\/armAQvar ) Tm

—varm-1 —varm

Eo _ REo _(VEo +VEo )Tm_l(gEo +3g80 42 gEo )Trzn

T —varm  —varm-2 Zvarm T Svarmel | =varm-2

6

Similarly, permuting subscripts in (3) finds for \l\I,Ea(} .

Eo Eo Bvar , 1{,Eo Eo
Voiarmo = Yvarmea CBvarm > Gwar m-1 Avarm * 2(9\,arm_1+9varm_2)Tm (14)

which when substituted in (3) obtains

Eo _y/Eo Bvar g Eo Eo T
—varm —varm-2 Bvarm 2 GVV&F m-1 var m-1  2\=varm-1 —varm-2 m (15)
Bvar l Eo Eo
+ C Bvar GVV&Y m A1—)V<’:1r m " 2 (gvar m " gvar m-1 Tm
With rearrangement, (15) becomes
Bvar Bvar Eo _\/Eo
Bvarm 1 GVvar m var m + CBvarm 2 GVV&r m-1 —var m-1 \lvar m —varm-2 (16)

1/ Eo Eo Eo
- 5(gvarmJr 29varmt " dvar o) T

A rearranged form of (14) will also prove useful:

12
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Eo Eo Eo Bvar l Eo Eo
\ivar m—1 +\1Var m-2 2 VVa.r m-=2 CBVarm 2 GVVar m—1 Ayvar m-1 + 2 gvar m-1 + gvar m=2 T m (17)

EO . . .
Substituting (VV ar | +Voar m-z) from (17) in (12) obtains after rearrangement:

Bvar

Bvar
AU +CBvarm 1G‘RvarmA varm)Tm

(CBvarm 2 GRvarm 1

Eo _ pEo Eo Bvar
T —varm  —varm-2 (Zyvar CBvarm > Gwar m-1 A%var )Tm (18)

_l(gEo +69E0  15gEo )T%n

6 \=varm =var m—1 =var m—2

which combines into

Bvar Bvar
[CBvarm { Gruar 1 * Gwwar 1) Ay, + Cverm 1 GRvar ALy }
(19)
Eo _ pEo _ Eo _l Eo Eo Eo
—varm —varm-2 2\lvarm_2Tm 6(gvarm+6gvarm_1+5 gvar _2)T

Egs. (16) and (19) are now in a convenient form to find Avaar and Av\%’rar First (16)

and (19) are solved for AQE;ar;TW

Eo _y/Eo
\ivarm —valrm-2

Bvar

Bvar
Av Bvarm-1

Eo Eo Eo
il Guwarm) —E(g 12950 4g T [Tm

—varm —varm-1 —varm-2

Tm= C

Bvar
Bvarm 2 GVvar m-1 —var m-1

(20)

Eo _ pEo _ Eo

—varm —varm-2 2\lval'm—z-rm
_1 1

Bvar I =) Eo Eo 2

Bvar
C Bvarm— 2( G Rvar m-1 + GVvar m—l) AQvar m-1 T m_

Bvar

Equating the AV T m expressions in (20) yields
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Ve, - !VEa?m_z—%(gEa?m 200 )T
( Bvarm 1 c':‘Vvar m) Bvar Tm
Bvarm ) C':‘Vvar m-1 —var m=1 ]
—Ea?'m —Ea(l)’ m-2 \l\ilza(} m-2 Tm 21
-1
(CBvarm 1GRvarm) _é(g\lligm +6 g\llzagm-l 5g\|/5£rm_2)-|-%n
CBvarm o Gruar 1 * Gwvar 1) Al Tm
Or Upon rearrangement:
Rl R 22V T (Ol #0900, #5850 )T
~ Chverm o GRyarm 1 * Gvarm 1) Al , T 22)
Vot Yoatm 2
-1
CBvarm 1 GRrvarm (CE\(/)arm_1 Gwar m) _%(g\l/za(; 2 g\I/Ea(; m-1 +g\llza(; m_z) Tm|Tm
- ngg::r?’]_z Gwar m-1 AQ\I/B;;/rar:]_l
Define
-1
Am-1=CEly 1GRvarm(CBvarm 1G\,\,arm) (23)
with which (22) becomes
N T WL o L
~Cgy Bvarm— 2( Grvarm-1 T Gwar m—l) AQ\I,B;rar:]_l Tm (24)
Vearm ™Yt mes
= At =5 (O T2 9o ) T T
L CBvarm 2 Gwar m-i AQ\I/B;ra;—l

Equivalently, after grouping like terms:
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Bvar

_ Eo
[C Bvarm-— 2( G Rvar m-1 + GW/va\r m_1) Am-1C Bvarm-2 GW/var m-JAz—)var m-1 Tm

Eo _ pEo _ Eo
T =varm —varm-2 2\lvarm_z

Am1_1 ) Eo _ Am-1_3 ] 4E0 )
{( 5 6|jgvarm+(Aw 1)gte _1+( > e | Qe | TH

Defining particular groupings in (25) as

Tm— Am-1 (V Eo Eo

Lvarm ~var m_z) Tm

(25)

Bdenm 1 [CBvarm 2( GR\/arm 1+GVvarm 1) Am_lCBvarm 2GVvarm—l}Tm

R, =2V T Ama (VB -VES )T @6)

Brumm-1 = Pvarm ™ Rarmes ™ % Yvar varm Y-var
An 1 Eo B Am1_ 5 Eo 2
-{( 2 6|)gvarm+(Am_ I)gvayr TR 6| Sarm, |TM

allows (25) to be solved for Av\?;rar N

AD Bvar

Zvarmo1 — Bdenm-1 Bnumm_i (27)

The same process is used to obtain Aysgra; by returning to (16) and (19), but first solving

each for Avaar Tm- Following the methodology leading to (23), (26), and (27), the

Bvar

equivalent solution for AV, is given by

-1
Am= CBvalrm z(GR/ww1+Q/vmm 1)(CBvarm QGVVarm—l) (28)

— E E
Bdenm = (CB\(/)arm_l GR\/arm_ Am CB\(;arm_1 Gwar m) Tm

B SRR -2VEY T Am(VE VEC e 29)

Bnumm —varm —varm-2 —varm —varm —varm-2
Am_1 ) E0 1\ gEo Am_3, ] 4Eo 2
+H 2 6|jgvarm+(Alrn I)gvarm—l—lr 2 6I gstlrm—z Tm

Bvar
AQvarm - Bdenm Bnumm

(30)

Eq. (27) for Av\?;rar with (23) and (26), and (30) for AUB"af with (28) and (29), are the

integrated specific force increments for Method 2, both functions of variation trajectory position
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at the end of cycles mand m-2. Itis important to understand that these

ar —varm-2’ —varm’

REO and velocity Vvar

equations must be processed as a set, once every other mcycle using R

\l\llzé)r values prescribed by position/velocity constraints (6) — (7) and (10). This assures that

the bas1s for (27) and (30), the specified position/velocity constraints will both be satistied at m-2
Bvar A vaar
m-1" ~=varm
sequentially (at time interval m—l followed by m). To clarify this point, it is expeditious to define
another cycle n representing the occurrence of even mcycles, i.e., at m= -2, 0, +2, etc. With
this definition we can write that at even mcycles, m=2n, and at odd mcycles, m=2n-1.
Using this representation, (23), (26) - (27), (28), and (29) — (30) then summarize as follows:

and m, when the computed AV o integrated specific force increments are applied

-1
Aon-1 = CBvarzn 1GRvar2n(CBvar2n 1GVvar2n)

= _ Eo
Bdef12n—1 - |:CBvar2n 2( GRV&I’zn—l + GVvarzn_l) Aon-1 CBV&TZn—z Gwvar 2n—1:| Tm

Eo _ pEo _ Eo Eo _y/Eo
Br1UmZn1 —varon —varan-2 2\lvaan sz Aon- 1(Vvarzn \lvarzn_z)Tm
Aon1 1 Eo Aon-1 S Eo 2
+| | —=————1I - +| —=————
H T jgvam +(Aon-1 l)@lVar2nl > ¢ | Qaran, |TM
AD Bvar

—varzn 1_ Bdenzn_l Bnumzn_l

1)

1
Aan CBVal’Zn z(GRvarzn 1T Gwaran- 1) (CBvarzn 2GVvar2n_1)

—{~Eo0 _ Eo
Bdenyn = (CBvarzn_l GRvaron ™ A2n Chvaran GVvafzn) Tm

Eo _ pEo _ Eo _ Eo _yEo
Bnumzn —varon —varan-2 2\—/var2n_2 Tm— Azn (Vvarzn \lvaFZn—Z)Tm
Aon 1) 4Eo Eo A 3 Eo 2
+| £2n_ 2 +(Aon—| +| £2n_ 2
H 2 6 ngarzn (A2n=1) s |2 6" ) Svaronaa [T
Avaar

=varon Bdenzn Bnumzn

Importantly, each subscript in (31) identifies the m cycle time instant value for that parameter.

Execution of (31) requires CE\(;ar » Gwar » GRvar » Q\I/anr at each mcycle, and R\',anr Vo EO at

each ncycle. The Gyygr » Grvar Parameters are computed with (3) and (4) using A Q\?a\\ﬁrn from

(8). Eq. (8) for CE\(/)ar m is a function of the previous cycle transposed value of CE\(/)ar m’
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Bref

Buar ? & USeT specified variation in the Bvar

CBr o from reference trajectory attitude, and C

frame attitude relative to the Bref frame. The R\'/anr , V\',EaOr parameters are functions of §E0 ,

Rref Vo EO in (6) and (10); the n cycle values of §E0 are used for R\I/anr , the mcycle values

are used for VEO . The SEO parameter is a function of user specified |_Bref

m Bvarm
Vyvar - and S lever

arm data (and Cg\r/zfr ) as calculated with (7). The V parameter is obtained from the

reference trajectory, either directly, or as described (for example) in Appendix E. The R; e?
position parameter is obtained from the reference trajectory, or from Appendix E as described in

the second paragraph following (9). The g parameter is a function of Rvar calculated with (6)

—(7) from R; e? and §E0 . Appendices A and B show how g\I/Eo can be determined from R\I/Ear ,

either directly, or as a first order expansion around BFe?

GENERATING VARIATION AND REFERENCE TRAJECTORY OUTPUTS

Once Ag\'/sgra; and Ay\i\x/rarrn have been determined, they can be processed through an

appropriate set of integration algorithms to determine attitude/velocity/position navigation data
for output, e.g., (2), (3), and (4) if outputs are to be provided relative to non-rotating inertial E

coordinates, or the equivalent for a wander azimuth output format as described in Appendix E.

Bvar and A UBvar

Outputs would include Aa,, that generated the navigation data.

The basic motivation for developing a variation trajectory is for use in Kalman aided INS
simulations. Then, variation trajectory data would represent the “true” navigation state at the
aided INS location with the angular-rate/specific-force representing the aided INS
gyro/accelerometer inputs. To complete the simulation, reference trajectory data would also be
provided as a simulated source of master navigation data for Kalman aiding filter input (for
comparison with the aided INS output in the Kalman filter “measurement™). Representative
error sources would be added to the reference trajectory navigation data to simulate the master
reference output. Aided INS gyro/accelerometer outputs for navigation data generation would be
created by adding representative errors to the variation trajectory angular-rate/specific-force.
Aided INS outputs would be generated by processing the simulated gyro/accelerometer data
through the anticipated aided INS navigation algorithms. Aided INS performance would then be
evaluated by comparing the aided INS output navigation data with the equivalent variation
trajectory data.

It is important to recognize that for the previous process, the computation routines used to
generate the variation trajectory outputs must be the same as those used in creating the reference
trajectory. This is the only way to assure that the difference between the reference and variation
trajectories will accurately reflect attitude/velocity/position constraints (6), (7), (8), and (10) (for
Method 2). For situations where the reference trajectory used in (31) for Method 2 (to generate
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variation trajectory angular-rate/specific-force) is provided directly (rather than by parallel
integration), an equivalent reference must be generated, created by an equivalent set of reference
angular-rate/specific-force operating through the same set of integration algorithms used for
variation trajectory generation. The reference angular-rate/specific-force would be created from

the original reference navigation data using (31), but with original reference position BFe(f)
m
replacing BVEO at alternate mcycles (i.e., the equivalent of REO with zero SE0 offset),

original reference attitude for CBvar (i.e. CBvar from (8) with identity CB attltude

offset) at each mcycle, and velocity from (10) (using BFe(f) for B\I/Ee?r m).
m

TEST EXAMPLE FOR EVALUATING METHOD 1VERSUSMETHOD 2
PERFORMANCE

This section describes a test example used to analytically evaluate Method 1 and Method 2
specific force algorithm performance and its impact on velocity/position generated with (3) and
(4). The section derives theoretical analytical specific-force/velocity/position data for the test
example for later comparison with equivalent Method 1 and 2 generated results.

TEST EXAMPLE DESCRIPTION

For comparing Method 1 versus Method 2 performance, consider a test example having
Bref
Bvar C Bvar m

relatwe to non-rotating E inertial space then represents @, . ,

trajectory relative to inertial space. Also assume for the example that @, is zero prior to time

M =1 so that from (5), CBr o , and @, , the angular rate of the Bref frame

the angular rate of the variation

instantm=—9, constant from m=-9 tom=0 (call it®), and another constant for m> 0 (call it
o).

Under the variation trajectory structure, the previously defined @, ,, example history (of

zero, constant @, and constant @'angular rates) would be represented in Bvar coordinates by

integrated angular rate increment sequences of zero form< —9, constant Aa@{rar = QBvar Tm

for 0>m> -9, and another constant Agr' v = 'Y

Tm for m> 0. Based on these settings,
the following equivalent to (2) — (4) will be used for CBvar » Gwar » and Gryar "

determination under the example conditions:
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Eo

Form<-9: CEo = Chvar

Bvar m
For0>m>-9:

Eo _ ~Eo Bvar 1/ Bvar \?| _ ~Eo Bvar
CBvarm~CBvarm_l{l+(Agvar ><)+5(Agvar X) }charm_l[H(Agvar x)} (32)

Form>0:
Eo _ ~Eo0 \Bvar 1 \Bvar 2 _~Eo \Bvar
CBvarm~CBvarm—1{I +(Agvaf X)+§(Agvaf X) }'CBvarm—l[l +(Agvaf X)}
1

Form<-9: GVvarm:| GRvarmZEI

. 1 Bvar 1 1 Bvar
For 0>m>-9: GVVarmzl+E(Agvar x) Grarm=75 I+§(Agvar x| 33)

. 1 \Bvar 1 1 \Bvar
Form>0: GvVarmzHE(AQvar x) GRvarsz |+§(AQ‘var x)

To evaluate —anr min (6) for position constraint application requires specifying the form of

BFe(f) and the associated §EO parameters in (7). For the test example we specify in (7) that
m

Cg(,gfrm =1, §Bvarm =0, and |_Brefm be constant (call it I_Bref ), hence, (7) simplifies to:
Eo_ ~Eo0 Bref
§m = Chvar ml— (34)

Reference position BFe? in (6) is created by !Fe? velocity which, for the test example, is set to
m m

the constant VEO . Additionally, REO position is specified to be zero atm=0. Then REO
—ref, —ref, —ref,

in general becomes
Eo _\/E
Rref =V, (t=t0) (35)

where t( is general time t at mcycle time instant 0. In terms of variation trajectory fixed T

time interval mcycles, (35) is equivalently:

Eo _ Eo
R =mVp Tr (36)

With (34) and (36), position constraint (6) becomes:
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Eo

_ Eo Bref
—varm m\ir Tm+CBvar I (37)

Finally, for the test example it is assumed that VFe(f) is slow enough and | Bref relatively
Yref, !

small enough that B\llzo in (37) has only a small change over the duration of the test example

time period. Thus, gravity in (3) and (4) (a function of Rv Eo ) can be approximated as constant,
1e.,
Eo _ =gFEo
gvar o Constant = gavg (38)

THEORETICAL SOLUTION UNDER TEST EXAMPLE CONDITIONS

On a continuous basis, (6) with (34) — (35) becomes:

Eo _\/E Bref
a(} _\lre(f)o (t_ )+CBvar I 39)

With CBvar CBvar ( Buar ) from [1, Eq. (3.3.2-6)], the derivative of (39) finds

SEo —\/Eo _\/E0 Bref E() wBVar )| Bref
Bva?—\lva(}_\lr +CBvar| V +CBvar L4y x|

(40)

Eo
_\_/ref + CBvar

( Bvar>< | Bref )
During the test example time segments of constant angular rate @, Buar , the derivative of (40)

Dy
Bvar )

with CBvar CBvar( Do obtains aE0 , the acceleration of REQ :

=var —var *

= E — Bvar,, | Bref Bvar Bvar,, | Bref
\/El.} = 0 CBvar(a)var x1 ) CBvar[ Dvar ><(Qvar x1 )} (41)

Equating a\',EaOr acceleration in (41) to specific force aEO plus gravity, and from (38),

approximating gravity for the example as constant g (41) becomes for aSF

E _ Bvar Bvar Bref E
0 CBvar[ Dyar ><(a)var x| )}'ga\?g (42)

Bvar

Transforming (42) to the Bvar frame then obtains the resulting ag=" specific force (the

acceleration that would be measured by accelerometers aligned with Bvar coordinates):
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Bvar Bvar Bvar _ | Bref Bvar Eo
Ay = Dy ><(Qvar x1 ) Ce gavg (43)

For the assumed a)\?grar values defined at the start of this section, (39), (40), and (43) then

translate into the following theoretical solution for the test example:

For t<tm=—9

Bvar Bvar _ Bvar Eo Eo _\/Eo0 Eo Eo Bref
Dp =0 agF =-Cg gavg Viar _\irefo Rvar \lref (t- t0)+CB\/ar :_9|_

For tm=—9<t<typ:

[0) =0

Bvar Bvar Bvar _ __Bvar Bvar Bref Bvar Eo
var e Q'S: = X (Q XI_ ) g

Zavg
Eo Eo Bvar _ | Bref Eo _\/Eo0 Bref
Vvar \lref +CBvar ( x1 = a(} _\lrefo (t )+CBvar ! (44)
For t>tp:
B B B B B B
Qvg/rar:g) var as'\:/ar @' varX(Q, varxl_ ref) CB\/ar gg\;)g

E Eo Eo \Bvar _, | Bref E Eo Bref
Vvar =V +C (Q x1 ) Rar = \irer (t_t())"'CBvarI

where tm=—9 is time t at the instantaneous ending of mcycle -9, and t( is time t at the
instantaneous ending of mcycle 0.
Note the lack of specificity in (44) for specific force ag\:/ar atthe t =tm=—9 and t =t( time

instants. At these times, the a)Bvar S and

@, angular rate changes instantaneously from zero to @

from a)Bvar

C Bvar (

minus CBvar (a)

to a),Bvar This is accompanied by a change in Vva

} velocity of
Bvar x| Bref )

at t =tm=-9, followed by a Vvar change of CBvar ( BYar | Bref)

Bvar ><I_Bref ) at t =to. For theoretical representation in (44), the instantaneous

effects can be created by specific force impulses at these time points (i.e., of infinite amplitude
and zero time width), clearly an unrealistic effect for simulation (or reality).

Bvar Bvar

Under the variation trajectory simulation structure, @~ values of zero, constant @

and constant @' Buar

angular rates in (44) are represented by sequences of finite amplitude
integrated angular rate increments, each increment over the same T, fixed time interval (i.e., of

Bvar Bvar

zero form<—9, constant A, o~ =@ Tm for 0=2m> -9, and constant

A a,Bvar Bvar

Aoy Tm for m>0). Similarly, the a A specific force vector in (44) would be

represented by its equivalent finite integrated specific force increment Av\?a\{rar = ag\:/ar Tm over

each mcycle. Thus, the equivalent to (44) for the variation trajectory would be:
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Form<-9:

Bvar _ Bvar _  ~Bvar qEo0 Eo _\/Eo0

_g—avg —varm —ref,
Eo _ Eo Eo Bref
Bvarm_ m\lrefo Tm+CBvar_9|—
For —-9<m<0:

Bvar Bvar Bvar Bvar Bvar | Bref B E
. =Au Av =AY X| Aaord x=—— |- BV 0
Duar Tm=Ay Zvarm~ “&var var T CEOm—l /, =avg Tm

45

E E E Bvar |5 E E E Bref )

0 ~vEo 0 L 0 — 0 0

\lvarm~\lref0 +CBvarm_l/z AQtvar X Tm —varm m\irefo Tm+CBvarm|—
For m>0:

Bref
|

=var var =varm = vVar = var m Eom_1/2 ~avg m
E E E Bvar _ |5 E E E Bref
0 ~\vEo 0 ' L 0 — 0 0
\lvar \lrefo +CBvarm_1/2 Ao var X Tm =varm m\lrerf0 Tm+CBvarm|—
Bvar Eo Bvar Eo Bvar
where CEOm—l/z » Chvarm_y, &€ values for CE0 » CBvar halfway between CEOm_1 ,

Eo Bvar Eo
CBvar m-1 and CEOm i CBvarm‘
The problematic effects manifested in (44) at t =tm=—9 and t = to remain in the (45)

equivalent representation: the unaccounted for change in \lsa(} mvelocity at the m=-9 and

M= 0 cycle times. The problem was resolved in (44) by employing gg\:/ar impulses to

instantaneously transition velocity \i\l/ze?r . to the proper values without impacting B\I/anr position.

But with the assumed variation trajectory generator structure, impulsive velocity correction in
(45) is not a realistic option because specific force is modeled as a finite constant over each
m-1to mtime period, each time period being of the same T, time duration. As a result,

achieving the required (45) velocity changes can only be accomplished in the trajectory
generator by modifying the A Q\E;lra;] increment finite amplitudes. The realism of the resulting

modified A Q\?a\\/rar; profile and its impact on \l\'/za?m, R,anr mvelocity/position is the key distinction
between the Method 1 approach for AQ\?{?\/rarrn based on (9), and the Method 2 approach for

A Q\i;’rar; based on (31). Appendices H and I in [2] analytically derive the Method 1 and Method

2 generated performance under the test example conditions. Results are presented and analyzed
next.
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METHOD 1 PERFORMANCE UNDER THE TEST EXAMPLE

The following subsections present and discuss performance results analytically derived in [2,

Appendix G] for A Q\?a\l/rar; integrated specific force increments generated under test example input

conditions using the Method 1 design approach: (9) for Az—)\l/gz;/rar:q , with substitution in (3) - (4) for the

\lvarm’ R armvelocny/posmon response.

METHOD 1 SPECIFIC FORCE

The specific force profile generated by (9) with Method 1 is analytically derived in [2,
Appendix G] leading to (G-14), then renumbered and shown next.
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Form<-8:

Bvar _ Bvar EO
AQvar m C g avg

For m=—8,—6,—4,—2,0:

Bref
Bvar _ Bvar | _ Bvar Bvar
Ayvarm 2Aa 50 X - [I Aa } CEOm 1 avg

1 Bvar Bvar EO

Form=-7,-5,-3,—

ApBY = 9 pgBYary L —{I 2 (AaBYer « }(CBvar EOij

varm —Vaf T m —var

1 Bvar , [ ~Bvar
+EAQvar CEOm 1 _avg m

Form=1,3,5,-

| Bref

Avaar ) Aa.Bvar N
=varm
Tm

(46)

Bvar
(cow o1,

_ I__ AavBV&l’
EOm- 1

1 .Bvar Bvar
+8AQ var CEOm an

Bref
Bvar Bvar | 1 \Bvar Bvar Bvar Eo
+4 (Aa var ~ A%y )X T 3 (AQ var Al ) (CEOm . Gavg Tm
Form=2,4,6, ---:
Bvar Bvar | Bref 1 Bvar B E
' - _ ' var 0
Avvar 2A0{ X = T [l 2(Aa var ) :l(CEOm gavg )

1 .Bvar Bvar EO
6 A x| C EOm 9 avg

Bvar Bvar | Br 1 Bvar Bvar B Eo

- ' L v var

4 (Aa var —A%ar )>< + 3(Aa var — A%y ) (CEom | gavg j

Based on the theoretical solution in (45), it might be expected that under rotation, each (46)

integrated specific force AQ var 1ncrement would contain a component CB\(;ar 95\?9 Tm to
m-1/2 =

balance gravity. Egs. (46) show that such a component is indeed present, as represented by the

: 1 Bvar Bvar gEo0 <
equivalent [I 5 (Ag ) CEOm 1 gavg Tm | form < 0 and by

_ l 1Bvar Bvar
[I 5 (Aa ) CEOm 1 gavg Tm | for m>0. However, (46) differs from (45) by the

addition of other gravity terms, and in the form of the lever arm (l_Bref ) terms.
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Method 1 Specific force Response To Gravity Effects

ar Eo

In addition to the equivalent CBY Tm gravity term in (45) discussed previously,
EOm-1/2 =39

: 1 :
(46) includes a gAQ\I/Bg/rar X (CE\(/)ar:,_ 1 g 5\?9 ij term triggered at mcycle -9 (when Q\IIBE\l/rar

Bvar

changes from 0 to @ ) that oscillates between m cycles (plus for odd mcycles, minus for

1
even mcycles) until mcycle 0. Similarly, a cyclic —Aa .\I?e\l/rar X (CBvar gEo Tm) gravity term
6 — EOm-1 =39

Bvar \Bvar

is triggered at mcycle 0 (when QBvar

var  changes from @

to w ) that persists thereafter.

. . : 1 .
In addition, a second oscillatory gravity term _(Aa.\l?g/rar - Aa\l/Bg/rar ) X (CBvar gEo Tm) is
3V - Eom-1 —av9

Bvar \Bvar

triggered by the mcycle 0 angular rate transition (from @ to w ) that persists thereafter.
It is informative to note how the added gravity terms interact after m= 0 under two conditions,

Bvar _ Aa\E/%g/rar and when Aa.Bvar =0.

when A’y & var

Bvar _ Bvar 1 yBvar Bvar Bvar Eo :
When Aa'\ ;" =Aa,, ~ the E(Ag var — A%y )>< (CEOm—l gavg Tm | term vanishes,

1 1
the EAQ'Egrarx(CE‘(’)ar gEo Tm) term becomesgAngarx(CE‘(’)ar gEo ij, and the

m-1 =avg var m-1 =Zavg
1 \Bvar Bvar Eo 1 Bvar Bvar Eo
{I _E(AQ var x) CEOm_1 gavg Tm | term goes to| | — E(Ag‘var x) CEOm_1 gavg Tml»

i.e., a continuation of the solution that was operating prior to m= 0. When AQ@{rar =0, the

1 Bvar Bvar Eo : 1 \Bvar Bvar Eo
EAQ{ var X[CEOm—l gavg Tm | term vanishes, the —| | — E(AQ var )x CEOm_1 gavg Tm

term goes to —(CE\(/)ar 1 g 5\?9 Tm) as in the theoretical (45) solution for zero Agv\l?a\llrar _and the
m—

1

1 \Bvar Bvar Bvar Eo _ l Bvar Bvar Eo
3 (Ag var — A%y )x (CEOm—l gavg Tm) term becomes 3 Ay X (CEOm-1 gavg Tm) ,

. . 1 . . .
twice the magnitude of the gAgEg’rar X (CE\(/)ar gg\f’g T m) oscillatory term operating prior to m
m-1—

. . o .. 1
= 0. What this represents is the combination of two sustaining gAngar X (CBvar g Eo Tm)

var E0m_| —avg
oscillations, the one triggered at m= -9, and the second triggered at m= 0 when Q\?;rar went

Bvar \Bvar

from w var

to zero (i.e., to a zero Ao
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Method 1 Specific force Response To Lever Arm Effects

For the lever arm ( |_Bref ) terms, a comparison between the theoretical (45) and Method 1

(46) solutions shows a significant difference. For (45), these terms appear in the centripetal
components Agr v X| Ago e x = and Aa'vglrar x| Aor' oV x = that are constant
Tm o Tm

=var =var — var

during the m=-9 to 0 and m> 0 time periods. Identical terms would be present in (46),
however, due to the first order approximation accuracy in (46), they have been dropped as
second order compared to the three more prominent cyclic first order terms that are not present in

. . Bt .
(45). The first cyclic first order term is 2 A Q\I?g/rar X = triggered by the change in angular rate
m
Bref
at m= -9, the second is 2 Ag'\?grar X = triggered by the change in angular rate at m= 0, the
m
I Bref
third is 4 (Ag'\%’rar — Ag\?g’rar ) X _T triggered by the change in angular rate at m= 0.
m

As for the additional cyclic gravity terms discussed previously, it is informative to note how the

sustained I_Bref oscillation terms interact after m= 0 in (46) under two conditions, when

\Bvar _ Bvar \Bvar _
Aa'y =Aa, and when Ag' " =0.

Bref
When Aa'a’rar = Aa\i\{rar , the 4 (Aa'\%\(rar - Aa\?;rar ) X = term vanishes, and the
a o o (42 —
2 Aa'vg’rar X = term becomes 2 Aavg’rar X = , 1.e., a continuation of the 2 Aavg/rar X =
o Tm o Tm o

Tm

. . . _ Bvar _ \Bvar _ |
oscillatory term that was operating prior to m=0. When Aa' ;™ =0, the 2Aa'\ o~ ¥

Tm

Bref Bref
term vanishes, and the 4 (Aa,\%/rar - Aa\l?g/rar ) X =— term becomes — 4 Aa\l?g/rar X = , twice
o o T o T

m m

. Bref o .
the magnitude of the 2 AQ\',B(,;'rar X =—— oscillatory term operating prior to m= 0. What this
T

m

Bref

. o . I
represents is the combination of two sustaining 2 Ag\?g/rar X =

oscillations, the one triggered
m

at m=-9, and a second triggered at m= 0.

METHOD 1 VELOCITY

The [2, Appendix G] derived velocity result in (G-6) for Method 1 velocity under test
example conditions is renumbered and shown next.
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Form<-9:

Eo _yEo
—varm —ref,
Form=-8,-6,—4,-2,0:
E E E Bvar |Bref 1 E Bvar Eo
0 ~yEo 0 - _ 0
\ivarm"\lrefo +2CBvarm_1 Al % Tm 6( Bvarm_lAQvar )XganTm
—_7 _5§5_73_1- Eo _\/Eo0
Form=-7,-5,-3,-1: \lvarm \lrefo (47)
Form=1,3,5,---:

Bref
Eo _\/Eo _ Eo Bvar _ \Bvar |_
\lvarm'“\lrefo 2C m-1 l:(AQvar AL \r )X Tm :l

1 Eo Bvar \Bvar Eo
+E[CBvar m-1 (Agvar AL\ )} ><gavg Tm
Form=2,4,6,---:

Bref
Eo _\/Eo Eo Bvar I_ _ l Eo Bvar Eo
\lvarm"\lrefo +2 CBvarm_1 [Agvar X Tm ] 6(CBvar m-1 AQ{var )Xgavg Tm

Comparing Method 1 velocity \l\llza?rm in (47) with the equivalent theoretical result in (45), we

see that the (46) Method 1 specific force oscillations create equivalent unrealistic cyclic velocity
effects, triggered by transitions in angular rate at m= -9 and m= 0.

For -9 <m< 0, Method 1 velocity \l\llza?rm in (47) oscillates from mcycle to cycle from

Bref
Eo Eo Eo Bvar |_ .
v, e, at even mcycles to V A +2Cgyar ol {Ag x—} at odd mcycles, averaging (to

Tm
Bref
first order accuracy) the theoretical continuousV Eo 4 C Eo AorBY I-— solution in
y —ref, Bvar m—1| —=var Tm

(45). In addition, at only even mcycles, the (47) result contains a

1 ) . . . .
_E(C E\(;ar el Aga;’rar ) x9g o m term not present in the theoretical (45) solution. (This term is

required to generate a position solution that meets the (37) position constraint).
For m> 0, (47) shows a Method 1 velocity profile that oscillates from

Bref
I
\lEOO -2 CEO . l:(AQ\?a\\/rar _AQ.\I?(;/rar ) X_T—] at odd mcycles to
m
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Bref
Eo Eo Bvar | : :
V. e, +2Cgyar " [Agvar X . at even mcycles, plus gravity terms not present in

: . 1 Eo Bvar \Bvar Eo
theoretical (45): +E[CBvar ol (AQ‘var -Aa'\ o )} X9=" Ty at odd mcycles and

l(~E B
L 0 var Eo
6( Bvar m_; A%var )>< 9="Tn at even mcycles.

As for the previous specific force discussion, it is informative to analyze (47) velocity when

Bvar _ Bvar Bvar _ Bvar _ Bvar Bvar _ 1Bvar
A = A and when Ao’ = 0. For Ag'my = Ay , the (Aafy — A S

terms vanish (for m> 0) producing an unrealistic velocity that oscillates from VFS? atodd m
—T€
| Bref

Eo Eo Bvar | _l Eo Bvar Eo
cycles to \lrefo +2Cgyar - [Agvar X—Tm j p (CBvar ol Aoy )Xgavg Tmatevenm

cycles, i.e., an extension of the Method 1 result in (47) for -9 <m<0. When A Q.\I?z;/rar =0, the

(47) Method 1 solution for m> 0 matches the theoretical (45) \iFe(f)o result, plus a sustained

| Bref

Eo Bvar | 1 Eg Bvar | yEo o .
2 Chvar i {Agvar X - J 6( BVAr | Ao |X gavg T m oscillation, clearly an unrealistic

result.
METHOD 1 POSITION

Method 1 is designed to satisfy position constraint (6) with (7). For the test example, (37)
replaces (7), hence, Method 1 position for the test example becomes:

_0- Eo _ Eo Eo Bref
Form<-9: R e m\lrefO Tm+char_9I_ us)
Eo — Eo |Bref

-9 Eo
Form>-9: m\irefo TmtC

—varm Bvarm -

For the Method 1 approach, (48) is implicitly incorporated in (46) — (47) at each mcycle, as can
be confirmed by substituting (46) — (47) in (4) with (6) and (15. Thus, (48) for B\I,anr mexactly
matches the (45) theoretical result.

METHOD 1 PERFORMANCE SUMMARY

The sustained additional lever arm oscillatory components present in (46) and (47) illustrate
the fundamental problem using Method 1 for a variation trajectory generator: creating unrealistic
sustained oscillations in specific force and velocity. It is informative to also note for the test

Bvar \Bvar

example, that if the @ to w change in angular rate occurred one mcycle earlier (or
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later), the (46) — (47) solution following that change would be of the same form as following the

\I/BE;/rar replaced by Ag'\?a\‘/rar . Thus, for the Method 1 approach in

general, each transition in angular rate for the variation trajectory will trigger another sustained
oscillation that may add to or subtract from those generated previously, depending on the mcycle
phasing, the vector direction of each integrated angular rate increment component, and the value

Bvar :
of attitude.
C EOm-1

m= -9 change, but with A«

The Method 2 solution discussed next eliminates the Method 1 oscillation effect for lever
arm terms, but not completely for gravity, an unavoidable consequence of structuring the
variation trajectory from a sequence of constant integrated angular-rate/specific-force m cycles.

METHOD 2 PERFORMANCE UNDER THE TEST EXAMPLE

The following subsections present and discuss Method 2 performance results derived in [2,

Bvar Wlth

Appendix H] under test example conditions using (31) for specific force increment Az_)varm ,

substitution in (3) - (4) for V - . Riar mVeloc1ty/pos1t10n response.

METHOD 2 SPECIFIC FORCE

The [2, Appendix H] derived (H-45) result for Method 2 specific force under test example
conditions is renumbered and shown next.
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Forn<—-4:

Bvar _ _ ~Bvar gEo Bvar _ _ ~Bvar gEo
—varan-1 c E0_9 gavg Tm AQvar 2n C Eo_g gavg Tm

Forn=-4:
Bref
AUBvar :lAanarxl ' . |_1(Aanarx) CBvar gEo T _lAO(Bvar>< CBvar gEO
Tvar—g p VA T g\ Eo_g=avg "M 37=var Eo_g ~avg
|Bref

Bvar _ l Bvar L | l Bvar Bvar Eo l Bvar Bvar qEo0
Ayvar -8 - 2 AC—KVF:U’ X Tm {l 4 (Agvar X):|CE0_9 gavg Tm+ 3 AQ(var X CE0_9 gavg

For—-4<n<0:

Bref
Bvar  _ Bvar Bvar | |- 1 Bvar Bvar Eo
AQvarzn—l = Al X[Agvaf X Tm ] {l E(Agvar X)}CEOZ,}_Z gavg Tm

™)
™)

1
~LnaBx(cB  gft 1) (49)

E0zp-— —aV9

Bref
Bvar _ Bvar Bvar |_ 1 Bvar Bvar Eo
AV o = Al x[AQvar X = J—{I _E(Agvar x)}CEOZn_lgangm

1 Bvar B E
+gAgvar X(C var g 0 Tm

E02n-1 —2V9
Forn=0:
A Bvar __1 \Bvar _ Bvar |_Bref _ _1 Bvar Bvar gEo
Yvar 1 = Z(AQ‘ var ~A%yar )XT—m {I E(Agvar x)}CEO_2 gangm

1 Bvar Bvar oE0
_EAQvar X CE0_2 ga\/g Tm

A Bvar _ 3 A \Bvar A Bvar Xl_Bref | IA Bvar ., Bvar qEo
Qvaro_Z( &var —Ayyr ) Tm - _5( Pvar ) CEo_lganTm

1 Bvar Bvar ~Eo
+EAC_YV&U' x C:EO_1 gavg Tm

(Continued)
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(49) Concluded

Forn=1:
ApBvar zi(Aa.Bvar _AOlear)Xl_Br‘3f | _l(Aavaar ><) c Bvar gEO T
1 \Bvar Bvar gEo
_EAQ var X CEO() ganTm
ApBV __l(AOlvaar_Aalear)x|_Bref | _l(Aa.Bvar ><) ¢ Bvar gEo T
Svary T g\" = var Lvar T 7\ "= var Eo, —avg ' M
1 \Bvar Bvar gEo
+EAQVHT X CEOl ganTm
Forn>1:
Bref
ApBYar A gBYar Aa'Bvarxl' _ |_1(Aa.Bvarx) cBvar gEo T
=varan-1 = var = var T m 2 = var E02n—2 =avg m
1 Bvar Bvar Eo
6Agvar X CEOZn_zga\’ng
Bref
AUBvar :Aa,BvarX Aa.Bvaer ' _ |_1(Aa,BvarX) CBvar gEo T
=varon = var = var Tm 2 = var E02n—1 =avg m

1 \Bvar Bvar Eo
+EAQ var x CEOzn—l gavg Tm

Method 2 Specific Force Response To Lever Arm Effects

From (49) (while recognizing that m= 2n), we see that for n<—-4, -4<n<0,and n>1

Bvar
varm
arm effect exactly matches the (45) theoretical solution. This contrasts with the Method 1 result
in (46) that generates unrealistic oscillatory terms during the —4<n<0, and n>1 rotation time

periods. Coupled with the (49) response, Method 2 creates a lever arm effect that transitions

Bvar Bvar

specific force during @~ rotation rate change: from zero to @

the Method 2 generated integrated specific force increment Av response to the I_BrEf lever

at m=-9 and from

QBvar \Bvar

to at m=0. For the m=— 9 change, the transient spans mcycles —9 and -8,
for the m=0 change, the transient spans mcycles —1 to 2. The transient accommodates the
finite width/amplitude of the (49) specific force increments compared to the instantaneous
impulsive increments required in the theoretical (45) solution for instantaneous angular rate
transition. Transients are also present in the (46) Method 1 response during angular rate change,

but these are also the source of sustained oscillations.
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Method 2 Specific Force Response To Gravity

The theoretical solution in (45) contains a gravity component CB\(/)ar gEo avg Tm during
m-1/2 =

rotation to balance gravity. Eqgs. (49) show for Method 2 (as for Method 1) that such a component
is also present during rotation periods as represented by the equivalent

1 Bvar Bvar _ 1 yBvar Bvar
[I —E(Aavar )}(chm 950 Tm| for -4<n<0and || —E(Ag ) CRA 9nTm

for n>1. As with Method 1, during rotation, Method 2 also contains oscillatory terms;

%AQ\I/BQ/rar (CBvar gg\?g-l-m) during —4 <n<0 and éAavaar (CBvar gEVOng) during n>1.

These are the unavoidable consequences of requiring the specific force increments for the variation
trajectory generator to be based on constant acceleration over each mcycle (versus the theoretical
(45) solution that allows continuous specific force in time). Unlike Method 1, Method 2 specific
force in (49) contains a gravity effect transient spanning mcycles —9 to — 8 when angular rate

changes from zero to QBvar

METHOD 2 VELOCITY

Bvar Bvar

m-1" AQvar m
Appendix H] derives the corresponding velocity history by substitution in (3). The resulting
Method 2 velocity under test example conditions is then provided to first order accuracy by (H-
53) of [2, Appendix H] as renumbered and shown next.

Having found AV, . in (49), the Velocity Determination section of [2,
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Forn<—-4:

Eo _vEo Eo _y/Eo
=varon-1 _\lrefo \—/var on —Tef,
Forn=-4:

Bref
Eo _vEo , 1 ~Eo Bvar _ | 1 Eo Bvar | yEo
\ivar_g_\ifefo+2CBvar—9£AQVar - ij 12( Bver —o A Zvar )Xgangm

Bref
Eo _\Eo Eo Bvar _ |
\lvar_g_\irefo +CBvar_9(AQvar X T

For—-4<n<0:

Bref
\i\llza?r 2n-1 Z\lfe(f)o +Chyar 2n-2 LAQ‘%& % I_T—mJ - é(CESar 2n-2 Ay ) XQE\?@ Tm
VEo =VE0 +CE0 [AanarXE]
—varpn —Trefy Bvarop—1| —=var Tm
Forn=0:
E E B | Bref 1 B B | Bref
VEL VG, o 30 x|+l (a2 sl
m m
_%( E\()ar ) AQ\?GYVar ) X 95\99 Tm (50)
Eo _yEo , ~Eo Bvar 129 ) 1 g \Bvar Bvar| 17
\lvaro_\lrefo +CBvar0[AQvar X T J"'Ecsvar_ll:(AQ var — Ay )X T }
m m
Forn=1:
E E B | Bref 1 B B | Bref
Viar, =Yrel, + CESWO(AQ'VJF X J+ ;CESar{(AQ'vaVF’“ ~dargg )<= }
m m
_%( E\garo AQ,\E/SE;/rar ) ng\?g Tm
e E B | Bref
\lva?rz :\lre(f)o + Cg\earl [Ag'vgrar X _T J
m
Forn>1:
E E E Bvar 179 ) 1/ g Bvar\, oE
Yiaron i :\lfe(f)o " CB\eaan—z(Agvvaf % Tm }_E(CB\earzn-z AL var )Xgavog Tm

Bref
Eo _\/Eo Eo \Bvar I_
\ivarzn_\lrefo +(:Bvarzn—l(AQ’ var X T
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Comparing the (50) velocity results at “even” mcycles (i.e., m=2n) with (H-21) of [2,
Appendix H] (at each n cycle) shows identical results within the first order derivation
approximation accuracy. This confirms the first order accuracy of (31) for Method 2 in
generating a specific force profile that meets the specified velocity constraints in (10) at each
even M cycle, subject to the (37) — (38) test example conditions. Note, however, that the (50)
result at even cycle m=0 differs from the theoretical (45), while agreeing with (H-21) velocity
at this time point. The reason is that (45) is based on the theoretical exact velocity versus the (H-
21) result based on the (10) velocity approximation. Since (H-21) derives from specific force in
(31) subject to the (10) velocity approximation, we should have expected (H-21) to be
compatible with (10) velocity, not the theoretical (45) value.

Since the Method 2 approach only controls to meet velocity constraint (10) at even mcycles,
we should expect a variation from the (H-21) example test result at odd mcycles (i.e., for
m=2n-1). This is manifested for lever arm effects in (50) as a transient during angular rate
change periods, and as a gravity term addition throughout the profile. Both are generated by the
Method 2 specific force variations in (46) compared to the theoretical (45) specific force
solution.

: . : | °F
A lever arm transient effect manifests in (50) for m=-9 as — CBvar o (Aa&;/rar X '—J ,
a T

| P& = Ag OV

Xar value at

X=

the tangential velocity change from zero to the steady @x|
m
m= -8 (the theoretical (45) velocity solution). Similarly, a (Ag'vg’rar —Agv(,;’rar ) xX=—— lever
Tm

arm transient appears in (50) from m=-1 to m=1 reflecting the theoretical (45) change in

Bref

| Bref

tangential velocity at m= 0 from wx| | Bref _ Aa.Bvar

to &% var

. At odd mcycles, the
m

gravity term variation in (50) from the theoretical (45) solution is represented by

Bvar)XgEo Tm at M=-9, and by 6(

Bvar Eo
(CBvar Lo A%y A )xg Tm thereafter.

C Bvar on—2 —=var

Notably absent in the (50) Method 2 velocity solution is the sustained lever arm effect
oscillation following m=1 generated by the (47) Method 1, triggered by angular rate changes at
M=-9 and m=0, both retained following their entry.

METHOD 2 POSITION

Bvar Bvar Eo Eo o
Having found AV, o Avvar in (49) and Vvarg Vvarz in (50), the Position

Determination section of [2, Appendix H] derives the corresponding position history by
substitution into (4) with (3). The resulting Method 2 position under test example conditions is
provided to first order accuracy by (H-54) of [2, Appendix H], as renumbered and shown next.
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Forn<—4:

Eo _ _ Eo Bref Eo _ Eo Bref
—arzn_l_(zn l)yr Tm+CBvar 9| Bvarzn_zn\ir Tm+CBvar 9I
Forn=-4:
Eo _ Eo l Bvar Bref 1 Bvar Eo
RS = —9V{d Tm+ Chly 9{I+4(Agvar x)}l_ 24(char L AaB)x gl 12,
Eo _ov Eo Bref
Rar = IV, Tm+CBvar 8I
For—-4<n<0:
Eo _ _ Eo Bref Eo _ Eo Bref
—ar2n_1_(2n 1)\ir Tm+CBvar2n1|— Bvarzn_zn\lr Tm+CBvar2|
Forn=0: (51)
Eo Eo _ l \Bvar Bvar Bref
B\/ar_1 V Tm+CBvar 1{' 8[(Agvar A Cvar )XJ}I_
Bref
CBvaroI
Fornzl.
Eo _ l \Bvar _ Bvar Bref
ar1 =V -I-f’ﬂ_'_CBvarl{I 8[(Agvar Algr )X}}I_
Eo _ Eo Bref
=var ) 2V Tm-l_CBvarzl
Forn>1:
Eo _ _ Eo Bref Eo Eo Bref
—ar2n_1_(2n 1)\ir Tm+CBvar2n 1|— —varn —2nV Tm+CBvar2 !

From (51) we see that for the test example, Method 2 position generated by integrated
specific force increments in (49) and resulting velocity profile in (50), creates a variation
trajectory position history that satisfies test example position constraint (37) at all even mcycles.
This confirms the first order accuracy of (31) for Method 2 in generating a specific force profile
that meets the specified (10) position constraint at each even m cycle, subject to the (37) — (38)
example problem conditions. Interestingly (and unexpectedly), note that under conditions of
constant angular rate (i.e., intervals n<—-4, -4<n<0, and n>1), Method 2 position in (51)

also matches constraint (37) at odd mcycles (i.e., for n=2m-1).

Method 2 position in (51) only deviates from the theoretical (45) value (and the (37)
constraint) at odd mcycles around m=-9 and m= 0 during angular rate changes from one
constant value to another. Thus, the position response penalty using the Method 2 approach is to
generate a transient at odd m cycles during angular rate change periods, versus Method 1 position
in (48) that exactly satisfies (37) at all mcycles due to the (6) — (7) fundamental Method 1
position design constraint.
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METHOD 2 RESULTS SUMMARY

The principal advantage of the Method 2 approach is elimination of sustained lever arm and
gravity effect specific-force/velocity oscillations present with Method 1: oscillations triggered by
angular rate changes that continue throughout the remaining trajectory, the magnitude being
substantial, at twice the amplitude of the actual tangential velocity during rotation.

Lever arm transient effects are also present with Method 2, but due to velocity constraint
(10), they do not propagate into constant angular rate regions. For most variation trajectory
simulations, the number of consecutive constant angular-rate/specific-force intervals is typically
on the order of 40, varying in duration from 2 to 3,600 seconds each. For a typical mcycle time
interval of 0.05 seconds (i.e., 20 Hz), the total time for angular-rate/specific-force transitioning is
much less than for sustained angular-rate/specific-force, hence, the transition effect transient for
Method 2 is of relatively short time duration.

Method 2, still contains mcycle gravity effect specific-force/velocity oscillations, the
unavoidable consequence of structuring the variation trajectory generator as a sequence of
constant angular-rate/specific-force mcycles. The magnitude, however, is fairly small, being on

the order of %Agggrar xgEO Tm or %AQ'Egrar XQEO Tm- For 1 rad/sec angular rate and a 0.05

second mcycle time interval T, (typical), the Agsgrar or AQ,\I%ar magnitude would be 0.05 rad.

Then the magnitude of the velocity oscillation would be on the order of (0.05 x 32.2 X 0.05)/ 6 =
0.013 fps. For comparison, consider a lever arm magnitude of 50 ft. Under the hypothesized 1
rad/sec angular rate, the resulting tangential velocity would be 1 x 50 = 50 fps, considerably
larger than the 0.013 fps velocity oscillation generated by the gravity effect.

The next section shows how the residual Method 2 gravity effect oscillations in the variation
trajectory can be mitigated when applied to Kalman aided INS simulation.

MITIGATING METHOD 2 GRAVITY EFFECT OSCILLATIONS

Residual gravity oscillation effects generated with Method 2 can impact variation trajectory
applications in aided INS simulation analyses. When simulating an INS aiding process, the
reference trajectory would be used to simulate a “master” INS providing reference data to a
Kalman aiding filter. There it would be compared with equivalent navigational data from a
simulated INS being aided to form the Kalman filter “measurement” input, Kalman filter outputs
then used to update the aided INS.

The variation trajectory angular-rate/specific-force outputs would be used to simulate
strapdown gyro/accelerometer inputs to the aided INS; processing the simulated
gyro/accelerometer outputs provides the aided INS navigational outputs for Kalman filter
measurement. Gravity oscillations on the aided INS navigation data impacts the Kalman filter
measurement, hence, Kalman aided INS performance. A simple mitigation of Method 2 gravity
oscillation impact on Kalman filter performance is to add the same gravity oscillation to the
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master INS navigation dat. Then when the revised master and aided INS solutions are compared
in the Kalman filter measurement, the gravity oscillations will cancel.

Gravity oscillations are easily added to the master INS output by creating a new reference
trajectory from the original, the new version obtained using the same Method 2 approach as for
the variation trajectory. The difference would be that the new reference version would use (31)
for specific-force based on zero for the (6) and (8) attitude/position offset constraint, i.e., setting

Bref, . .
CBVarmm to identity for all mcycles, and §E]0 to zero for alternate mcycles. The new reference

would also impose velocity constraint (10) to go with position constraint (6) at alternate m
cycles. Method 2 generated specific force would then be calculated with (31) and applied to the
(3) — (4) updating routines to obtain the new reference trajectory. The result will contain the
same gravity effect oscillations as the variation trajectory.

Note that the same mitigation technique would implicitly be created in a previous section -
Generating Variation And Reference Trajectory Outputs. There, generating reference navigation
data using the same integration routines as the variation trajectory, (31) was used to create
reference trajectory specific-force (and angular-rate) for integration. The result creates the same
gravity effect oscillations present in the variation trajectory, thus (as described previously)
cancelling both in the simulated Kalman aided INS measurement.

CONCLUSIONS

Variation trajectories generated using the new Method 2 eliminate sustained lever arm and
gravity effect specific-force/velocity oscillations present with the original Method 1 approach.
Lever arm transient effects are still present with Method 2, however, due to the added velocity
constraint. But they only appear during angular rate changes, and do not propagate as sustained
oscillations into the constant angular-rate/specific-force regions. For most variation trajectories
the total time for angular-rate transitioning is much less than for constant angular-rate/specific-
force, hence, Method 2 lever-arm transients are of relatively short time duration.

Method 2, still contains gravity effect oscillations (as did Method 1), the unavoidable
consequence of structuring the variation trajectory as a sequence of constant angular-
rate/specific-force update cycles. However, the magnitude is small, and can be effectively
mitigated in Kalman aided INS simulation applications. The method is to add the same gravity
oscillation to the reference trajectory data. Then when data from the reference and variation
trajectories are differenced in the simulated Kalman filter measurement, the gravity oscillations
cancel, negating their impact on aided INS performance.

APPENDIX A
INTEGRATED GRAVITY INCREMENTS

Egs. (3) and (4) contain integrated and doubly integrated gravity increments based on a
model that linearly varies in time over an mcycle:
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950 = A+B(t—tm1) (A-1)

where A and B are constants that can be defined in terms of g . g , the gEO values
= ar m-1 var =var

at the m—1 and mcycle time instants. From (A-1):

E E

98 =A 9% =A+B(tm-tm1)=A+BTn (A2)
from which

— qEo _{qEo _ nEo ]

A= 0 arma B_(gvalrm gvarm—l)/Tm (A-3)

Gravity terms in (3) and (4) (AV\'/Ea(}g , R\I/anrg ) are the integral and double integral of (A-1)

over an mcycle:

AVEog jt Eodt— At- tm_1)+B;(—tm_1)2

. . (A-4)

Eo E _ 2 3

AR g jt AVvaOr dt = E(t—tm_l) +§g(t—tm_1)

Substituting (A-3) in (A-4) shows that

Eo _ l 2 _qEo Eo _ gEo )l
Ve =ATmB-Th=050  Tme(950 0% )-Tm

_1{4E0 Eo
_E(gvarm Sarm )Tm (A-5)

which are the forms appearing in (3) and (4).
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APPENDIX B

CALCULATING g\I/Ee;)r DIRECTLY FROM RE®
- m

—val'm

This appendix shows how variation trajectory gravity g\'f;r can be computed from —anr .
- m
(6) based on the analytical development in [1, Fig. 5.2-1 & Sect. 5.4]. For the derivation, the
following definitions will apply:

n

R = Position vector from earth’s center to navigation point.
U, = Unit vector along R.
u

Uepa = Unit vector along earth polar axis.

Ugg = Unit vector in earth’s equatorial plane lying in the plane defined by U, and Uepa -
Us = Unit vector perpendicular to U, lying in the plane defined by U, and Uepa -

¢ = Angle from U, to U .

epa
g = Earth’s mass attraction gravity vector.

g, =component of g along Uy .

Oy = Component of g along Ug -

From the previous definitions we first write

U =RAR.R COS¢:Hepa'9r
g: gr gr + g¢g¢

9¢=cos¢geq—sin¢gepa (B-1)
The absolute value parameter in (B-1) can be further defined from
4= (gepa U )E'epa - \/ [Qr B (Hepa U )eraJ ' [E'r B (era ' gr)gepaJ
(B-2)
2 2 2 .
= \/1_2 (Hepa'gr) +(9epa'9r) = \/1_(Hepa'9r) = VI_C082¢ =sing
so that Ueq in (B-1) simplifies to
geq = |:gr - (gepa Uy )gepa:| /sing (B-3)
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Hence, the u é expression in (B-1) is equivalently

Us = cos¢geq—sin¢gepa: cos¢ (Qr ~Ugpa cos¢) /sing —sin @ Uepa

_ COS¢ U (cosz¢

(B-4)
sing — sing +s1n¢j Hepa

With (B-3) and (B-4), the g expression in (B-1) becomes

2
9=0, U +0,U;= 0, Uy +g¢{ Os¢u —(C(,)S ¢+Sin¢j9epa}

sing ~ sin ¢

2
(g +g¢sms¢¢:j u, g¢£(:s?z;+s1n¢} epa (B-5)

r sin @ —epar=r =T sin @ —epa

Eq. (B-5) is now in a form that can be used to determine g B0 for the article equations
m
based on the classical oblate earth model in [1, Eq. (5.4-1)] and the previous definitions
translated into the basic nomenclature utilized in this article:

— pEO Eo Eo _ pEo
Rvar m =\ Bvar m* Bvar m ngarm_—arm/RVarm

grmzfr[R\,arm,(cosq))m} [g¢’ :f¢[Rvarm,(cos¢)m] (B-6)

sin ¢ m
Eo _ g¢ Eo ,,Eo Eo _ & Eo
gvarm_[gfm+[31n¢] uepa ngal'm ER\/al’m (Sln¢] era

where the functionals f, [Rvar s (cos ¢)m] and f, [Rvar s (cos ¢)m] represent the g an
(g ¢/ sin ¢) expressions in [1, Eq. (5.4-1)].
m
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APPENDIX C

CALCULATING g\I/Ea?r ASA FIRST ORDER EXPANSION AROUND gi‘f)
Zvarm Zref,

For applications where reference gravity is provided (or computed) at the mcycle rate in E

Eo

coordinates (i.e., 9, o

), variation trajectory gravity g\I/EaOr can be calculated using a first order
- m

expansion in position displacement & RE0  of variation position Ban?r . from reference position

—ref,

BrEe(f) . The expansion is based on a classical Newtonian earth gravity model, treating the earth
m

as a uniform density spherical mass so that reference gravity at BFG? approximates as
m

Eo . M Eo
oy ~-—HREY -
RE0
—réefy, ‘

where 4 is the universal gravitational constant multiplied by the mass of the earth. Expanding

Eo Eo Eo
9, o around R e then finds for 9

m
E E E E -—£ 9
0 —qgEo 0 - gEo 3 —ref -
gvarm Zref, + égrefm Zref, +0 Eo m (C-2)
—refm
with to first order accuracy:
A RE SRY IR
5980 =4 | g, P "m |=—u m 43y migEo  (C-3)
Zref, REO 3 4 =ref,
—refy REO REO
—refn —refy
Now for some analytical manipulation. First note that
2
—ref, " =ref 3 —ref, " —ref, 3|—refm
REO ‘ REO ‘
—refy —refm
Thus,
Eo Eo Eo Eo
R . R .
on Bty e, g Srely Jret, ©5)
3 4
Eo Eo Eo Eo
Brefm ‘ Brerfm Bre1‘m ‘ Brefm
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Substituting (C-5) in (C-3) obtains

Eo _ H Eo H Eo Eo
5_rerm - 3 5Brefm +3 4 g Brefm —ref,
Eo RE()
Brefm ‘ —réefy,
REO . gEO REO gE() (C-6)
_ —refm —refm 5 Eo _3—refm —refm Eo REO
Bl 2 T—ref, 3 Zref, [ Sref,
REO RE0
—refy —refy
2
The & ‘BFe?m term in (C-6) derives from ‘BFe(f)m‘ :BFe(f)m 'BFe(f)m from which
Eo 2 Eo Eo Eo Eo
oRY | -o(REy .oRTY |-2RT .oRE) ©)
2
But directly from the differential of BFe(f) ‘
m
Eo 2 Eo Eo
§Brdm‘ =2 Brerfm o Brefm (C-8)
Equating (C-7) - (C-8) and solving for o ‘Bfe? thereby obtains
m
Eo |- pEO Eo Eo
5Brefm _Brefm : é‘Brefm / Brefm (C-9)

Substituting (C-9) in (C-6) then gives
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REO g Eo RE0 g Eo

Eo _ —'¢m "“réfy SREO _3"¥m e ol pEo | REO
=ref, 2 —ref, 3 —ref, [—refy,
RE0 RE0
—réfy —réefy,
Eo Eo Eo Eo REo Eo
Rei, Oret, g Dreiy, e, Bret -ORwet o
= - R (C-10)
2 —ref, E —ref,
REO REO Bre?
—refm —refm m
Eo Eo Eo
R R
—ref 1 —ref —ref
- gfy L lapE) 3 gpEy
—ref, —ref, —ref, —ref,
: Eo Eo _pEo Eo : : )
Lastly, we define a unit vector along R; o as Up o = R o IR o with which (C-10)
substituted in (C-2) becomes
Eo _ 4Eo Eo
gvarm - =ref, + 5grefm
Eo  gEo (C-11)

u .
_ nEo —Rrefy, " =ref, Eo _1,Fo0 Eo Eo
= T o7 (9Re “3Ureg IR Uprer

Based on small §r'%0 relative to BFe? in position constraint (6), the éBFe(]Z perturbation from
m m

BrEe(f) is equated to §E10 with which (C-11) then assumes the final form:

UR%s - Ore

Eo _gE0 o _Nfm —rm (<gq_=,,Eo0 Eo (,E0 )

O™ Ty gy - SF 3R, SHUR, ) (C12
—ref,

APPENDIX D

SMOOTHING SPECIFIED ANGULAR DISPLACEMENT OFFSETS

Bref

Specifying an angular rate profile characterized by its integrated attitude offset Cg . , can

be accomplished using constant angular rates over specified time intervals, each lasting for

several mcycle T, intervals. For example, for C E\r,:fr o representing the angular orientation of a
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Bref
Bvarm

represented by zero over one time segment, one constant over the next time segment, another
constant over the next time interval, and so on. This, however, produces unrealistic step changes
in angular rate at the constant rate interval time junctions. This appendix shows how the

specified angular rate segments can be smoothed into a more realistic angular rate profile that
Bref

scanning platform mounted in an aircraft, the angular rate generating C might be

retains the specified integrated Cg offset characteristics (when dynamics dissipate) and the

traditional orthogonahty/normahty characteristics of a direction cosine matrix.

The development begins by first defining

_ smAﬂBvar Bvar 1- cosA,BBVar Bvar \2
GCvarzrefm= + ABver ( —varmx)+ ( —Vafmx)
Barm (a2 ) (D-1)
Bref Bref

Chvarm ™ Chvarm-i GCvarZref

Bref

Bvar . : . .
A
where évar o 1sa rotation vector representing the change in Cg -, .

over an mcycle

Bvar

(analogous to Ay ¢ 1n (2) for the change in CBvar ), and Gevar2ref, is the direction cosine

matrix equivalent to A é (analogous to Gevarm in (2) for CE updatmg) If Cgfgr

specified directly, the equivalent A ,3 change each mcycle can be computed from the

inverse of (D-1):

Gevar2ref,, (D-2)

Bref Bref
(CBvar m—l) CBvarm

with A IB\IIS;/rar then obtained exactly from Ggyar oref, using the direction cosine to rotation
—varm

Bref
C Bvar m
specified implicitly by a sequence of constant angular rate segments, or more generally, by a

Bvar il be obtained. The
arm

vector extraction approach described in [1, Sect. 3.2.2.2]. The matrix in (D-2) can be

sequence of fixed A ,35; values. For either approach, A ﬂ
—varm

Bref s performed on the Af BVAI" | alues as described next.

smoothing operation for Chvar var
- m

We define Af E;’:}r as the smoothed (filtered) value of A ,Bz/rar and specify that it satisfy
—varm

an exactness constraint that under “steady state” conditions (i.e., during a sequence of fixed

Ap Buar values when filter transients have decayed to zero), A Buar will equal AS Buar .
—varm —FIt/var —varm
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Ref. [1, Eq. (17.2.1-4)] translates the exactness constraint into the following requirements for the
coefficients of a general linear digital filter

aptajtayt--+bt+hy+--=1 (D-3)

where g;, bj are constant coefficients in the linear filter:

Bvar Bvar Bvar Bvar
A =an A A A e
éFIt/var m ao évar m ta évar m-1 tap évar m=2 + (D-4)
Bvar Bvar
A A
O AL e T2 ABE

Ref. [1, Eq. (17.2.1-11)] shows that when (D-3) is satisfied, the sum of the AﬂBvar s will

—Flt/varm
equal the sum of the A ,B\i;’rar s within a bounded difference Ym where
Zvarm 4
y = n A’BBvar B %A’BBvar B g(AﬂBvar _A’BBvar) (D-5)
Im™ D) “Fltvarm 2 —varm - o\ =Fltvari  “var
Bvar . . . Bvar
Under that sequence of constant A3 s, the ¥__ difference will be proportional to Af3 :
—varm -m —va'm
la I'b
Siaj+ > ibj
_ =l i=l Bvar )
}_/m - la ) Aévar m (D 6)
2 1a
i=0

where ra, rb are the highest numerical subscript for the filter past value coefficients. Eq. (D-6)
can also be expressed in the equivalent form:

la b
. >iaj+ > ibj
Bvar = i=
Zm:_T_mAévarmTFlt - TFItE%Tm (D-7)
2 1a
i=0

where 7 ¢ 1s the filter dynamic response-time defined as the time required under a constant

AB Buar sequence for the Bvar frame to rotate through ¥, . We also define 7 as being
Evarm 4

positive for a “lag” condition when ¥ is negative (i.e., when the sum of the AB E;’ta;:/ar s is
- - m
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Bvar

less than the sum of the A ﬂ s) and as negative under a dynamic “lead” condition (when the

Bvar
B

Bvar )
—Flt/varm ’

sum of the A s is more than the sum of the A ﬁ

An example of a simple filter that might be used for the smoothing function is the so-called
‘walking window” filter which has zero for the bj coefficients and equal values for the a;
coefficients. Ref. [1, Eq. (17.2.1-26)] shows that 7 in (D-7) then simplifies to

ra
TFIt =7Tm (D-8)

If it is desirable to eliminate the (D-8) lag effect in the variation trajectory simulator, a simple

expedient would be to time shift the A ,B data input to (D-4) by the 7g); value in (D-8).

It remains to show, based on the previous discussion, how a filtered direction cosine matrix

Bref Bref
Cavar Ifilt, can be generated as a replacement for Cg

in constraint (7). The method
Bref Bref

recommended in [1, Sect. 17.2.1] is to define CBvar/fiIt as CBvar

rotated through the
difference between the integrated filtered and unfiltered Bvar angular rates (i.e., by 7, the

difference between the cumulative A ﬂ s and A ,Bi;’rar s). This is achieved through the
- m

—Flt /
exact Ggy,, direction cosine equivalent representation of ¥ .

sin y, I—cosy, 2
Gey, =+ m( me) +—m(Zm><) (D-9)
m v
with which
Bref _ -~ Bref
Covar ffilt,, ~ CBvarm GCrm (D-10)

The Ym rotation vector in (D-9) would be calculated with A ,B BVar nd AB E?/ta;r from (D-2)
'm

using the equivalent recursive difference form of (D-5):

Bvar Bvar
‘m _m—1+A£FIt/varm_Aévarm (D-11)
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Since Y would be bounded by virtue of the (D-3) exactness constraint, (D-10) guarantees that

Bvar

Bref Bref .
var py TRt 10 (D7)

. L 1
Cavar Ifilt, will be angularly close to Chvar ’ only deviating by EA b

Bref

Bvar m under zero angular rate (with no

during periods of steady A ,Bs;ar inputs, equaling C
- m

residual from previous higher order error buildup), and having the natural

normalization/orthogonalization characteristics of a proper direction cosine matrix. The result

will be a smoothed more realistic version of Cg\rgr . for use in constraint (7).

APPENDIX E

REFERENCE DATACONVERSION FOR VARIATION TRAJECTORY INPUT AND
COMPUTED VARIATION DATA CONVERSION FOR OUTPUT

The variation trajectory computation routines developed in this article are executed in
inertially non-rotating E( frame coordinates. Thus, reference trajectory inputs to the routines

must be provided in the E( frame or, if not directly available, computed using appropriate
conversion formulas. Similarly, once the variation trajectory routines are executed in E

coordinates, results must typically be converted into a more traditional format for output. This
appendix describes input/output conversion operations from and into a commonly used format:
where attitude is defined relative to locally level wander azimuth coordinates, velocity is defined
relative to the rotating earth in the locally level frame, and position is defined by altitude above
local earth’s and the angular orientation of the local level frame relative to earth fixed reference
coordinates.

CALCULATING Cgr(')ef , BFe(f) FOR INPUT TO THE VARIATION TRAJECTORY
m m

ANGULAR RATE AND SPECIFIC FORCE FORMULAS

The angular-rate/specific-force solution for the variation trajectory provided in (8), (9), and

(31) with (6) and (10) require CEPef , BFe(f) reference trajectory inputs (relative to non-rotating
m m

inertial coordinates E() that may not be directly available from the reference trajectory data file.
This section shows how the required data can be generated by analytical conversion of reference

trajectory data provided for each mcycle in the form of B frame attitude C'E\lenef relative to a
m

locally level coordinate frame N — e.g., wander azimuth [1, Sect. 4.5], angular orientation of the

N frame Cﬁm relative to coordinate frame E fixed relative to the rotating earth, and altitude hy,

above the local earth surface.
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The C EPefm matrix is easily obtained using the direction cosine product chain rule:

CBreff C C CBref (E-1)

where, as before, E( is defined as the angular orientation of the E frame in non-rotating inertial

space at trajectory time zero, and C EO defines how at cycle time m, earth rate has rotated the E

frame since time zero. Recognizing that earth’s rotation rate vector QeE

is constant in the E
frame, during time interval mT m the earth rotation angle would be Q(E mTm, hence, asin[l,

Eq. (3.2.2.1-8)] we can write forCE?n in (E-1):

sin wemT m 1—cos wemTm

CE%:l + (QeEX)me+ (a)('aE ) (me) (E-2)

WeMT m (a)eme)2
The BrEe? position vector then derives directly from Cﬁm and hp, using [1, Egs. (5.1-9),
m

(5.1-10) & (5.2.1-1)]:

Em Em N Em
Uip"=ChNm Yup  Uupgp, = Ugpa - Ul

Ré = RO\/I + uupepa[(l—e)z _1} Rgm RS{ Em+[(1—e)2 _1} !eEpa} (E-3)

E E
Bre[fn _R8m+u " hm

Note: gFe? (for the Appendix C calculation of g\l/za?r ) might be available as a reference
Zref Zvarm
trajectory output, or can be calculated as in Appendix B using BFef from (E-3) and setting
m

BrEe(f) in Appendix B to BFef (valid due to gravity symmetry around earth’s polar rotation axis).
m m

GENERATING VARIATION TRAJECTORY OUTPUTS

The primary inputs to the variation trajectory generator are integrated angular-rate/specific-
force increments generated (with Method 2) from (8) and (31). As (8) and (31) are processed
from cycle-to-cycle, variation trajectory attitude/velocity/position would be generated using an
appropriate set of updating algorithms: (2), (3), and (4) if outputs are to be provided in non-
rotating inertial coordinates, or by an alternative for a different navigation data format, e.g.,
attitude relative to locally level wander azimuth coordinate frame N, velocity relative to the

rotating earth in the N frame, angular orientation of the N frame Cﬁrrn” relative to coordinate
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frame E fixed to the rotating earth, and altitude h,above the local earth surface. Included in the

variation trajectory output would be the comparable set of reference trajectory
attitude/velocity/position data and the integrated angular-rate/specific-force increments that
created it. It is important to recognize, however, that computation routines used to generate
variation trajectory outputs must be the same as those used in creating the reference trajectory.
This is the only way to assure that the difference between the reference and variation trajectories
will accurately reflect attitude/velocity/position constraints (6), (7), (8), and (10) (for Method 2).

If the reference trajectory used in creating (8) and (31) is of the previously described wander
azimuth type (using the previous section conversion routines to the E( frame), the variation

trajectory data would be generated using the identical routines (typically as a parallel operation
for reference trajectory generation when creating the (8) and (13) integrated angular-
rate/specific-force increments (e.g., [4, Egs. (3), (8) — (10), (12) & (18)] with, for reference
trajectory constant angular-rate/specific-force over each mcycle, coning, sculling, scrolling set to

zero and doubly integrated specific-force §vmin [4, Eq. (12) set to %Ayferfef Tm)- If variation
m

trajectory outputs are to be relative to non-rotating E, inertial coordinates, the (2) - (4)

algorithms would be used to generate the variation trajectory and a parallel set of reference
trajectory E frame outputs. If the reference trajectory data was generated from an unknown set

of algorithms, it must be recreated using the same computation routines as for the variation
trajectory. This would also generally include deriving a set of compatible integrated angular-
rate/specific-force increments for reference trajectory regeneration. Included in the previous
options is an initialization requirement. Each option is discussed next based on using the Method
2 approach.

INITIALIZATION WHEN OUTPUTTING DATA IN THE g, INERTIAL FRAME

The (2) — (4) routines would be used for reference and variation trajectory generation.
Attitude/velocity/position initialization would be as defined by reference trajectory input data,
either directly in the E(, frame or after conversion as described in the previous section. Egs. (8)

and (31) would be used for variation trajectory integrated angular-rate/specific-force. If not
provided directly, integrated angular-rate/specific-force increments for the reference trajectory
would be generated as in (8) and (31) by setting the (6), (8) and (10) variation constraints to zero

. Bref
Eo _ m _ Eo _y\/Eo
(i.e., SF=0, CBvarm_I ,VV m_Vrefm ).

INITTALIZATION WHEN OUTPUTTING DATA RELATIVE TO WANDER AZIMUTH
COORDINATES

An appropriate set of updating routines would be used for reference and variation trajectory
generation, e.g., [4, Egs. (3), (8) — (10), (12) & (18)]. Integrated angular-rate/specific-force
increments would be generated as described in the previous subsection. If reference data is
provided in wander azimuth coordinates, reference trajectory initialization would set
attitude/velocity/position to the input. If reference data is provided in the E( frame, appropriate
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conversion for initialization would be required for both the reference and variation trajectories as
described next.

Reference Trajectory Initialization From Data Provided in the E(Frame

Reference trajectory input position provided in RFe(f) format can be converted to the
—T€o

equivalent altitude and local level N frame angular orientation in two steps, 1) Finding initial

altitude hrefro and latitude |ref0 directly from BFe(f)O , and 2) Setting initial wander angle (an

arbitrary quantity not impacting navigation accuracy) to zero ( &ref, = 0), then finding initial

longitude Lref, by either of two methods (each described subsequently). The initial azimuth

wander CEI(r)ef matrix would then be initialized with &’ref, = 0 and the calculated | ref, » Lref, -
0

In Step 1 Initial altitude and latitude are calculated from the simultaneous solution of [1, Egs.
(4.4.23-7)1:

= 1+ 42 [1—e2—1} N [1—e4—1}
Rs Req\/ uUpepa/O( ) Rs=Rs uUpepa/O( )

2 (E-4)
_ R%q R%q 2 2 _ /(1 2
refy = _R_'s+ Rs T Rrety RS UUpgyg o = Rrefepy g [( ¢ Rs+ hre“o}
with
_ pEo E _ Eo Eo

where in the E( frame, u

Eo : . , . . . .
Ugpy 18 @ unit vector along earth’s polar axis, Rrefepa/o is the projection

of BrEe(f) on uEo | and UUPgao is the projection on earth’suEQ polar axis of a unit vector
0 u

Zepa> epa
upward in the initial locally level N frame, Req is earth’s equatorial radius (2.0925604 E7 ft, and

e is the ellipticity of earth’s ellipsoidal cross-section shape (1/298.257223563). Solving (E-4) for
hrefo and UUPgao requires an iterative process in the computational sequence shown beginning

with y set to zero. The result will converge in less than 5 cycles.
UPepa/o

It can be verified from [1, Fig. 5.2-1] that UUPea/o equals the sine of initial reference latitude

I'ref, > hence:

. _ _ _ 2 _
sin| ref, = UUPgpa/0 cos| ref, = 1 uUpepa/O (E-6)
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Egs. (E-6) are based on | ref, defined to vary between plus and minus 7/2, hence, the positive

polarity of the square root in (E-6) for cos| ref, -

For Step 2, finding initial longitude Lref, is most easily accomplished if reference trajectory

initial position location is restricted to non-polar regions, e.g., for Ry / Rref, < 0.99. Then

epa/0
longitude can be directly extracted from BFe(f)O using [1, Egs. (4.4.2.3-6) & (4.4.2.3-4]:

o ]
Lrefy =tan | Rrefeq/ 1 mra /0 / Rréfog/mrd /o0 (E-7)

where Rrefeq/ is the initial projection of R ref, on the intersection axis of earth’s equatorial

mrd /0
plane with the Greenwich prime meridian plane and Rrefequ_m d4/0 is the initial component of

BFe(f)O along an axis in the equatorial plane perpendicular to the previously defined Greenwich-

meridian/equatorial-plane intersection. Note: Eq. (E-7) should be properly solved numerically
using a four-quadrant arc tangent routine.

With initial latitude Irefo from (E-4) - (E-6), initial longitude Lref, from (E-7), and initial
wander-angle ref,y specified at zero, initialCE? o wander azimuth angular position can be
0

determined for example, using [1, Egs. (4.4.2.1-2)] (based on an N frame having Z-axis up, Y-axis
north at zero wander-angle, and an E frame having Y along earth’s polar axis with Z in the
Greenwich meridian reference plane). Including initial altitude hrefo from (E-4) completes the

initial wander azimuth format position conversion process for the reference trajectory.

Initialization of reference trajectory velocity relative to the earth in the wander azimuth N
N . ) . . )
frame v, e;efo can be determined directly from input reference velocity V rEe(f) relative to non-
—T€y —T€y
rotating E coordinates. The method is to use [1, Eq. (4.3-5)] for the E( frame equivalent, then

transforming the result to the N frame using the previously computedC Nref, :
-1
NrefO = Eo Eo « REO Nrefy (\,Eo Eo + pEO
—ref (CNrefo ) (\lrefo ~ WeUgpa ¥ Rrefo ) Cg, (Vrefo — We HeanBrefO (E-7)

where g 1s earth inertial angular rate magnitude (7.2721150 E-5 rad/sec) directed along earth’s

polar axis unit vector uE ), inthe E( frame, and where it is recognized that the inverse of a

ep
direction cosine matrix is its transpose.
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Initialization of reference trajectory attitude relative to the N frame is achieved using input

inertially referenced attitude CBr e, ° the previously found C El(r) o matrix, and applying the
0

direction cosine matrix multiplication chain rule:

_1
Nrefo _ refo EO
Chref, (C Nref, J CBrefO =Cgy  Core, (E-8)

Variation Trajectory Initialization

Initialization of the variation trajectory position/velocity/attitude for wander azimuth
formatting can be achieved using the same method applied for reference trajectory initialization.

The only difference would be that Rr ey ° \i Fe?o , CEo Bref, would be replaced by the equivalent

variation trajectory parameters _EO v Eo

aro’ Yvarg® cE Bvar to obtain the equivalent wander azimuth

Nvaro Nvar o Eo Eo
result: g C'\lvar Vvarg * CBvarg - The R aro’ Vvaro’ CBvaro

as in (6) — (8) and (10).

inputs would be calculated
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