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ABSTRACT 
 
Stellar aiding of inertial navigation systems (INSs) is one of the early methods for 

compensating attitude drift in precision INS applications.  Originally applied in gimbaled INS 
applications, a star-tracker and gyros were mounted on a “stable element”, a physical platform 
surrounded by mechanical gimbals, the platform controlled by gimbal-axis torque motors to a 
prescribed angular orientation measured by the gyros.  Star-tracker readings to known stars 
provided an accurate measure of stable platform attitude error, the error signal used to correct 
platform attitude.  For airborne applications, stellar aiding has long since been replaced by less 
costly GPS (Global Positioning System) Kalman filter aiding, however, there still remain a few 
select applications where stellar attitude updating is still in use (e.g., ballistic missile guidance 
following launch, deep-space satellite attitude referencing).  Because of its simple yet 
comprehensive structure, stellar Kalman filter aiding of strapdown inertially computed attitude 
provides an excellent vehicle for analyzing the structure and formulation of Extended Kalman 
Filters in general, the subject of this article.  Appendix A provides an overview of the general 
structure of Extended Kalman Filters as a reference for analytical developments to follow. 

 
 

MATHEMATICAL NOTATION 

V = Vector without specific coordinate frame designation.  A vector is a parameter that 
has length and direction.  Vectors used in the paper are classified as “free vectors”, 
hence, have no preferred location in coordinate frames in which they are 
analytically described. 

 

( )V ×  = Cross-product matrix operator form of V defined such that for any vector W, 

( )V W V W× = × . 
 
( ).V  = Dot-product matrix operator form of V defined such that for any vector W, 

( ). .V W V W= . 
 

AV = Column matrix with elements equal to the projection of V on coordinate frame A 
axes.  The projection of V on each frame A axis equals the dot product of V with a 
unit vector parallel to that coordinate axis. 
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( )AV ×  = Skew symmetric (or cross-product) form of AV represented by the square 

matrix 
ZA YA

ZA XA

YA XA

0
0

0

V V
V V
V V

⎡ ⎤−
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 in which YA YA ZA, ,V V V  are the components of

AV .  The matrix product of ( )AV ×  with another A frame vector equals the cross-

product of AV  with the vector in the A frame, i.e.: ( ) A A AA W V WV = ×× . 
 

( )A .V  = Transpose (or dot-product) form of AV represented by the row matrix 

[ ]XA YA ZAV V V  in which YA YA ZA, ,V V V  are the components of AV .  The 

matrix product of ( )A .V  with another A frame vector equals the dot-product of 

AV  with the vector in the A frame, i.e.: ( )A A A A. .V W V W= . 
 

 = Direction cosine matrix that transforms a vector from its coordinate frame A2 

projection form to its coordinate frame A1 projection form, i.e.: 11 2
2

AA A
AV VC= .  

The columns of  are projections on A1 axes of unit vectors parallel to A2 axes.  

The rows of  are projections on A2 axes of unit vectors parallel to A1 axes.  An 

important property of  is that its inverse equals its transpose. 
.

( ) = d( )
dt

Derivative of ( ) with respect to time t. 
 

 = Measured or computed (from measurements) value of parameter ( ) that, in contrast 
with the idealized error free value ( ), contains errors. 

 
 
COORDINATE FRAMES 
 

B = Strapdown inertial sensor coordinates (“body frame”) with axes parallel to nominal 
right handed orthogonal sensor input axes. 

 
I = Non-rotating inertial coordinate frame. 

 
 
 STRAPDOWN INERTIAL ATTITUDE UPDATING 
 

Attitude in a strapdown inertial system is calculated by integrating the following classic form 
(or quaternion equivalent) [1, Eq. (1)]: 

CA2
A1

CA2
A1

CA2
A1

CA2
A1

  =  

( )
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 ( )BI I
B BC C

.
ω= ×  (1) 

 
where 

 Bω = Strapdown gyro sensed angular rate vector in B frame coordinates. 
 
The version of (1) that would be implemented in a strapdown computer would be 
 

 ( )BI I
B BC C

.
ω= ×  (2) 

 
 

STAR-TRACKER OBSERVATION VECTOR 
 

A star-tracker provides a means of measuring the angular orientation of a unit vector pointing 
to an observable star for comparison with the star’s known location provided in I frame 
coordinates by a star catalog within the INS.  Comparison of the measured star-tracking vector 
with the catalog expectation provides a measurement of star-tracker mount angular error 
perpendicular to the star sighting direction.  The process is illustrated analytically next. 

 
Assume that a unit direction vector to a known star is detected with a star-tracker and its 

output transformed to the B frame.  Using the I
BC  matrix, the inertial system can calculate the 

detected star-pointing vector components in the I frame: 
 

 I BI
BCStar Staru u=  (3) 

 
where 

B
Staru = Start tracker measured unit pointing vector to the star, transformed to the B frame. 
I
Staru = Star tracker measurement in the I frame. 

  

Comparison of I
Staru with the star catalog value I

Staru then forms an error signal for Kalman 

filter input.  Taken literally, the catalog value I
Staru would be subtracted from I

Staru to form a 
three-component error signal.  However, as will be apparent subsequently in (13), only the error 

components of I
Staru  perpendicular to I

Staru appear in I
Staru .  Hence, by subtracting I

Staru from 
I
Staru to form a Kalman filter error input error, the three error components will not be 

independent, creating ill-conditioning in the Kalman gain calculation process.  An alternative 
(described next) avoids the problem by explicitly calculating two orthogonal components of 
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I
Staru  perpendicular to I

Staru , then using them to form a two-component Kalman filter input 
vector.  
    

Using the true pointing vector to the star from the star catalog, a star tracking error signal is 
first formed as 

 

 II I
Star StarStare uu= ×  (4) 

 

where 

 I
Staru  = True unit vector pointing to the star in the I frame (from a star catalog). 

 I
Stare = Star tracking error vector in the I frame. 

 
With (3), (4) becomes: 
 

 ( )II I
BC

B
Star StarStare uu= ×  (5) 

  
To find the two components of I

Stare perpendicular to I
Staru , two mutually orthogonal unit 

vectors are formed, both perpendicular to I
Staru , and their dot product taken with I

Stare .  For 

example, of the three unit vectors along I frame axes II I, ,ji k , the one having the smallest dot 

product with I
Stare is first found; call it Ip .  The desired orthogonal unit vectors ( I

1Staru ⊥ and
I

2Staru ⊥ ) perpendicular to I
Staru  are then formed as 

  

 I II I I I I
1 2 1/Star Star Star Star Star Starp pu u u u u u⊥ ⊥ ⊥= × × = ×  (6) 

 
Finally, I

1Staru ⊥  and I
2Staru ⊥  are used to calculate the I

Stare components perpendicular to I
Staru for 

Kalman filter observation input [2, Sect. 5.2].  Treating the components as elements of a column 
matrix vector, the result is 

 
( )
( )

II I 11 II I
I I I2 2

.

.

T
StarStar Star

StarStar Star T
Star Star Star

uu e
M eF F

u e u

⊥⊥

⊥ ⊥

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥= = ≡ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (7) 

where 

 M = Kalman filter two element observation input vector. 
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ERROR MODELS FOR KALMAN FILTER DESIGN 
 

The Stellar Aiding Kalman filter is constructed based on linearized error models for 

parameters within I
Stare that impact the (7) observation, i.e., within 

I
BC  and B

Staru  of I
Stare in (5).  

An analytical model for B
Staru  can be defined assuming that its linearized error is caused by star-

tracker misalignment to the B frame: 
 

 
( ) ( )B IB

IC

0  or maybe more complicated
.

B
StrTrkr Star StrTrkr StarStar

StrTrkr

I Iu uu δα δα

δα

⎡ ⎤ ⎡ ⎤= − × = − ×⎣ ⎦ ⎣ ⎦

= →
 (8) 

 

where 

 StrTrkrδα = Star-tracker misalignment error vector. 

 I = Identity matrix. 
 

A model for 
I
BC  error can be defined based on its linearized rotation angle error vector 

definition in [1, Eq. (46)]: 
 

 ( ) ( )II B I
B I BC C C QuantnIψ ⎡ ⎤× = − + ×

⎣ ⎦
 (9) 

 
where 

 Iψ  =  Small rotation angle error vector in I
BC projected on I frame axes. 

 Quantn  = Gyro output quantization noise vector. 
 

Equation (9) rearranged obtains an analytical model for
I
BC : 

 

 ( ){ }II I I
B BB C CC QuantnI ψ⎡ ⎤= − − ×⎢ ⎥⎣ ⎦

 (10) 

 

The rate of change of Iψ  is from [1, Eq. (51)]: 
 

 ( )I B B BI I
B BC C

.
Quantnψ δω ω δω= − − × ≈ −  (11) 

 
in which from [1, Eq. (50)]: 
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BB B B
/

B
/

/ 0 0    Depending on gyro
. .

Scal Mis Bias RndWlk

Scal Mis Bias RndWlk

Scal Mis Bias

nKK

nK K

K K

δω ω ω δδω
δ δ

δ δ

≡ − = + +

= + +Ω

= = →

 (12) 

 
where 
 /Scal MisKδ  = Gyro scale-factor-error/misalignment error matrix. 

/Scal MisKδ = /Scal MisKδ  with its three columns arranged in a single 9 element column 
format. 

BΩ = Square 9 × 9 matrix containing elements of Bω  such that
BB

// Scal MisScal MisK Kδ ωδ=Ω . 
 

 BiasKδ = Gyro bias error vector. 

 RndWlkn = Gyro random walk on attitude noise. 

 
Based on the previous results, an error model for I

Stare can now be formed by substituting 

(10) and (8) into (5).  For the 
BI

BC Staru  term in (5) (defined in (3) as I
Staru ): 

 

 

( ){ } ( )

( ){ } ( ){ }
( ){ }

( )

I B II II I B
B B IB

I II I
B B

I II
B

II II
B

C C CC

C C

C

C

Quant StrTrkr StarStar Star

Quant StarStrTrkr

QuantStrTrkr Star

QuantStar StrTrkr Star

nI I uu u

I n I u

nI u

nu u

ψ δα

ψ δα

ψ δα

ψ δα

⎡ ⎤ ⎡ ⎤= = − − × − ×⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − × − ×⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤= − + − ×⎢ ⎥⎣ ⎦

⎡ ⎤= − + − ×⎢ ⎥⎣ ⎦

(13) 

 
Substituting (13) into (5) then finds for a single star sighting: 
 

 
( ){ }

( ) ( )

II I II
B

II I I
B

C

. C

QuantStar StrTrkr Star Star

QuantStar Star StrTrkr

ne u u

nI u u

ψ δα

ψ δα

⎡ ⎤= − + − × ×⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤= − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (14) 

 
The Kalman filter measurement vector z is the linearized form of the (7) two component 
observation vector M [2, Sect. 5.2].  Thus, substituting (14) in (7): 

 

 ( ) ( )II I II
B. C QuantStar Star StrTrkrStar

nz I u uF ψ δα⎡ ⎤⎡ ⎤= − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (15) 
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where 

 z  = Measurement vector, the linearized form of observation vector M. 
 

Additional measurements would be made to other stars at different times to determine the 

three components of Iψ , StrTrkrδα in (15), and the fixed gyro errors in (12).  Note: Accurate 

determination of Iψ can only be made after StrTrkrδα has been estimated by the Kalman filter so 

that its presence in the observation vector can be properly accounted for during the Iψ  
estimation process.  Sustained attitude accuracy following each stellar attitude correction can 
only be achieved after the fixed gyro errors in (12) have been accurately estimated/corrected to 

eliminate their error buildup in Iψ  between stellar updates.  
 

It is to be noted that (15) (the linearized form of observation vector M input (7) to the 

Kalman filter) is a direct measure of the Iψ  attitude error parameter.  For this reason, error 

parameter Iψ  (also used extensively for inertial navigation system attitude error modeling in 
general, e.g., [3, Sect. 7.1]), has been commonly referred to as the “stellar pointing error”. 
 
 
MATRIX FORMATTING 
 

Equations (8), (11), (12), and (15) can be formatted for matrix implementation in a standard 
Extended Kalman Filter [2, Sects. 5.1 and 5.2] as illustrated in Appendix A:  

 

 
Error state dynamic equation
Measurement equation

.
P P

M M

A xx nG
z H x nG

= +
= +

 (16) 

 

where 

 x = Error state vector. 
 A = Error state dynamic matrix. 
 PG = Process noise dynamic coupling matrix. 
 Pn = Vector of independent process noise elements. 
 z = Measurement vector. 
 H = Measurement matrix. 
 MG = Measurement noise dynamic coupling matrix. 
 Mn = Vector of independent measurement noise elements. 
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The error state vector x for Stellar Aided INS Kalman filter design would be formed from
I

/, , ,Scal Mis BiasStrTrkr K Kψ δα δ δ .  With this definition, error model equations (8), (11), (12), 

and (15) become in matrix form: 
 

 

I I I IB
B B B

/

0 0 C C C
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.
StrTrkr

RndWlk
Scal Mis

Bias

x xx n
K

K

ψ
δα

δ
δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − −Ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥≡ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (17)  

 

( ) ( )I I I II II I
B B. I 0 0 .C C QuantStar Star Star StarStar Star

nz I x Iu u u uF F⎡ ⎤ ⎡ ⎤⎡ ⎤= − − −⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (18) 

 
Comparing (17) and (18) to the standard (16) form identifies the Kalman filter matrix design 
elements as  

 
I I I IB

B B B

/

0 0 C C C
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

P P
StrTrkr

RndWlk
Scal Mis

Bias

x A n nG
K

K

ψ
δα

δ
δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − −Ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

  (19) 

 
( )

( )
I I II

B

I I II
B

. I 0 0C

. CM M

Star StarStar

QuantStar StarStar

H I u uF

nI u u nG F

⎡ ⎤ ⎡ ⎤= − ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤= − − =⎢ ⎥⎣ ⎦

  

 
In Appendix A, error state vector x and measurement vector z appear in the Fig. A-1 Kalman 

estimation/process diagram.  Error state dynamic matrix A and measurement matrix H appear in 
Fig. A-1, and also in Appendix A Kalman gain determination equations (A-1).  The process 
noise matrix PG and measurement noise dynamic coupling matrix MG also appear in (A-1) for 
the Kalman gains.  Error state vector x, process noise vector Pn , and measurement noise vector 

Mn appear in (A-1) for gain calculations, but only in a statistical sense.  The spectral densities of 

Pn appear as elements of diagonal process noise matrix PQ .  The Mn  variances appear as the 

elements of diagonal measurement noise matrix MR .  The uncertainty x  in the estimated error 

state vector x appears in (A-1) as square covariance matrix P representing the expected value of 

x  multiplied by its transpose: x x x≡ −  and ( )TxP E x≡ where E ( ) is the expected value 

operator. 
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One final point (not identified in Appendix A), is the practice in some actual Kalman filter 
design configurations to constrain covariance matrix P to ever have elements becoming too small 
or high than is reasonably likely, considering uncertainties in the error models used for Kalman 
filter design.  This is easily achieved by imposing upper and lower limits on P as part of 
Appendix A equations (A-1) Kalman covariance cyclic update operations [4, Sect. 15.1.2.1.1.4]. 

 
     

APPENDIX A 
 

INERTIAL NAVIGATION SYSTEM KALMAN FILTER AIDING STRUCTURE 
 

Kalman Filter aiding of an Inertial Navigation System (INS) (Fig. A-1) is a dynamic process 
in which INS computed navigation data is periodically compared with equivalent reference 
navigation data (at cycle rate n), and used in feedback fashion to update INS error parameters. 

 
 

 
 

Fig. A-1:  Kalman Filter Inertial Navigation Aiding 

Kalman Gain Matrix 
Calculation

Linearized 
Observation Model 

(Measurement)

INS Inertial 
Navigation 
Integration 
Operations 

Inertially 
Computed
Navigation 

Data

INS Error 
Corrections

Reference 
Device 

Navigation 
Data

Compare

Observation 
(Non-Linearized 
Measurement)

Kalman Filter Operations

Calculate Measurement 
Residual

zn = Hn xn

zn

xn

Linearized Dynamic 
Error Model 

x
.

= Ax

xn = xn-1 + ∫tn-1

tn
x
.

dt  + u cn

ucn

Kn

Mn

zResn = Mn - zn

xn(+) = xn(-) + Kn zResn

zResn
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Note in Fig. A-1 that all parameters are shown with a  designation to indicate that they are 
computed estimates within the INS and reference navigation device of actual equivalent ( ) 
parameters.  The analytic details of the Fig. A-1 operations are provided in [4 - Chapt. 15, 5, 6, 
7 - pp. 415 - 457]. 

 

In Fig. A-1, the inertially-computed/reference-device navigation data comparison  
("observation vector") is input to the Kalman filter where it is compared against a linearized 
estimate of , "measurement vector" .  The equation for  is based on estimates of expected 
errors (embodied in the error state vector column matrix ) generated by a linearized dynamic 
error model of inertial navigation and reference device operations, and how they couple into the 
measurement (through the "measurement matrix" ).  (The error state dynamic matrix  in Fig. 
A-1 defines the dynamics of how  propagates from the last n cycle to the current n cycle.)  The 
difference between the observation  and estimated measurement  (the "measurement 
residual" ), is multiplied by a Kalman gain matrix  to generate corrections to the Kalman 
filter error estimates.  The control vector  formed from INS error estimates in  (including 
provisions for  computation delay) is used to correct the INS by subtraction from the equivalent 
INS parameter data.  To account for the  corrections applied to the INS, the  vector is also 
used to update the Kalman  error model for the applied INS error correction. 

 
The  Kalman gain matrix in Fig. A-1 is computed at each n cycle from a statistical model 

of the expected uncertainty in the Fig. A-1 linearized updating process, a function of the error 
state covariance matrix P: 

 

 ( )
( ) ( )

n
n-1

nn

Tt T
Pn n 1 PPt

1TT T
n Mnn n Mn n M nn

T T Tnn n n n Mn n M nM

= + = + Qdt GAA P + PP P P P G

( ) ( )P GHK P R GH H

(+) = I ( ) I +KP K P K GH H R G K

. .
−

−

∫

= − − +

− − −

 (A-1) 

 

The P covariance in equations (A-1) is analytically defined as ( )T
Uncrtny UncrtnyE x x  where  

is the expected value operator and  is the uncertainty in the error state estimate  
compared with the true value .  The covariance matrix measures how initial uncertainties in  
(at the start of Kalman aiding) are progressively reduced by the Fig. A-1 dynamic 
estimation/updating process, and how unaccounted for noise effects (in  propagation between 
updates and measurement updating) delay the convergence process.  Noise parameters 
incorporated in (A-1) gain determination operations are the  process noise matrix that 
accounts for random INS error buildup between n cycles, the  matrix that couples the process 
noise into error state uncertainty components, the measurement noise matrix  that accounts 
for random errors in the observation and in calculation of the measurement residual, and the  
matrix that couples the measurement noise into the measurement residual components [4 - Sect. 
15.1] and [7 - pp. 428]. 

( )

M

M z z
x

H A
x

M z
zRes Kn

uc x
x

uc uc

x

Kn

E

xUncrnty x
x x

x

QP
GP

RM
GM
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The success of the Fig. A-1 process depends on the accuracy by which the Kalman filter 
linearized models match the actual operations in the INS and reference navigation device.  An 
important element in this regard is the impact of linearization on the measurement residual.  
Second order components in the Fig. A-1 observation vector M are ignored in the Kalman filter 
linearized models, hence, will appear in the measurement residual  and modify  through 
the Kalman gains.  Since the gains do not account for second order errors, the result will add 
unknown errors to .  To minimize the impact of second order errors on Kalman filter 
performance, it has been previous practice to assure that initial errors are small enough that 
second order residuals become negligible, e.g., [8].  However, in some applications, residual 
second order Kalman filter modeling errors can still produce error mis-estimation under 
particular dynamic conditions.  Recent publications [9, 10] have developed methods to mitigate 
second order error effects in linear Kalman filters for some applications.  
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