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INTRODUCTION 

 

Traditional Kalman filter configurations are based on a linearized model that 

translates error states being estimated into the Kalman filter input measurement [1-3].  In 

some applications however, second order errors neglected in the linearization process can 

impact the measurement, masking measurement sensitivities to error states being 

estimated, hence generating erroneous error state estimates.  This is particularly true 

during initial Kalman filter operations when the error state uncertainties are typically 

largest. 

 

This article describes a method for mitigating second order error effects using 

adaptive process and measurement noise in the error model.  The approach is a 

generalization of a technique employed several years ago at Strapdown Associates, Inc. 

(SAI) for a Kalman aided inertial navigation system (INS) experiencing heading 

estimation Kalman gain collapse during initial ground alignment.  After the generalized 

approach is developed analytically, a detailed example is provided showing how it would 

be applied to estimate strapdown INS attitude and velocity error sources. 

 

In practice, many second order effects are negligible and safely ignored with little 

loss in accuracy.  Some however, may be significant (as in the previously sited example).  

The methodology described shows how all second order effects can be accounted for 

with the decision then left to the analyst as to which should be included in the system 

design.  An important point to consider for this decision is the benefit derived by 

including all second order effects, to better focus accuracy assessment during the 

software validation process. 

 

This article can be considered as an extension to Chapter 15 of my book Strapdown 

Analytics II [3], the supporting document referenced for background information.  

References to particular sections and equations are identified within square brackets, e.g., 

Reference 1, Section x, equation (y): [3 - Sect. xx, (y)]. 

 

 

DEFINITIONS 

 

State - One of a group of interactive parameters forming a process.  For example, if the 

process is inertial navigation of a vehicle, then position, velocity and angular 
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orientation of the vehicle would represent some of the states, each of which contain 

component states.  The position states would be related to the velocity states because 

velocity produces changes in position.  Angular orientation of the vehicle might be 

represented by a nine element direction cosine matrix (DCM) relating the angular 

orientation between a reference coordinate frame and one aligned with vehicle axes.  

The DCM would change with time due to vehicle angular rotation rate (additional 

states), and the direction cosine elements would be interrelated among themselves 

through the so-called normality and orthogonality constraints. 

 

Foreground - The grouping of states that form the process. 

 

Error State - The error in the computed or measured value of a state.  The analytical 

representation of an error state may or may not have a direct correspondence with any 

particular state, but may represent the error in a group of states.  For example, the 

error in angular orientation represented by DCM states (nine components) is usually 

represented by a small angle rotation vector (three components), each related to 

groups of the DCM elements. 

 

Error State Vector - Column matrix whose elements are the error states for a particular 

process. 

 

Kalman Filter - Computational process within a system computer designed to estimate 

the error state vector associated with a particular process.  The measurement input to 

the Kalman filter is a numerical comparison between particular states in a process (for 

which the error states are to be estimated) and the equivalent parameters provided 

from another process.  For example, for a navigation system whose error states are to 

be estimated by a Kalman Filter, the measurement might consist of a comparison 

between the system computed velocity states (containing errors) and velocity states 

provided by another device (that also may contain errors). 

 

( ) - Computed, "estimated", or measured value of the ( ) parameter (containing errors 

compared to the actual or true value of the ( ) parameter). 

 

( ) - Uncertainty (i.e., the error) in ( ).  In general, ( ) is the difference between ( ) and the 

true value of parameter ( ). 

 

Vector - Parameter or group of parameters represented by a column matrix and identified 

with an underbar _. 

 

Control Vector - Column matrix whose elements represent changes to be applied by the 

Kalman Filter to the ( ) parameter states.  In general, the control vector is designed to 

reduce the magnitude of estimated errors in the ( ) parameter states.  When applied by 

the Kalman filter to the system states, the filter applies an equal adjustment to the 

estimated error state vector to indicate that the estimated error in the states has been 

adjusted (generally reduced) by the control vector.  Details on how the control vector 
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would be formed and applied is provided in [3 - Sect. 15.1.2].  This article only 

discusses second order error effect considerations in control vector application. 

 

 

ERROR STATE DYNAMIC AND MEASUREMENT EQUATIONS 

  

Traditional error state dynamic and measurement equation formulas [3 - (15.1-1) & 

(15.1-2)] can be expanded to account for second order error effects neglected in  

linearized Kalman filter design: 

x = A x + GP nP + x2nd +         zn = Hn xn + GMn nMn + z2ndn +  (1) 
where 

( ) = ( ) value calculated in the Kalman filter computer using real-time estimated 

or measured parameters containing errors. 

 x = Error state vector. 

A = Error state dynamic matrix whose elements are functions of the state 

parameters in the process being analyzed. 
GP = Process noise matrix whose elements are functions of the state parameters in 

the process being analyzed. 

 nP = Vector of uncorrelated white process noise components. 

 x2nd = Contribution to x from second order error terms (in x) 

n = Subscript indicating parameter value at nth Kalman filter estimation cycle 

time. 

 z = Measurement vector. 

H = Measurement matrix whose elements are functions of the state parameters in 

the process being analyzed. 
GM = Measurement noise dynamic coupling matrix whose elements are functions 

of the state parameters in the process being analyzed. 

 nM = Vector of uncorrelated measurement noise components. 

 z2ndn = Contribution to zn from second order error terms (in x) 

 

In general, the individual i components of x2nd and z2ndn will satisfy: 

 

 
x2ndi = xT ϑi x      i = 1, N           z2ndn/i = xT Γi x      i = 1, NM (2) 

where 

ϑi = N by N upper diagonal matrix where N is the number of elements in error 

state vector x.  The elements of ϑi are functions of the state parameters in the 

process being analyzed. 

Γi = NM by NM upper diagonal matrix where NM is the number of elements in 

measurement vector z.  The elements of Γi are functions of the state 

parameters in the process being analyzed. 
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Equations (2) can also be written in the equivalent form 

 

 
x2ndi = ϑi x xT

Tr      i = 1, N          z2ndn/i = Γi x xT
Tr      i = 1, NM (3)

 
 

where 

 

Tr = Trace (sum of the diagonal elements) of the associated square matrix. 

 

Note that coefficient parameters in (1) - (3) are identified as ( ) estimated values.  

This arises from the derivation process used for (1) - (3) for which the second order x2nd 

and z2ndn elements become defined.  From a practical standpoint, the derivation process 

should be designed to specifically produce the (1) - (3) form because ( ) parameters are 

the only ones available in the system computer for Kalman filter implementation.  The 

example at the end of this article illustrates the derivation methodology.  

 

 

APPROXIMATE REAL WORLD MODEL 

 

The "real world error model" is defined as the analytical model for the actual errors to 

be used as the reference base for Kalman filter design.  For compatibility with the linear 

nature of a traditional Kalman filter analytical process, the real world error model will 

approximate the second order error effects in the x equation in (1) by its value at the start 

of a time interval from computer cycle m-1 to computer cycle m.  The m cycle is the 

digital computation updating interval for an integration process from one Kalman filter 

estimation time instant to the next (the latter identified as the n cycle).  This second order 

error approximation is reasonable because second order errors are of significance when 

the first order errors are large, and the change in the magnitude of the errors over an m 

cycle is generally much smaller than any unusually large error values.  The approximate 

real world model would then be: 

 

From m-1 to m: 

  

x  =  A x + GP nP + x2ndm-1

 x2nd(m-1)/i = xm-1
T

 ϑi xm-1

or   x2nd(m-1)/i = ϑi xm-1 xm-1
T

Tr

     i = 1, N
 (4)

 
 

At m = n: 

 

zn = Hn xn + GMn nMn + z2ndn

 z2ndn/i = xn
T
 Γni xn

or   z2ndn/i = Γni xn xn
T

Tr

     i = 1, NM

 (5)
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KALMAN FILTER ESTIMATION WORLD MODEL 

 

Over each m cycle time interval, the Kalman filter bases its equivalent to (4) on its 

estimate of all contributions to (4) except for the completely unknown white process 

noise, i.e., 

 

From m-1 to m: 

 

x = A x + x2ndm-1

 x2nd(m-1)/i = xm-1
T

 ϑi xm-1

or   x2nd(m-1)/i = ϑi xm-1 xm-1
T

Tr

     i = 1, N
 (6)

 

The value of xm to start the next m cycle is obtained as the integral of x
.
 from m-1 to m  

with xm-1 as the starting value, similar to [3 - (15.1.1-13) & (15.1.2-7)]: 

 

xm = Φ tm,tm-1  xm-1 + ∫ tm-1

tm Φ(t,τ) x2ndm-1 dτ

= Φ tm,tm-1  xm-1 + ∫ tm-1

tm Φ(t,τ) dτ  x2ndm-1

= Φ tm,tm-1  xm-1 + v(tm,tm-1) x2ndm-1
 

 (7)

 

 

 
Φ t,tm-1  = I + ∫ tm-1

t
 A Φ(t,τ) dτ         v(tm,tm-1) =

_ ∫ tm-1

tm Φ(tm,τ) dτ
 

where 

Φ(t2,t1) = State transition matrix that propagates vector data from general time t1 

to general time t2. 

 

The Kalman filter adjusts its estimate (the so-called "innovations process") of the 

error state vector at each Kalman n cycle using an input measurement zn and the filter's 

expectation of what the measurement should be zn (based on its previously computed 

error state vector estimate) similar to [3 - (15.1.2-8) & (15.1.2-9)]: 

 

At m = n: 

 

xn(-) = xm

xm = 0   To start the next m cycle

zn = Hn xn(-) + z2ndn(-)

 z2ndn/i(-) = xn
T
(-) Γni xn(-)

or   z2ndn/i(-) = Γni xn(-) xn
T
(-) Tr

     i = 1, NM

 (8)
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xn(+) = xn(-) + Kn zn - zn

xm-1 = xn(+)   To start the next m cycle
 (9)

 
 

where  
Kn = Kalman gain matrix designed to minimize the uncertainty (in a statistical 

sense) in the estimated error state vector xn at completion of update (9). 

 

(-) = Designation for a parameter estimate after completion of a Kalman n cycle, 

but before updating xn (the so-called "a priori" estimate). 

 

(+) = Designation for a parameter estimate immediately following the xn update 

(the so-called "a posteriori" estimate). 

 

 

KALMAN GAIN MATRIX CALCULATION 

 

The Kn gain matrix is designed to optimally minimize the statistical variance of xn(+) 
after update (9) as represented by the diagonal elements of the covariance matrix P: 

 P =
_ E x x

T
 (10) 

where 

 

 E ( )  = Expected value operator (i.e., statistical average value). 

 

The x uncertainty in (10) is defined as: 

 

 x = x - x    or equivalently    x = x + x (11) 
 

An equation for xn(+) in the a posteriori covariance P(+) = E xn(+) xn
T
(+)  is derived by 

first substituting (11) for xn(+) in (9), with (5) and (8) for zn and zn, to obtain 

 

 
xn(+) = xn(-) - Kn Hn xn(-) + z2ndn(-) - z2ndn  - GMn nMn  (12) 

 

An expression for the components of z2ndn(-) - z2ndn in (12) is found from (5) and (8) by 

substituting the (11) definitions and expanding: 
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z2ndn/i - z2ndn/i  =  xn
T

 Γni xn - xn
T

 Γni xn

= xn
T

(-) Γni xn - xn - xn
T

 Γni xn - xn

= xn
T

 Γni xn + xn
T

 Γni xn - xn
T

 Γni xn  (13)

 

 

= xn
T
 Γni xn + xn

T
 Γni

T
 xn - Γni xn xn

T
Tr

= xn
T
 Γni + Γni

T
 xn - Γni xn xn

T
Tr  

where in deriving (13) it was recognized that since xn
T

 Γni xn is a scalar, it equals its  

transpose xn
T

 Γni

T
 xn.  With (13), xn(+) from (12) becomes 

 
xn(+) = I - Kn Hn

*  xn(-) + Kn GMn nMn + Δz2ndn(-)  (14)
 

in which the individual components of Hn
* and Δz2ndn(-) are defined as 

 
Hni

*  =
_ Hni + xn

T
 Γni + Γni

T
          Δz2ndn/i(-) =

_ Γni xn(-) xn
T
(-) Tr (15)

 
 

For a traditional linear Kalman filter design, the equivalent to (14) would be the same, 

but without Δz2ndn(-), and without the (14) augmentation terms in the Hn
* components [3 - 

(1.5.1.2.1-9)]. 

 

The Kn gain matrix in (9) is designed to minimize Pn(+) = E xn(+) xn
T
(+) .  Deriving 

the equation for Pn(+) minimization is classically achieved by substituting (14) into 

xn(+) xn
T

(+), expanding, and taking the expected value [3 - Sect. 15.1.2.1].  In this case, 

the presence of Δz2ndn(-) in (14) introduces an additional complexity that can be 

mitigated by approximating Δz2ndn(-) by its expected (or mean) value E Δz2ndn(-) .  From 

(15), the individual components of E Δz2ndn(-)  are 

 

 
E Δz2ndn/i(-)  = E Γni xn(-) xn

T
(-) Tr =  Γni E xn(-) xn

T
(-) Tr = Γni Pn(-) Tr (16)

 
 

In addition, as will be apparent subsequently, the presence of second order terms in the 

(4) and (6) error state rate equations results in a non-zero value for E xn(-)  in (14) which 

cannot be ignored when deriving the Pn(+) equation.  With these differences from 

traditional Pn(+) derivations, the previous procedure then finds for Pn(+) from (14) and 

(16): 
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Pn(+) = E 

I - Kn Hn
*  xn(-) + Kn GMn nMn + E Δz2ndn(-)

xn
T

(-) I - Hn
*
T

 Kn
T

 + nMn

T
 GMn

T
 + E Δz2ndn

T
(-)  Kn

T

=  I - Kn Hn
*  E xn(-) xn

T
(-)  I - Hn

*
T

 Kn
T

+ I - Kn Hn
*  E xn(-)  E Δz2ndn

T
(-)  Kn

T

+ Kn GMn E nMn nMn

T
 GMn

T
 Kn

T

+ Kn E Δz2ndn(-)  E xn
T

(-)  I - Hn
*
T

 Kn
T

+ Kn E Δz2ndn(-)  E Δz2ndn
T

(-)  Kn
T

 
 (17) 

 

= Pn(-) + Kn 

Hn
* Pn(-) Hn

*
T
 + RMn

*

- Hn
*  E xn(-)  E Δz2ndn

T
(-)

- Hn
*  E xn(-)  E Δz2ndn

T
(-)

T

 Kn
T

 

 

- Kn Pn(-) Hn
*

T
 - E xn(-)  E Δz2ndn

T
(-)

T

- Pn(-) Hn
*

T
 - E xn(-)  E Δz2ndn

T
(-)  Kn

T
 

 

in which the augmented measurement noise matrix RMn
*

 is defined as a function of the 

traditional measurement noise matrix RMn by 

 
RMn =

_ GMn E nMn nMn

T
 GMn

T
        RMn

*  =
_ RMn + E Δz2ndn(-)  E Δz2ndn

T
(-)  (18)

 
 

Equation (17) is now in classic form for finding the optimal Kn that minimizes Pn(+).  
Applying the standard minimization process in [3 - Sect. 15.1.2.1] obtains the result: 

 

 

Kn = 
Pn(-) Hn

*
T

- E xn(-)  E Δz2ndn
T

(-)
 

Hn
* Pn(-) Hn

*
T

 + RMn
*

- Hn
*  E xn(-)  E Δz2ndn

T
(-)

- Hn
*  E xn(-)  E Δz2ndn

T
(-)

T

-1

 (19)

 
 

For a traditional linear Kalman filter design, the equivalent to (19) would be the same, 

but without the E xn(-)  and E Δz2ndn(-)  terms, and without the Hn
* and Rn

*
 higher order 

augmentation terms in (15) and (18).  From (19), Kn determination requires Pn(-) (as in 

the traditional filter) in addition to E xn(-)  and xn(-) for Hn
*, both requiring an integration 
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process (propagation) over the previous Kalman cycle for evaluation.  The propagation 

equation for obtaining xn(-) has been described previously in (7) and (8).  The next 

sections derives equations for calculating E xn(-)  and Pn(-). 
 

The refined updating process also requires the calculation of E xn(+)  resulting from 

update (9).  The equation for this operation is easily found by taking the expected value 

of (14) which finds 

 

 
E xn(+)  = I - Kn Hn

*  E xn(-)  + Kn E Δz2ndn(-)  (20)
 

 

with E Δz2ndn(-)  as given by (16). 

 

 

Calculating E xn(-)  

Evaluating E xn(-)  for (19) is an integration process whereby 
d
dt

 E x  is integrated 

over individual m-1 to m intervals with the solution sequentially propagated over 

successive m cycles between Kalman n cycles (similar to x in (7)).  The equation for 
d
dt

 E x  is derived based on (11) as the estimated difference between x from (6) and x  

from (4): 

 

d
dt

 E x   =  A E x  + E x2ndm-1  (21)
 

with 

 x2ndm-1 =
_ x2ndm-1 - x2ndm-1

 (22) 

 

An expression for the individual i components of E x2ndm-1  in (21) is derived by first 

substituting xm-1 based on (11) into the (4) formula for x2nd(m-1)/i and the (6) formula for 

x2nd(m-1)/i, and expanding (22): 

 

 

x2nd(m-1)/i = x2nd(m-1)/i - x2nd(m-1)/i = xm-1
T

 ϑm-1i xm-1 - xn
T

 ϑm-1i xm-1

= xm-1
T

(-) ϑm-1i xm-1 - xm-1 - xm-1
T

 ϑm-1i xm-1 - xm-1

= xm-1
T

 ϑm-1i xm-1 + xm-1
T

 ϑm-1i xm-1 - xm-1
T

 ϑm-1i xm-1  (23) 

 

= xm-1
T

 ϑm-1i xm-1 + xm-1
T

 ϑm-1i

T
 xm-1 - ϑm-1i xm-1 xm-1

T
Tr

= xm-1
T

 ϑm-1i + ϑm-1i

T
 xm-1 - ϑm-1i xm-1 xm-1

T
Tr  
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where in deriving (23) it was recognized that since xm-1
T

 ϑm-1i xm-1 is a scalar, it equals 

its transpose xm-1
T

 ϑm-1i

T
 xm-1.  Taking the expected value of (23) then finds for the  

individual i components of E x2ndm-1  in (21): 

 
E x2nd(m-1)/i  = xm-1

T
 ϑm-1i + ϑm-1i

T
 E xm-1  - ϑm-1i Pm-1 Tr (24) 

 

The integral of (21) with (24) over the m-1 to m interval provides the propagated value 

for E xm  as a function of its starting value at m-1 (similar to (7)): 

 

 
E x(tm)  = Φ tm,tm-1  E xm-1  + v(tm,tm-1) E x2ndm-1  (25) 

 

where v(tm,tm-1) is defined in (7).  When m corresponds to a Kalman update n cycle, 

E xn(-)  for (19) is set equal to E xm : 

 

 E xn(-)  = E xm    At n before the Kalman update (26) 
 

Immediately following the Kalman update, E xm  is reset to E xn(+)  (see (20)): 

 

 
E xm-1  = E xn(+)     

At n following the Kalman update
to start the next m cycle  (27) 

 

 

Calculating Pn(-) 
 

Evaluating Pn(-) for (19) is an integration process whereby P, the derivative of P, is 

integrated over individual m-1 to m intervals, with the solution sequentially propagated 

over successive m cycles between Kalman n cycles (similar to x in (7)).  The P derivation 

begins with the integrated solution for x at an infinitesimal time interval dt after time t, 

where t is defined as a general time instant following update cycle m-1. 

 

The x(t+dt) solution is x(t) plus the integral of x over dt, the latter derived by 

subtracting x in (4) from x in (6), substituting (23), applying (11), and approximating 

x2ndm-1 by its expected value (having equation (24) components): 

 

 
x = A x - GP nP + E x2ndm-1  (28) 

 

With (28), x at t + dt is: 
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x(t+dt) = x(t) + x dt

= x(t) + A x(t) dt - wP(t+dt,t) + E x2ndm-1  dt ≈ x(t) - wP(t+dt,t)

wP(t+dt,t) =
_ ∫ t

t+dt
wP dt         wP = GP nP

 (29) 

 

From (10), P at time t + dt is: 

 

 

P(t+dt) = 
d
dt

 E x(t+dt) x
T
(t+dt)  = E x x(t+dt)

T
 + x(t+dt) x

T

= E x x(t+dt)
T

 + E x(t+dt) x
T

 (30)

 
 

which with x from (28) and x(t+dt) from (29) becomes 

 

 

P(t+dt) = A P(t) + P(t) A
T
 + E x2ndm-1  E x

T
 + E x  E x2ndm-1

T

+ E wP wP
T
(t+dt,t)  + E wP(t+dt,t) wP

T

=  A P(t) + P(t) A
T
 + E x2ndm-1  E x

T
 + E x  E x2ndm-1

T

+ 
d
dt

 E wP(t+dt,t) wP
T
(t+dt,t)

 (31)

 

The 
d
dt

 E wP(t+dt,t) wP
T
(t+dt,t)  process noise term in (31) is further evaluated as follows 

based on a similar development in [3- Sect. 15.1.2.1.1]: 

 

 

wP(t+dt,t) = ∫ t
t+dt

GP nP dτ
 

d
dt

 E wP(t+dt,t) wP
T
(t+dt,t)

= 
d
dt

 E  ∫ t
t+dt

GP(τα) nP(τα) dτα  ∫ t
t+dt

 nP
T
(τβ) GP

T
(τβ) dτβ  (32) 

 

=  
d
dt

 ∫ t
t+dt

 ∫ t
t+dt

 GP(τα) E nP(τα) nP
T

(τβ)  GP
T

(τβ) dτα  dτβ

=  ∫ t
t+dt

  GP(τα) E nP(τα) nP
T

(τβ)  GP
T

(τβ) dτα  

where τα and τβ are Dummy time parameters.  The definition of the white process noise 

vector nP was for the components to be uncorrelated.  Hence, the E nP(τα) nP
T

(τβ)  matrix 

will be diagonal.  Furthermore, the properties of white noise are such that the expected 

value of each E nP(τα) nP
T
(τβ)  diagonal element will be zero for τα ≠ τβ, with its 
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integrated expected value from t to t + dt in (32) equal to the white noise density for that 
nP component.  Thus, (32) reduces to 

 

 

d
dt

 E wP(t+dt,t) wP
T
(t+dt,t)  = GP(t) QPDens(t) GP

T
 (t) (33) 

 

where 

 
QPDens = Diagonal matrix in which each element equals the white noise density 

for the corresponding element in nP. 

 

 Substituting (33) in (31) then yields the desired expression for P(t) 
 

P(t) = A P(t) + P(t) A
T
 + QDens

*
(t)

QDens
*

(t) =
_ GP(t) QPDens(t) GP

T
 (t) + E x2ndm-1  E x(t)

T
 + E x(t)  E x2ndm-1

T  (34)

 
 

The E x(t)  term in (34) at time t is from (25) with (7): 

 

 E x(t)  = Φ t,tm-1  E xm-1  + v(t,tm-1) E x2ndm-1
 (35)

 
 

An approximate integration algorithm from m-1 to m for P(t) in (34) can now be 

formulated using the approach in [3 - Sect. 15.1.2.1.1.3]: 

 

 

Pm = Φ tm,tm  Pm + 
1
2

 Qm
*

 ΦT
tm,tm  + 

1
2

 Qm
*

Qm
*

 = ∫ tm-1

tm  QDens
*

(t) dt

 (36)

 

When m corresponds to a Kalman n cycle update, Pn(-) for the update is set to the 

corresponding (36) result: 

 

 At n before the Kalman update:    Pn(-) = Pm (37) 
 

Following the Kalman update at cycle n, Pm is then set to the (17) updated value of P: 

 

 
Pm-1 = Pn(+)    

At n following the Kalman update
to start the next m cycle  (38) 
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SUMMARY 

 

Following is a summary of the equations for the revised Kalman filter in the order of 

computation in the user computer.  The equations are a repeat of equations (6) - (9), (15) 

- (20), (24), (27), and (34) - (38). 

 

Basic Inputs From The "Foreground" To The Kalman Filter:   A, GP, ϑ, Γ, H 

 

m Cycle Initialization Immediately Following The Last n Cycle Update 

 xm-1 = xn(+) (39) 

 Pm-1 = Pn(+) (40) 

 E xm-1  = E xn(+)  (41) 

 

Sequential Processing Of m Cycles From n-1 to n: 

m Cycle Initialization: 

 
x2nd(m-1)/i = xm-1

T
 ϑi xm-1    or   x2nd(m-1)/i = ϑi xm-1 xm-1

T
Tr (42)

 

 
E x2nd(m-1)/i  = xm-1

T
 ϑm-1i + ϑm-1i

T
 E xm-1  - ϑm-1i Pm-1 Tr (43)

 
 

m Cycle Integrations: 

 
Φ t,tm-1  = I + ∫ tm-1

t
 A Φ(t,τ) dτ       v(t,tm-1) = ∫ tm-1

t
Φ(tm,τ) dτ (44)

 

 E x(t)  = Φ t,tm-1  E xm-1  + v(t,tm-1) E x2ndm-1
 (45)

 

 

QDens
*

(t) = GP(t) QPDens(t) GP
T
 (t)

      + E x2ndm-1  E x(t)
T
 + E x(t)  E x2ndm-1

T
 (46)

 

 
Qm

*
 = ∫ tm-1

tm  QDens
*

(t) dt (47)
 

 

Error State Vector And Covariance m Cycle Propagation: 

 
xm = Φ tm,tm-1  xm-1 + v(tm,tm-1) x2ndm-1 (48) 

 
Pm = Φ tm,tm  Pm + 

1
2

 Qm
*

 ΦT
tm,tm  + 

1
2

 Qm
*

 (49)
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When m Corresponds To A Kalman Estimation n Cycle: 

 

 Take In Measurement zn 

 

 Pn(-) = Pm (50) 

 xn(-) = xm (51) 

 E xn(-)  = E x(tm)  (52) 

 
E Δz2ndi/n(-)  = Γin Pn(-) Tr (53)

 

 
Hni

*  =
_ Hni + xn

T
(-) Γni + Γni

T
  (54)

 

 

RMn =
_ GMn E nMn nMn

T
 GMn

T

RMn
*  =

_ RMn + E Δz2ndn(-)  E Δz2ndn
T

(-)

 (55 

 
z2ndn/i(-) = xn

T
(-) Γni xn(-)     or    z2ndn/i(-) = Γni xn(-) xn

T
(-) Tr (56)

 

 

Kn = 
Pn(-) Hn

*
T

- E xn(-)  E Δz2ndn
T

(-)
 

Hn
* Pn(-) Hn

*
T

 + RMn
*

- Hn
*  E xn(-)  E Δz2ndn

T
(-)

- Hn
*  E xn(-)  E Δz2ndn

T
(-)

T

-1

 (57)

 

 
zn = Hn xn(-) + z2ndn(-) (58)

 

 xn(+) = xn(-) + Kn zn - zn  (59) 

 
E xn(+)  = I - Kn Hn

*  E xn(-)  + Kn E Δz2ndn(-)  (60) 
 

 

Pn(+) = Pn(-) + Kn 

Hn
* Pn(-) Hn

*
T
 + RMn

*

- Hn
*  E xn(-)  E Δz2ndn

T
(-)

- Hn
*  E xn(-)  E Δz2ndn

T
(-)

T

 Kn
T

  
 (61) 

 

                         - Kn Pn(-) Hn
*
T
 - E xn(-)  E Δz2ndn

T
(-)

T

                         - Pn(-) Hn
*
T
 - E xn(-)  E Δz2ndn

T
(-)  Kn

T
 

Repeat Above At Kalman n Cycle Update Rate 
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Note in equations (43), (45), (46), (54), (55), (57), (60), and (61) that as the estimated 

error state vector uncertainty and its covariance are reduced, the second order 

augmentation terms in the revised Kalman filter adaptively reduce in magnitude, 

becoming negligible as the filter converges to a minimum error state uncertainty 

condition. 

 

 

SIMPLIFICATIONS 

 

If implemented exactly as shown, equations (44) and (45) would introduce a 

significant increase in computational requirements compared with the traditional first 

order Kalman filter approach.  By approximating Φ(tm,τ) in (44) and Φ t,tm-1  in (45) by 

identity, (45) simplifies to 

 

 
E x(t)  ≈ E xm-1  + (t - tm-1) E x2ndm-1  

 

so that for (45) and (47) 

 

∫ tm-1

tm  E x2ndm-1  E xm-1
T

 + E xm-1  E x2ndm-1

T
 dt

= E x2ndm-1  E xm-1
T

 + E xm-1  E x2ndm-1

T
 (tm - tm-1)

+ E x2ndm-1  E x2ndm-1

T
 (tm - tm-1)2

 
 

with which (45) - (47) become 

 

 

Qm = ∫ tm-1

tm  GP(t) QPDens(t) GP
T

 (t)  dt
 

Qm
*

 = Qm + E x2ndm-1  E x2ndm-1

T
 (tm - tm-1)2

+ E x2ndm-1  E xm-1
T

 + E xm-1  E x2ndm-1

T
 (tm - tm-1)

 

E xm  = E xm-1  + (tm - tm-1) E x2ndm-1

 (62)

 
 

Similarly, (48) would become 

 
xm = Φ tm,tm-1  xm-1 + (tm - tm-1) x2ndm-1

  (63)
 

 

With these approximations, Φ t,tm-1  would no longer be needed at each time point t, and 

Φ tm,tm-1  for (63) could be calculated using a more traditional approach, e.g., 

[3 - (15.1.2.1.1.3-37)]: 



 16

 

ΔΦm =
_ ∫ tm-1

tm
 A(t) dt           Φ tm,tm-1  ≈ eΔΦm

eΔΦm =
_ ΔΦm + 

1
2!

 ΔΦm
2

 + 
1
3!

 ΔΦm
2

 + 
 (64)

 

Thus, equations (44) - (48) would be replaced by (62) - (64) with only ΔΦm and Qm 

requiring integration operations over an m cycle (the same as for a traditional Kalman 

filter), and (44) - (49) would become: 

 

m Cycle Integrations: 

 
Qm = ∫ tm-1

tm  GP(t) QPDens(t) GP
T
 (t)  dt (65)

 

 
ΔΦm =

_ ∫ tm-1

tm
 A(t) dt (66)

 
 

Error State Vector And Covariance m Cycle Propagation: 

 Φ tm,tm-1  = eΔΦm (67) 

 xm = Φ tm,tm-1  xm-1 + (tm - tm-1) x2ndm-1
  (68) 

 

Qm
*

 = Qm + E x2ndm-1  E x2ndm-1

T
 (tm - tm-1)2

+ E x2ndm-1  E xm-1
T

 + E xm-1  E x2ndm-1

T
 (tm - tm-1)

 (69)

 

 
E xm  = E xm-1  + (tm - tm-1) E x2ndm-1  (70) 

 
Pm = Φ tm,tm  Pm + 

1
2

 Qm
*

 ΦT
tm,tm  + 

1
2

 Qm
*

 (71)
 

 

 

CONTROL RESETS 

 

In traditional Kalman filters it is common to make "control resets" at the Kalman 

filter cycle times whereby the estimated error state vector values are used as the basis for 

correcting the states being calculated in the system.  Simultaneously for compatibility, the 

estimated error state vector would be reset by the same correction.  [3 - Sect. 15.1.2] 

describes the control reset process for both an idealized computer that can make required 

calculations instantaneously, and a method for dealing with finite computation time 

limitations using "delayed control resets".  When using the second order Kalman 

approach described here, it is important that control reset operations are structured to 

avoid introducing second order errors in the reset process.  The example to follow 

illustrates how this can be done for a Kalman filter applied to a strapdown INS. 
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Note that when control resets are used, they are applied following a Kalman update, 

effectively nullifying xn(+).  For a traditional Kalman filter, this translates into nullifying 

xn(-) for the next Kalman cycle, thereby eliminating the need to propagate xn(+) over the 

next n cycle (except for real-time computational delay considerations [3 - Sect. 15.1.2]).  

When considering second order effects, however, xn(-) will not be nullified from the reset 

because it will build into a second order error from x2ndm-1 propagation in equation (48).  

However, xn(-) will be second order in magnitude so that the Hin
*

 augmentation terms in 

(54) will become negligible.  The result is that (54) can be eliminated, and Hin
*

 in (57) can 

be replaced with the traditional Hn form. 

 

It is recommended that if control resets are being used with a second order Kalman 

estimator, the [3 - Sect. 15.1.2] process should be applied rigorously to make sure that all 

second order effects are properly accounted for. 

 

 

STRAPDOWN INS EXAMPLE 

 

In a strapdown INS, angular orientation (attitude) and velocity are calculated by an 

integration process using gyro sensed angular rotation rates and accelerometer sensed 

force accelerations as input.  The governing differential equations being integrated are 

from [3 - Sects. 4.1 - 4.3]: 

 

 CB
N

 = CB
N

 ωIB
B

  ×  - ωIN
N

 ×  CB
N

 (72) 

 

 
v

N
 = CB

N
 aSF

B
 + gP

N
 - ωIN

N
 + ωIE

N
 × vN (73)

 
where 

 

VA ×  = Skew symmetric (or cross-product) form of general vector V  projected 

on general coordinate frame A axes (superscript), as represented by the 

square matrix 

0 - VZA VYA

VZA 0 - VXA

- VYA VXA 0

 in which VXA , VYA , VZA  are 

the components of VA.  The matrix product of VA ×  with another A 

frame vector column matrix equals the cross-product of V with the vector 

in the A frame, i.e., VA ×  WA = V × W
 A

. 

 

N = Navigation coordinate frame used for velocity determination (typically 

locally level with Z axis up). 
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B = Sensor coordinate frame (Body frame) to which the inertial sensors (gyros 

and accelerometers) are mounted, and that rotates with the vehicle 

containing the INS. 

 

I = Inertially non-rotating coordinate frame. 

 

E = Earth fixed coordinate frame that rotates at earth's rotation rate relative to the 

I frame. 

 

CB
N

 
= Direction cosine matrix that transforms a vector projected (coordinatized) 

on B frame axes (B subscript), to the same vector but coordinatized on N 

frame axes (N superscript). 

 

vN
 = Velocity of the INS relative to the earth, coordinatized along N frame axes 

(N superscript) 
 

ωIB
B

 = Angular rate of the B frame relative to the I frame (IB subscript) expressed 

in B frame (superscript) axes (the angular rate vector measured by gyros 

aligned with B frame axes). 

 

ωIE
N

 = Angular rate of the E frame relative to the I frame (IE subscript) expressed 

in N frame coordinates (N superscript). 

 

ωIN
N

 = Angular rate of the N frame relative to the I frame (IN subscript) expressed 

in N frame coordinates (N superscript). 

 

aSF
B

 = Specific force acceleration expressed in B frame (superscript) axes (the 

acceleration vector measured by strapdown accelerometers). 

 

gP
N = Plumb-bob gravity that equals the sum of earth's gravitational mass 

attraction plus earth's rotation centripetal acceleration effect.  Defined as 

such because gP
N lies along the direction of a plumb-bob under zero velocity 

conditions). 

 
 

The attitude and velocity equations implemented in the INS computer are identical in 

form to (72) and (73): 

 

 CB
B

 = CB
N

 ωIB
B

  ×  - ωIN
N

 ×  CB
N

 (74) 

 

 v
N

 = CB
N

 aSF
B

 + gP
N

 - ωIN
N

 + ωIE
N

 × v
N (75)
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Errors in the     parameters in (74) and (75) are defined as: 

 

 
δCB

N
 =
_ CB

N
 - CB

N
        δωIB

B
 =
_ ωIB

B
 - ωIB

B
        δωIN

N
 =
_ ωIN

N
 - ωIN

N
 (76) 

 

δvN =
_ v

N
 - vN        δaSF

B
 =
_ aSF

N
 - aSF

N

δωIE
N

 =
_ ωIE

N
 - ωIE

N
        δgP

N
 =
_ gP

N
 - gP

N
 (77)

 
where 

 

 δ   = Designation for errors that are small compared with  . 

 

 

Attitude Error Equation 

 

Derivation of the attitude error equation associated with (74) begins with substituting  

definitions (76) into (72): 

 

CB
N

 - δCB
N

 = CB
N

 - δCB
N

 ωIB
B

 - δωIB
B

  ×  - ωIN
N

 - δωIN
N

 ×  CB
N

 - δCB
N

= CB
N

 ωIB
B

  ×  - CB
N

 δωIB
B

 ×  - δCB
N

 ωIB
B

  ×  + δCB
N

 δωIB
B

 ×

- ωIN
N

 ×  CB
N

 + ωIN
N

 ×  δCB
N

 + δωIN
N

 ×  CB
N

 - δωIN
N

 ×  δCB
N

 (78) 

Substituting (74) for CB
N

 in (78): 

 

δCB
N

 = CB
N

 δωIB
B

 ×  + δCB
N

 ωIB
B

  ×  - δCB
N

 δωIB
B

 ×

- ωIN
N

 ×  δCB
N

 - δωIN
N

 ×  CB
N

 + δωIN
N

 ×  δCB
N

 (79) 

The δCB
N

 error is from (76): 

 
δCB

N
 =
_ CB

N
 - CB

N
 = I - CB

N
 CB

N T
 CB

N
 (80) 

where it has been assumed that the INS software is sufficiently accurate that computed 

direction cosine matrices satisfy orthogonality/normality constraints, hence, 

CB
N -1

 = CB
N T

.  Applying [3 - (3.5.2-8)] assigns the cause for the CB
N

 error to 

misalignment of the N frame.  Identifying the misaligned N frame as N gives: 

 

 
CB

N
 = CB

N
 = CN

N
 CB

N
      

or
     

CB
N

 = C
N

N
 CB

N

 
 

hence, from (80), 
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δCB

N
 = I - C

N

N
 CB

N
 (81)

 
 

Defining C
N

N

 
in terms of a rotation vector, the [3 - (19.1.3-3) & (19.1.3-7)] form can be 

used as a model: 

 

C
N

N
 = I + f1(γ) γN

 ×  + f2(γ) γN
 ×  γN

 ×

f1(γ) = 
sin γ

γ
 =1 - 

γ2

3 !
 +           f2(γ) = 

1 - cos γ

γ2
  =  

1
2

 - 
γ2

4 !
 + 

 (82)

 
where 

γN
 = Rotation angle error vector associated with the CB

N
 matrix considering the N 

frame to be misaligned, as projected on frame N axes. 

 

Substituting (82) in (81) then finds with no approximations: 

 

 
δCB

N
  =  - f1 γN

 ×  + f2 γN
 ×  γN

 ×  CB
N

 (83)
 

 

and 

 

δCB
N

 = - 
f1 γ

N
 ×  + f1 γN

 ×

+ f2 
d
dt

 γN
 ×  γN

 ×  + f2 γN
 ×  γN

 ×
 CB

N

- f1 γN
 ×  + f2 γN

 ×  γN
 ×  CB

N

 
 (84) 

 

= - 
f1  γ

N
 ×  + f1 γN

 ×

 + f2 
d
dt

 γN
 ×  γN

 ×  + f2 γN
 ×  γN

 ×
 CB

N

- f1 γN
 ×  + f2 γN

 ×  γN
 ×  CB

N
 ωIB

B
  ×  - ωIN

N
 ×  CB

N
 

 

Then substituting (83) and (84) in (79) obtains after rearrangement: 
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f1  γ
N

 ×  + f1 γN
 ×

 + f2 
d
dt

 γN
 ×  γN

 ×  + f2 γN
 ×  γN

 ×

- f1 γN
 ×  + f2 γN

 ×  γN
 ×  ωIN

N
 ×

=  - CB
N

 δωIB
B

 ×  - f1 γN
 ×  + f2 γN

 ×  γN
 ×  CB

N
 δωIB

B
 ×

- ωIN
N

 ×  f1 γN
 ×  + f2 γN

 ×  γN
 ×  + δωIN

N
 ×

+ δωIN
N

 ×  f1 γN
 ×  + f2 γN

 ×  γN
 ×

 (85)

 
 

From its definition, the cross-product matrix operator form of a vector is anti-

symmetric (i.e., the element in row i column j equals the negative of the element in row j 

column i).  It follows that the transpose of a cross-product operator matrix equals the 

negative of the matrix.  Based on this property, the transpose of (85) is: 

 

 

- f1 γ
N

 ×  - f1 γN
 ×

+ f2 
d
dt

 γN
 ×  γN

 ×  + f2 γN
 ×  γN

 ×

+ ωIN
N

 ×  - f1 γN
 ×  + f2 γN

 ×  γN
 ×

=  CB
N

 δωIB
B

 ×  + CB
N

 δωIB
B

 ×  - f1 γN
 ×  + f2 γN

 ×  γN
 ×

+ - f1 γN
 ×  + f2 γN

 ×  γN
 ×  ωIN

N
 ×  - δωIN

N
 ×

- - f1 γN
 ×  + f2 γN

 ×  γN
 ×  δωIN

N
 ×

 (86)

 
 

Subtracting (86) from (85), dividing by 2, and rearranging obtains: 

 

 

f1 γ
N

 ×  = - CB
N

 δωIB
B

 ×  + δωIN
N

 ×

+ f1 - ωIN
N

 + 
1
2

 δωIN
N

 + 
1
2

 CB
N

 δωIB
B

 ×  γN
 ×

- f1 γN
 ×  - ωIN

N
 + 

1
2

 δωIN
N

 + 
1
2

 CB
N

 δωIB
B

 ×

+ 
1
2

 f2 γN
 ×  γN

 ×  δωIN
N

 - CB
N

 δωIB
B

 ×

+ 
1
2

 f2 δωIN
N

 - CB
N

 δωIB
B

 ×  γN
 ×  γN

 ×  - f1 γN
 ×

 

or, after applying [3 - (3.1.1-22)] 
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f1 γ
N

 ×   = - CB
N

 δωIB
B

 ×  + δωIN
N

 ×

+ f1  - ωIN
N

 + 
1
2

 δωIN
N

 + 
1
2

 CB
N

 δωIB
B

 × γN
 ×

+ 
1
2

 f2 γN
 ×  γN

 ×  δωIN
N

 - CB
N

 δωIB
B

 ×

+ 
1
2

 f2 δωIN
N

 - CB
N

 δωIB
B

 ×  γN
 ×  γN

 ×  - f1 γN
 ×

 (87)

 
 

But from (83) and (87), 

 
f1 = 1 - 

γ2

3 !
 +  = order of γ2

           f1 = - 
γ
3

 γ +  = order of γ δωIN
 

hence, 

 

γ
N

 ×   = - CB
N

 δωIB
B

 ×  + δωIN
N

 ×

+  - ωIN
N

 + 
1
2

 δωIN
N

 + 
1
2

 CB
N

 δωIB
B

 × γN
 ×

+ order of γ2
 δωIN + order of γ2

 δωIB  
 

Therefore: 

 
γ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 - 
1
2

 δωIN
N

 - 
1
2

 CB
N

 δωIB
B

 × γN
 + δωIN

N
 + 

 
or 

 
γ
N

 ≈ - CB
N

 δωIB
B

 - ωIN
N

 × γN
 + δωIN

N
 + 

1
2

 CB
N

 δωIB
B

 + δωIN
N

 × γN
 (88)

 
 

Equation (88) would constitute one of the components of the (4) error state dynamic 

equations. The γ
N

 term would form part of the error state vector x.  The δωIB
B

 error term 

in (88) would typically be modeled as a sum of several error effects contributing to gyro 

error, each having its own error state dynamic equation portion of x.  The δωIN
N

 term in 

(88) is actually a function of the velocity error δvN
 (another component of x) and position 

error [3 - (12.3.4-11), -13), & -15)] the latter derived through an integration process on 

velocity (not included here). 

 

Equation (88) is the error rate equation associated with (74), the equation integrated 

for attitude updating in the INS computer.  Note that (88) is a function of error terms and 

parameters containing errors, the latter available in the INS computer (the same form as 

in general error state dynamic equation (4)).  This contrasts with the more typical error 

equations, e.g.,  [3 - Sects. 12.5.1 - 12.5.4], in which the navigation parameters are 

represented by their ideal values.  Equation (88) is in the form that would actually be 

used in the INS for a Kalman filter designed to estimate the error parameters.  This form 
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arises because of the derivation process followed from (78) in which the ideal attitude 

updating equation (72) was modified to be a function of computed minus error 

parameters. 

 

 

Velocity Error Equation 

 

Derivation of the velocity error equation associated with (75) begins with substituting 

definitions (77) and (76) into (73) and expanding: 

 

 

v
N

 - δv
N

 = CB
N

 - δCB
N

 aSF
B

 - δaSF
B

+ gP
N

 - δgP
N

 - ωIN
N

 + ωIE
N

 - δωIN
N

 - δωIE
N

 × v
N

 - δvN

=  CB
N

 aSF
B

  - δCB
N

 aSF
B

 - CB
N

 - δCB
N

 δaSF
B

 + gP
N

 - δgP
N

- ωIN
N

 + ωIE
N

 × v
N

 + δωIN
N

 + δωIE
N

 × v
N

+ ωIN
N

 + ωIE
N

 × δvN - δωIN
N

 + δωIE
N

 × δvN
 

 

or with (75) 

 

 

δv
N

 = δCB
N

 aSF
B

 + CB
N

 δaSF
B

 + δgP
N

 - δωIN
N

 + δωIE
N

 × v
N

- ωIN
N

 + ωIE
N

 × δvN

- δCB
N

 δaSF
B

 + δωIN
N

 + δωIE
N

 × δvN

 (89)

 
 

Substituting (83) for δCB
N

 in (89) finds with no approximations: 

 

 

δv
N

 = CB
N

 δaSF
B

 + f1 CB
N

 aSF
B

 × γN
 + δgP

N

- δωIN
N

 + δωIE
N

 × v
N

- ωIN
N

 + ωIE
N

 × δvN

- f2 CB
N

 aSF
B

 × γN
 × γN

 - f1 CB
N

 δaSF
B

 × γN

+ δωIN
N

 + δωIE
N

 × δvN + f2 CB
N

 δaSF
B

 × γN
 × γN

 

 (90)

  

Then substituting f1 and f2 from (82) and neglecting terms with third order error 

products, (90) becomes: 
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δv
N

 ≈ CB
N

 δaSF
B

 + aSF
N

 × γN
 + δgP

N

- δωIN
N

 + δωIE
N

 × v
N

- ωIN
N

 + ωIE
N

 × δvN

- 
1
2

 aSF
N

 × γN
 × γN

 - CB
N

 δaSF
B

 × γN
 + δωIN

N
 + δωIE

N
 × δvN

 (91)

  

Equation (91) would constitute one of the components of the (4) error state dynamic 

equations. The δvN
 term would form part of the error state vector x.  The δaSF

B
 error term 

in (91) would typically be modeled as a sum of several error effects contributing to 

accelerometer error, each having its own error state dynamic equation portion of x.  The 

δωIE
N

 and δgP
N

 terms in (91) are actually functions of the position error [3 - (12.3.4-13) & 

Sect. 12.2.4], the latter derived through an integration process on velocity (not included 

here). 

 

 

Impact On A Velocity Type Measurement 

 

A common measurement for an INS is the comparison between INS velocity and 

another input reference velocity (i.e., so-called "velocity matching").  Variations exist 

depending on the particular application (e.g., integrated velocity difference, position 

comparison), however, each in some form would be based on the velocity error δvN
 

(obtained from the integral of (91)). 

 

Consider, for example, when the measurement is formed directly from the difference 

between the INS computed velocity v
N

 and a reference velocity vREF
N

.  The difference 

v
N

 - vREF
N

 cancels the true velocity component vN in each, generating the measurement 

zN
 as a function of the errors (uncertainties) in each: 

 

 
zN = v

N
 - vREF

N
 = δvN - δvREF

N
 (92)

 
 

The δvN
 INS velocity error term in (92) is the integral of (91) whose pertinent terms 

for this discussion are with [3 - (3.1.1-16)]: 

 

 

δv
N

 = aSF
N

 × γN
 - 

1
2

 aSF
N

 × γN
 × γN

 + 

= aSF
N

 × γN
 + 

1
2

 γ2
 aSF

N
 - 

1
2

 aSF
N

 . γN
 γN

 + 
 (93)

 

The γ
N

 term in (93) is the integral of INS attitude error equation (88).  Over a short time 

interval t, (88) can be approximated by γ
N

 = - ωIN
N

 × γ0
N

 +   whose integral is 
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 γN
 = γ0

N
 - ωIN

N
 × γ0

N
 t +  (94) 

where γ0
N

 is the initial value of γ
N

 at t = 0.  Substituting (94) in (93), employing the vector 

triple cross-product identity [3 - (3.1.1-16)], and dropping the contribution of  ωIN
N

 × γ0
N

 t 
in the second order term as negligible, then gives 

   

 

δv
N

 = aSF
N

 × γ0
N

 - ωIN
N

 × γ0
N

 t  + 
1
2

 γ0
2
 aSF

N

- 
1
2

 aSF
N

 . γ0
N

 - ωIN
N

 × γ0
N

 t  γ0
N

 - ωIN
N

 × γ0
N

 t  + 
 (95) 

 

≈ aSF
N

 × γ0
N

 - aSF
N

 . γ0
N

 ωIN
N

 t + aSF
N

 . ωIN
N

 t  γ0
N

+ 
1
2

 γ0
2
 aSF

N
 - 

1
2

 aSF
N

 . γ0
N

 γ0
N

 + 
 

Equating γ0
N

 and aSF
N

 to the sum of their horizontal (H) and vertical components: 

 
γ0

N
 = γ0H

N
 + γ0Z

N
 uZ

N
       aSF

N
 = aSFH

N
 + aSFZ

N
 uZ

N
 (96) 

where 

 uZ
N

 = Unit vector along the Z axis of the N frame (vertical up), 

 

the horizontal (H) component of (95) then becomes: 

 

 

δvH
N

 = aSFZ

N
 uZ

N
 × γ0H

N
 + aSFH

N
 × uZ

N
 γ0Z

N

- aSF
N

 . γ0
N

 ωINH

N
 t + aSF

N
 . ωIN

N
 t  γ0H

N

+ 
1
2

 γ0
2
 aSFH

N
 - 

1
2

 aSF
N

 . γ0
N

 γ0H

N
 + 

 

 
= aSFZ

N
 uZ

N
 ×  + I aSF

N
 . ωIN

N
 t  γ0H

N
 - aSFH

N
 . γ0H

N
 ωINH

N
 t

- aSFZ
N

 ωINH

N
 t  γ0Z

N
 + aSFH

N
 × uZ

N
 γ0Z

N

+ 
1
2

 γ0
2
 aSFH

N
 - 

1
2

 aSFH
N

 . γ0H

N
 + aSFZ

N
 γ0Z

N
 γ0H

N
 + 

 (97)

 

Substituting γ0
2
 = γ0H

N
 . γ0H

N
 + γ0Z

N 2
 into 

1
2

 γ0
2
 aSFH

N
, combining with 

1
2

 aSFH
N

 . γ0H

N
 γ0H

N
 in 

the third row of (97), and applying the vector triple cross-product identity obtains the  

final result: 
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δvH
N

  = aSFZ
N

 uZ
N

 ×  + I aSF
N

 . ωIN
N

 t  γ0H

N
 - ωINH

N
 t  aSFH

N
 . γ0H

N

- aSFZ
N

 ωINH

N
 t  γ0Z

N
 + aSFH

N
 × uZ

N
 γ0Z

N

- 
1
2

 aSFH
N

 × γ0H

N
 × γ0H

N
 - 

1
2

 aSFZ
N

 γ0H

N
 γ0Z

N
 + 

1
2

 aSFH
N

 γ0Z

N 2
 + 

 (98)

 

In analyzing the significance of (98) next, it is important to recognize that aSFZ
N

 

consists of a vertical upward component to counteract gravity plus any additional vertical 

acceleration that would change the vertical velocity relative to the earth.  Thus, for 

predominantly horizontal maneuvering or for small total maneuvering, aSFZ
N

 would be 

approximately one g upward. 

 

The integral of (98) is the basic INS error input to the velocity type measurement 

being considered.  The first two lines of (98) are what would have been obtained by 

neglecting second order effects (all in the third line).  The aSFZ
N

 ωINH

N
 t  coupling in the 

second line is what makes γ0Z

N
 observable under non-maneuvering horizontal motion 

(when aSFH
N

 is zero).  Under horizontal motion, the coupling of γ0Z

N
 by aSFH

N
 × uZ

N
 in the 

second line would be much stronger than aSFZ
N

 ωINH

N
 t  due to the comparative smallness 

of aSFZ
N

 ωINH

N
 t  (particularly for small t).  Note also that under horizontal acceleration, 

the aSFH
N

 × uZ
N

 term in the second line dominates the second order aSFZ
N

 γ0H

N
 term in the 

third line (that would normally be neglected under traditional linear Kalman filter design 

practice).  Under small horizontal acceleration, however, the aSFZ
N

 γ0H

N
 second order term 

could also dominate the aSFH
N

 term in the third line, and under small t, would dominate 

the aSFZ
N

 ωINH

N
 t  term in the second line as well (i.e., during the initial phases of Kalman 

filter estimation).  Unless the second order aSFZ
N

 γ0H

N
 term is accounted for in the Kalman 

filter design, the result could be a mis-estimation of γ0Z

N
 heading error.  This is what was 

experienced at SAI under simulated stationary Kalman filter validation testing operations 

(discussed in the Introduction) which eventually led to preparation of this article. 

 

 

Applying Control Resets 

 

When correcting state parameter errors using control resets, it is important that higher 

order errors are not introduced, particularly when attempting to mitigate second order 

errors in the Kalman design/estimation process.  Reference [3 - Sect. 15.1.2.3] illustrates 

an exact reset method for the INS example being considered in which the state 
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parameters are corrected by subtracting the corresponding estimated error states.  For 

angular orientation states represented by a direction cosine matrix, the exact correction 

for estimated angular error state vector γ
N

components would be: 

 

 

CB
N

(+) = I + 
sin γ

γ
 γ

N
×  + 

(1 - cos γ)

γ
2

 γ
N

×
 2

 CB
N

(-) (99) 

 

where (-) and (+) refer to the errors states immediately before and after the direction 

cosine state parameter reset.  For a velocity control reset, the method is more straight 

forward and obvious: 

 

 
v

N
(+) = v

N
(-) - δv

N
 (100)

 

For the time instant when resets are being applied, the δv
N

 and γ
N

 estimated error state 

vectors would correspondingly be reset to zero.  When "delayed" rather than ideal control 

resets" are being used, the δv
N

 and γ
N

 resets would also account for additional error 

buildup before the control reset is applied [3 - Sect. 15.1.2]. 
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