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ABSTRACT 

 
This article defines a general analytical formula for combining a sequence of 

rotation vectors into a single rotation vector.  The basic concept has been 
traditionally used in strapdown inertial navigation systems (INSs) for converting 
(“summing-down”) rotation vectors calculated at high rate (to measure vibration 
induced high frequency angular motion) into a rotation vector for lower speed 
attitude updating.  It is shown how the formula also has application to integrated 
digital systems in which high speed rotation vectors are generated in a strapdown 
inertial measurement unit (IMU), then output to a separate system computer for 
lower rate attitude updating. 

 
INTRODUCTION 
 

Attitude (angular orientation) in a modern-day strapdown inertial navigation system (INS) is 
updated at a prescribed rate using a rotation vector.  For attitude represented as a direction cosine 
matrix, the operation would be as follows [4, 6, 10]: 
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where 
 

 n = Attitude update cycle index. 
 

 nC , 1nC −  = Direction cosine matrix at the n and n-1 attitude update cycle times. 
 

 nφ  = Rotation vector. 
 

 nφ  = Magnitude of nφ . 
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( )nφ ×  = Cross-product operator form of nφ  defined such that when formatted as a 

square matrix, its product with an arbitrary column-matrix formatted vector 
equals the cross-product of nφ with that vector, i.e., ( )n nV Vφ φ× = × .   

  
The equivalent to the (1) operation is also commonly performed using nφ  for attitude quaternion 
updating [13]. 

 
The rotation vector nφ  in (1) measures the change in angular orientation over the n-1 to n  

attitude update time interval and is calculated for INS application as an integration process using 
angular rotation rate measurements from an orthogonal set of strapdown gyros.  The rotation 
vector is analytically formed by calculating a “coning correction”, then adding it to the integrated 
gyro sensed angular rate over the attitude update time interval. 

 
 In a modern-day strapdown digital INS, a two-speed architecture is commonly used for 

attitude updating   The general concept was originated by the author in 1966 as a means for 
reducing computer throughput [3].  With the two-speed approach, attitude is updated at a basic 
computation speed using inputs generated by a high speed algorithm designed to accurately 
measure high frequency dynamic angular rotation effects (coning motion).  The original two-
speed concept was formulated as a truncated Picard expansion of integrated attitude change rate.  
The concept was refined in 1968 by Jordan [4] by defining the high speed operation as a rotation 
vector computation based on a linearized version of the Goodman-Robinson theorem [2].  In 
place of the truncated Picard expansion formula, attitude updating in [4] also incorporated an 
exact Euler attitude change formula (originally adopted in 1949 by Laning [1] for future 
strapdown inertial application). Subsequent two-speed formulations have used the Jordan 
framework, but with the rotation vector defined as an integrated approximation to the exact 
rotation vector rate equation originated by Laning in [1].  (The simplified Laning rotation vector 
rate equation is analytically identical to that derived by Jordan in [4] based on [2].)  Since 1969, 
further work on attitude updating has focused on sophisticated versions of the coning correction 
vector to accurately measure dynamic angular rate in vibration and maneuvering environments, 
e.g., [5, 7 - 8, 11-12]. 

 
Inherent in the design of two-speed algorithms must be a mechanism for converting high-

speed calculated coning corrections into a rotation vector suitable for lower speed attitude 
updating (a “summing-down” type of operation).  The basic sum-down concept has been 
imbedded in many attitude algorithm articles without specific analytical identification, e.g., [4, 6 
- 11].  The purpose of this article is to isolate the conversion operation as a general process 
applicable to attitude updating in general.  The analytical approach defines a generalized formula 
for combining a sequence of rotation vectors (each representing attitude change over a short time 
interval) into a single rotation vector representing attitude change over a longer time interval 
(e.g., for attitude updating). 
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BASIC ROTATION VECTOR ANALYTICS 
 
The rate of change of a rotation vector is given by the classical Lanning equation [1]: 
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where 
 

 φ  = Rotation vector that measures angular rotation from some reference time point. 
 

 ω  = Angular rate vector that would be measured by a strapdown gyro triad. 
 
The approximation to (1) commonly used in practice [4, 6 - 12] is 
 

 1
2
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The integral of (2) over a particular time interval provides the associated rotation vector for that 
time period: 
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where for the time period between arbitrary l computer cycles: 
 
 l  =  Computer cycle index for calculating lφ . 
 lα  = Integrated angular rate increment over the l cycle. 

lφ  = Rotation vector that measures angular rotation over the l cycle (i.e., from cycle time 

1lt −  to lt ). 

lφδ   = Commonly called the “coning correction” to integrated angular rate increment lα . 
 

A rotation vector can also be defined that measures angular rotation over an attitude updating 
time interval: 
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where 
 

 n  =  Attitude updating computer cycle index. 
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nφ  = Rotation vector that measures angular rotation between attitude update computer 
cycles n-1 and n. 

 

 nα  = Integrated angular rate increment over the n cycle. 
 

nφδ   = The “coning correction” vector used in calculating nφ  , the correction to 
integrated angular rate increment nα . 

 
This article derives the algorithm for converting a sequence of lφ  rotation vectors generated 

with (3) at computation rate l, into a single rotation vector spanning a longer n cycle time interval 
(a “summing-down” type operation).  The result is identical to what would have been generated 
directly using (4). 

 
ROTATION VECTOR SUM-DOWN CONVERSION ROUTINE 

 
The rotation vector sum-down routine derives from an expanded form of (4) with a redefined 

version of (3): 
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Substituting from (5) and (6) obtains for nφδ in (7): 
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Thus, for nφ in (7) with (5) for nα : 
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Identifying l lφδαΔ +  from (6) as rotation vector lφ  and substituting 1lα −  from (5), Eq. (9) 
then obtains the formula for rotation vector sum-down conversion:  
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Eq. (10 is a general expression showing how rotation vectors lφ  calculated at computation 

cycle rate l can be “summed-down” into a single rotation vector nφ  covering a slower n cycle 
time interval. 

 
AN INTERESTING APPLICATION 
 

In addition to the traditional sum-down operation employed in a strapdown INS, an 
interesting new application for (10) is within an integrated digital system containing a strapdown 
inertial measurement unit (IMU) and a separate system computer in which inertial attitude 
updating and other navigation operations are performed.  The IMU would contain the strapdown 
gyros with which rotation vector samples would be calculated at high speed as in (3).  The IMU 
computed rotation vector sequence would then be output to the system computer for attitude 
updating at a slower computation rate.  Conversion routine (10) would be used in the system 
computer to sum-down the IMU high rate rotation vector outputs into the equivalent rotation 
vector required for lower rate attitude updating. 

 
CONCLUSION 

 
This section hereby concludes the article. 
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