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ABSTRACT 
 

Point-To-Point Relativity is a revised form of traditional Relativity theory in which position is 
described as the distance vector between two points in space as viewed by observers translating 
relative to one-another.  Unlike traditional Relativity theory, the Point-to-Point approach avoids 
the use of relatively translating coordinate frames, space-time diagrams, world lines intersecting 
with space-time events, and the concept of space-time simultaneity.  In the Point-to-Point 
approach, distance vectors are represented as free vectors having no preferred location in 
coordinate frames in which they are described, and coordinate frames are used only as angular 
references for projecting vector quantities along their axes (as the dot product with mutually 
orthogonal coordinate frame unit vectors).  This article describes the Point-to-Point kinematic 
approach, deriving Point-to-Point Lorentz relationships between observers travelling relative to 
one-another and from this, analytically demonstrating Lorentz time dilation, distance contraction, 
and invariant proper time.  Overall results match their equivalents obtained using traditional 
Relativity theory.  As part of the Point-to-Point formulation, a new notation is developed to 
explicitly identify point-to-point distance-vectors/time-intervals measured by a particular 
observer, and their relationship with equivalent measurements taken by another observer.  A 
significant advantage for the new approach is eliminating the requirement for clock 
synchronization between the observers. 

 
 

1.0 INTRODUCTION 
 

Newton’s fundamental laws of motion state that the velocity of one spatial point relative to 
another is of the same magnitude but oppositely directed from the velocity of the second point 
relative to the first [1, pp. 423].  Einstein’s theory of Relativity generalized the Newtonian 
concept, stating that general laws of motion are the same for any observer [2 Chpt. 5, 3 pp. 177].  
A key element in Relativity theory is the early findings (e.g., Michelson and Morley [4]) that the 
velocity of electro-magnetic (e/m) radiation (i.e., the “velocity of light”) through space is the 
same when measured by any observer, regardless of whether the e/m emission source is in 
motion relative to the observer.  Theoretical investigations by Lorentz in1895 [5, Sect. II) used 
this principle and Maxwell’s electro-magnetic equations to describe the propagation of e/m 
waves in space as viewed by two observers in motion relative to one another.  A key result of 
these investigations was the Lorentz Transformation formulas relating distance and time 
measurements between the observers.  Among other significant findings, Einstein’s theory of 
Relativity leads to the same transformation formulas developed by Lorentz. 
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Both traditional Newtonian and Relativity theory describe relative motion in classical 
Cartesian coordinate frames that translate relative to one-another, with relative motion reported 
by observers translating with the coordinate frames.  In contrast, Point-to-Point kinematics 
describes relative motion in terms of the distance vector between two points in space as 
measured at two observation points translating relative to one-another.  Coordinate frames are 
only used as devices for numerically evaluating orthogonal components of relative motion vector 
parameters (position, velocity, acceleration).  As such, a Point-to-Point coordinate frame is 
represented by three orthogonal unit free vectors having no specific coordinate origin, with 
Point-to-Point vector components “along” coordinate frame axes numerically calculated as the 
dot product between the vector and the coordinate frame unit vectors. 

 
Point-to-Point kinematic theory was formally introduced in [6] based on a modified version 

of Newtonian dynamics.  For compatibility with Relativity theory, this article expands on the 
Point-to-Point kinematic approach so that observations of e/m wave propagation through space 
(at the “speed-of-light”) is the same for any observer.  As with traditional Relativity theory, the 
expanded Point-to-Point approach evolves into the requirement that both time and distance 
become interrelated parameters, dependent on the relative motion between observers.  Thus, 
Point-to-Point kinematics generate equivalent conclusions obtained by traditional Relativity 
theory relating kinematic parameters measured by observers that are in motion relative to one-
another; e.g., time dilation and distance contraction of comparative events, “proper time” 
invariance between observers, and the equivalent to Lorentz transformation operations. 

 
Formulations of traditional Relativity theory have typically included a hypothetical means to 

synchronize clocks between separated observers so that observed spatial events can be compared 
at common instants of time [2 Chpt. 8, 7 Sect. 12-2, 8 Chpt. VI Sect. 1].  This has typically 
involved a hypothesized clock measurement e/m message transfer procedure between observers 
while observing remote identifiable spatial events (or an instant of time when the separated 
observers are at the same spatial location).  Because the Point-to-Point approach is based on the 
distance between two remote events during the time interval between event occurrences, the need 
to account for clock time synchronization between observers is avoided. 

 
Point-to-Point kinematics is presented in this article in vector format for vector component 

evaluation in “non-rotating inertial space”, i.e., coordinate frames in which traditional Newtonian 
and Relativity theory have been defined to be valid.  Appendix A provides a measurable 
definition of non-rotating inertial coordinates based on the redefined Newtonian motion 
formulation in [6].  It will be assumed in this article that the Appendix A inertial space definition 
also applies for Relativity theory in general.  Planned future articles will expand on the results of 
this article for compatibility with projection on coordinate frames that are rotating relative to the 
Appendix A defined inertial space. 

 
As has been past practice in simplified derivations of traditional Relativity formulas, this 

article is based on a constant relative velocity between observers in non-rotating inertial space.  
Planned future articles will expand on these results to account for changing velocity between 
observers during the time interval that remote events are observed. 
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This article begins with a generalized analytical description of Point-to-Point kinematics in 
terms of the relative distance vector between two event points in space determined at two 
observation points, first for compatibility with Newtonian kinematic theory, then for 
compatibility with Relativity theory.  The result for Point-to-Point Relativity is the equivalent of 
the Lorentz transformation in traditional Relativity theory relating remote event distance 
measurements at one observation point to those at another that is in motion relative to the first.  
This article also analyzes degraded versions of the two-event/two-observer case; for two events 
occurring at two different times at a single point, and for two events occurring at two different 
times at one of the observation points. 

 
Based on the Lorentz transformation equivalency results, this article then demonstrates the 

Point-to-Point equivalent to Lorentz time dilation, length contraction, and proper time 
invariance, the latter in terms of infinitesimal distance changes over an infinitesimal time 
interval.  The article concludes with a derivation of the Point-to-Point equivalent to Lorentz 
velocity and acceleration transformation of remote points in relative motion as viewed by 
observers in motion relative to one-another. 

 
 

2.0 TERMINOLOGY 
 
2.1 Space-Time, Events, Observations, And Transformations 
 

For those familiar with inertial navigation, “space-time” in traditional Relativity parlance is a 
way of describing position locations at particular time points (commonly referred to as “time 
stamps”).  Thus, position with a time stamp is what has been defined as a location in four-
dimensional “space-time”, three being the traditional spatial position dimensions, the fourth 
being time.  An “event” in traditional Relativity theory is something that occurs instantaneously 
at a specific point in space-time [2 pp. 36, 7 pp. 515, 8 pp. 28].  Examples of events typically 
used in deriving Relativity equations are lightening strikes, reflected light signals, and reflections 
from radar transmissions [2 pp. 29, 7 pp. 521, 9 pp. 10].  This article will use similar 
terminology, but with the general understanding that an “event” analytically represents a 
particular location/time-instant, regardless of the example used to characterize it.  Symbols p and 
q will be used to identify event point locations, a and b will be used to identify location points 
where the events are observed, with points a and b being in motion relative to each other.  In 
some examples, an event may be defined to occur at one of the observation points at the event 
time instant, thereby classifying the observation point as an event at that instant of time. 

 
In traditional Relativity, “transformation” refers to a change in data measurements from one 

coordinate frame to another, both in linear motion relative to the other (e.g., the “Lorentz 
transformation” which is referred to extensively in this article).  The Point-to-Point Relativity 
equivalent to Lorentz transformation is referred to in this article as Lorentz “conversion”.  The 
word “transformation” will refer to transforming vector data from its component form in one 
coordinate frame to its component form in another, both at angular orientation relative to the 
other.  Those familiar with modern-day inertial navigation will recognize this as the process used 
in “transforming” accelerometer data measured in inertial sensor assembly coordinates (parallel 
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to user vehicle axes) to their equivalent form in navigation coordinates (e.g., a locally level 
reference frame). 

 
2.2 Basic Notation 
 

For compatibility with [6], the following basic notation is used in this article to describe 
spatial distance and time parameters measured by observers at particular spatial position 
locations.  For convenience to the reader, the definitions are repeated where they are first 
introduced, as are variations and other definitions introduced in the main text. 
 

i jx  = Distance vector between spatial points i and j at an arbitrary time instant.  

Appendix C shows how the distance vector from point i to j can be ascertained by 
an observer at point i using electro-magnetic (e/m) time of travel measurements 
from point i to point j, then reflected back to point i. 

 
Time instants 1 and 2 = Particular time instants when measurable events occur, at point p 

at time instant 1, and another at point q at time instant 2 (e.g., when radar 
transmitted e/m pulses were reflected from points p and q being tracked).  Time 
instant 2 is defined to be later than time instant 1.  An example is provided in 
Appendix D, showing how the time instant for an event can be ascertained on a 
clock located where the event is being observed.  

 
,1i jx , ,2i jx  = i jx  at time instants 1 and 2. 

 

1/pi ix , 2/qi ix  = Measured distance vector from observation point i to event point p at 

event time instant 1, and from point i to event point q at event time instant 2, both 
measured at point i (i = a or b). 

 

1 2/p q ix  = Distance vector from event point p at time instant 1 to event point q at time 

instant 2 as calculated at point i (i = a or b) from distance vector measurements 
taken at points a and b to event points p and q.  

 

1/a abx , 2/a abx  = Observer a measured distance vector (/a notation) from observation 

point a to observation point b at event time instants 1 and 2. 
 

,1 2/ab ax →Δ  = Change in the distance vector from point a to point b during the time 
interval from event time instant 1 to 2 as calculated at point a from 1/a abx  and 

2/a abx  measurements. 

 

1/b bax , 2/b bax  = Observer b measured distance vector (/b notation) from observation 

point b to observation point a at event time instants 1 and 2. 
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,1 2/ba bx →Δ  = Change in the distance vector from point b to point a during the time 
interval from event time instant 1 to 2 as calculated at point b from 1/b bax  and 

2/b bax  measurements. 

 
1 1/pb ax , 2 2/qb ax  = Distance vector from observation point b to event point p at time 

instant 1, and from observation point b to event point q at time instant 2, both 
estimated at observation point a based on measured values of 1/pb bx  and 2/qb bx .  

The estimation method depends on whether the basis is Newtonian or Relativity 
theory. 

 

1 1/pa bx , 22 /qa bx  = Distance vector from observation point a to event point p at time 

instant 1 and from observation point a to event point q at time instant 2, both 
estimated at observation point b based on measured values of 

1/pa ax  and
2/qa ax .  

The estimation method depends on whether the basis is Newtonian or Relativity 
theory.     

 
,1at , ,2at , ,1bt , ,2bt  = Event time instants 1 and 2 (1 occurring before 2) registered on 

clocks located at observation points a and b. 
 

,1 2at →Δ , ,1 2bt →Δ  = The time interval between event time instants 1 and 2 elapsed on the 
observation point a and b clocks. 

 
/ab av  = Rate of change of /ab ax  measured using a point a clock (i.e., velocity of point b 

relative to point a as measured at point a). 
 

/ba bv = Rate of change of /ba bx  measured using a point b clock (i.e., velocity of point a 
relative to point b as measured at point b). 

 
/ab bv  = The negative of /ba bv  (also shown to be /ab av , defined previously). 

 

 vu = Unit vector parallel to /ab av . 
 

abv  = Magnitude of /ab av (and of /ba bv ). 
 

 /1 2p q ix
⊥

= Component of 1 2/p q ix  perpendicular to vu (i = a or b). 
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3.0 POINT-TO-POINT KINEMATIC FUNDAMENTALS 
 

Consider two events in space-time, one occurring at spatial point p at time instant 1 (call it 
space-time point 1p ), the other at spatial point q at time instant 2 (call it space-time point 2q ).  
Consider two observers, one at point a, the other at point b, and that the observers can 
independently calculate the distance vector from their location to the 1p  and 2q events (e.g., as in 
the Appendix D example): 

 
 1 2 2 1 1 2 2 1/ / / / / /ap q q p p qa q pb ba a a b b bx x x x x x= − = −  (1) 

 
where 
 

1/pa ax , 2/aq ax  = Distance vectors from point a to point p at time instant 1, and from 

point a to point q at time instant 2, both measured at point a. 
 

1/pb bx , 
2/qb bx  = Distance vectors from point b to point p at time instant 1, and from 

point b to point q at time instant 2, both measured at point b. 
 

1 2/p q ax , 1 2/p q bx  = Distance vectors from point p at time instant 1 to point q at time 

instant 2 determined from the point a and b measurements. 
 
Figs. 1a and 1b illustrate the Eq. (1) geometry from the perspective of the point a and b 

observers. 
   

  
 
 Fig. 1a - Distance Vectors From Fig. 1b - Distance Vectors From 
 Observer a Viewpoint Observer b Viewpoint 

 
In Figs. 1a and 1b, 1p  and 2q refer to spatial points p and q at event time instants 1 and 2.  In 

Fig. 1a, 1b  and 2b  refer to the location of observation point b at event time instants 1 and 2.  In 
Fig. 1b, 1a  and 2a  refer to the location of observation point a at event time instants 1 and 2.  
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Included in the figures (for discussion to follow) are distance vectors from each observer to the 
other at time instants 1 and 2 ( 1/a abx , 2/a abx , 1/b bax , 2/b bax ), and the change in each 

observer’s /ab ax  measurements over the time instant 1 to 2 interval ( ,1 2/ab ax →Δ , ,1 2/ba bx →Δ ).  
Distance vectors that are directly measureable by each observer (as discussed previously) are 
shown as solid lines.  Dotted lines identify vectors that are calculated from the measurable  
vectors. 

Note, that because there is no preferred observation point in Newtonian or Relativity theory, 
a vector from point a to point b at a particular time instant will be equal in magnitude, but 
oppositely directed, from a vector from point b to point a at the same time instant.  Thus, the 

1/a abx  vector from observation point a to 1b  in Fig. 1a is equal in magnitude but oppositely 

directed from b to 1a  distance vector 1/b bax  in Fig. 1b.  Similarly, the 2/a abx  vector from 

observation point a to 2b in Fig. 1a, is equal in magnitude but oppositely directed from b to 2a  
distance vector 2/b bax  in Fig. 1b. 

 
Using the distance vector measurements between p and q events determined in (1), and the 

distance vectors between observers shown in Figs. 1a and 1b, each observer can deduce what the 
other should find for the distance vector between the p and q events.  First, we express the

2/aq ax , 1/pa ax , 
2/qb bx , and 

1/pb bx  measured terms in (1) as functions of measureable 

distances between a and b and observer immeasurable parameters 2 2/qb ax , 1 1/pb ax , 
22 /a bqx , 

1 1/pa bx :  

  
2 12 12 2 1 1

12 2 12 1 12

/ / /a / / /a

/ / / / / /

q q p pa ab ba a a a a ab b

q p pqa ab b b b b b b b b ba a

x x x x x x

x x x x x x

= + = +

= + = +
 (2) 

 
To illustrate the geometrical relationships between the Eqs. (2) parameters, portions of Figs. 

1a and 1b have been redrawn in Figs. 2a and 2b, but adding 2 2/qb ax , 1 1/pb ax , 
22 /a bqx , and

1 1/pa bx  observer immeasurable vectors (shown dotted).  In Figs. 2a, 2b, and in Eqs. (2): 

 

1 1/pb ax , 2 2/qb ax  = Distance vectors from point b to event points p and q at event time 

instants 1 and 2, both as determined at observation point a. 
 

1 1/pa bx , 
22 /a bqx  = Distance vectors from point a to event points p and q at event time 

instants 1 and 2, both as determined at observation point b. 
 

1/a abx , 2/a abx , 1/b bax , 2/b bax  = Measurements at points a and b of the distance vector 

between the two points at time instants 1 and 2. 
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 Fig. 2a - Construction of 2 2/qb ax  Fig. 2b - Construction of 

22 /a bqx    

 And 1 1/pb ax  By Observer a And 1 1/pa bx  By Observer b 

 
Substituting (2) in (1) obtains 

 

 

2 1 2 12 11 2 2 1 2 1

1 12 11 2 2 1 2 12 2

/ / /a / /a / / ,1 2/

/ / / / / / / ,1 2/

p q q p q pb b b ba a a a a a a ab ab b

p q p pa a a ab b b b b b b b b ba bq a a q

x x x x x x x x

x x x x x x x x
→

→

= + − − = − + Δ

= + − − = − + Δ
 (3) 

 
in which, as in Figs. 1a and 1b, 
 
 2 1 2 1,1 2/ /a /a ,1 2/ / /ab a a a ba b b b b bb b a ax x x x x x→ →≡ − ≡ −Δ Δ  (4) 

 
where 
 

,1 2/ab ax →Δ , ,1 2/ba bx →Δ  = Change in the distance vectors between points a and b during 
time instants 1 and 2 as determined at points a and b. 

 
Note that 1 1/pb ax  and 2 2/qb ax  in Fig. 2a appear equal to 

1/pb bx  and 
2/qb bx  in Fig. 2b.  

Also, that 1 1/pa bx  and 2 2/qa bx  in Fig. 2b appear equal to 1/pa ax  and 2/aq ax  in Fig. 2a.  That is 

because Figs. 1a, 1b and 2a, 2b were constructed from Eqs. (1) and (2) assuming these quantities 
would be equal, whether calculated or measured in the a or the b frames.  In Newtonian 
kinematic theory this would exactly be true.  In Relativity theory, however, it is only 
approximately true, the accuracy depending on the relative motion between points a and b during 
time instants 1 and 2. 
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3.1  Newtonian Formulation   
 
In Newtonian kinematic theory, distance vectors between two points are the same whether 

determined or calculated at point a or point b.  Thus, referring to Figs. 2a and 2b: 
 

 1 2 1 21 21 1 2 2 1 2/ / / / / / / /

Based on Newtonian kinematic theory: 

ap qap p q q p qb bb b a aa b a b b a b ax x x x x x x x= = = =  (5) 

 
Substituting (5) into (3) obtains 
 

 1 2 1 22 1

1 2 2 1 1 2

/ / / ,1 2/ / ,1 2/

/ / / ,1 2/ / ,1 2/

p q p qq pb ba b b ab a b ab a

ap q q p p qab a a ba b a ba b

x x x x x x

x x x x x x
→ →

→ →

= − + = +Δ Δ

= − + = +Δ Δ
 (6) 

 
 1 2 1 2 1 2 1 2/ / ,1 2/ / / ,1 2/p q p q p q p qb a ab a a b ba bx x x x x x→ →= − = −Δ Δ  (7) 

 
Figs. 3a and 3b illustrate the construction of 1 2/p q bx  and 1 2/p q ax  in (7) and their comparison 

with 1 2/p q bx  and 1 2/p q ax  from Figs. 1a and 1b. 

 

 
 

Fig. 3a - Point a Vector Construction of 1 2/p q bx  (On Left) Compared 

With The Point b Construction Of 1 2/p q bx  From Fig. 1b (On Right) 
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Fig. 3b - Point b Vector Construction of 1 2/p q ax  (On Right) Compared 

With The Point a Construction Of 1 2/p q ax  From Fig. 1a (On Left) 

 
The ,1 2/ab ax →Δ  and ,1 2/ba bx →Δ  terms in (6) and (7) can be expressed as functions of the 

relative velocity between points a and b during the interval between time instants 1 and 2.  From 
both traditional Newtonian and Relativity theory, the relative velocities between points a and b 
are equal and opposite with respect to each other’s time reference:  
 

 
/ / / / / /ab a ab a ba b ba b ba b ab a

a b

d d
v x v x v v

dt dt
≡ ≡ = −  (8) 

where 
 

/ab av  = Rate of change of /ab ax  as measured on the point a clock (i.e., velocity of point 
b relative to point a as measured at point a). 

 
/ba bv  = Rate of change of /ba bx as measured on the point b clock (i.e., velocity of point a 

relative to point b as measured at point b). 
 

Figs. 4a and 4b illustrate the Eq. (8) velocity vectors from the perspective of the point a and b 
observers. 

  
 
 Fig. 4a - Relative Velocity Vector Fig. 4b - Relative Velocity Vector 
 From Observer a Viewpoint From Observer b Viewpoint 
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We can also define: 
 
 / / /ab abab a v ab av u vv v≡ ≡  (9) 
 
so that from (8), 
 
 / / / /ab ab abab a v ba b ab a v ba bv u v v u vv v v= = − = − =  (10) 
 
where 
 

 vu = Unit vector parallel to /ab av . 
 

abv  = Magnitude of /ab av (and of /ba bv ). 
 

It is to be noted that from the basic definition of distance vectors between spatial points: 
 
 / /ba b ab bx x= −  (11) 
 
where 
 
 /ab bx   = Distance vector from point a to point b from the viewpoint of observer b. 
 
Then (for future use), based on / /ba b ab av v= −  in (8), the /ba bv definition following (8), and 
with (11): 
 

 / / / / /ab a ba b ba b ab b ab b
b b

d d
v v x x v

dt dt
= − = − = ≡  (12) 

where 
 

/ab bv = Rate of change of /ab bx  (the negative of /ba bx ) as measured on the point b clock 
(i.e., velocity of point b relative to point a as measured at point b). 

 
Per traditional introductory Relativity analytical design procedures, we now assume (and for 

the remainder of this article) that the relative velocity between points a and b will be constant.  
Then during the time interval between p and q event times 1 and 2, the ,1 2/ab ax →Δ  and 

,1 2/ba bx →Δ  distance vector changes in (6) and (7) will be from (8) and (10): 
  

 
,1 2 ,1 2,1 2/ /

,1 2 ,1 2,1 2/ /

a ab aab a ab a v

b ab bba b ba b v

x v ut v t

x v ut v t
→ →→

→ →→

= =Δ Δ Δ

= = −Δ Δ Δ
 (13) 

 
in which  
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 ,1 2 ,2 ,1 ,1 2 ,2 ,1a a a b b bt t t t t t→ →≡ − ≡ −Δ Δ  (14) 
 
where 
 

,1 2at →Δ , ,1 2bt →Δ  = Time interval time between p and q event time instants 1 and 2 as 
measured on the point a and b clocks. 

 
With (13), (7) becomes the classical Newtonian form [2 pp. 37, 7 pp. 508, 8 pp. 237, 9 pp.19]: 

 

 
1 2 1 2

1 2 1 2

,1 2 ,1 2 ,1 2/ /

,1 2 ,1 2 ,1 2/ /

p q p q ab a b ab a v

p q p q ab b a ba b v

x x uv t t t

x x uv t t t

→ → →

→ → →

= − =Δ Δ Δ

= + =Δ Δ Δ
 (15) 

 
Included in Eqs. (15) is the Newtonian kinematic assumption of equality between time intervals 
measured at points a or b. 
 
3.2  General Formulation For Newtonian And Relativity Compatibility 

 
To develop a general formulation that is compatible with either Newtonian and Relativity 

theory, means must be introduced in (15) to account for constancy in speed-of-light 
measurements when specializing to Relativity kinematics.  For the development, we first 
decompose the Eqs. (1) 1 2/p q ax , 1 2/p q bx  computed vectors and the 1/pa ax , 2/aq ax , 

1/pb bx , 

2/qb bx  measurable vectors, into components parallel and perpendicular to vu : 

  

 1 2 1 2 1 2 1 2/ // / / /1 2 1 2. .p q p qp q p q p q p qa ba a v v b b v vx x u u x x x u u x
⊥ ⊥

= + = +  (16)   

 

 

1 1 2 2

1 1 2 2

/ // / / /1 2

/ // / / /1 2

. .

. .

p qa aa ap p q qa a a aa a v v a a v v

p qp p q qb b b bb b b bb b v v b b v v

x x u u x x x u u x

x x u u x x x u u x
⊥ ⊥

⊥ ⊥

= + = +

= + = +
 (17) 

 
where 
 

/1 2p q ax
⊥

, /1 2p q bx
⊥

= Components of 1 2/p q ax  and 1 2/p q bx  perpendicular to vu . 

 
/1pa ax

⊥
, /2qa ax

⊥
, /1pb bx

⊥
, /2qb bx

⊥
= Components of 1/pa ax , 2/aq ax , 

1/pb bx , 
2/qb bx  

perpendicular to vu . 
 

Based on traditional Relativity theory, the components of either 1/pa ax , 2/aq ax , 
1/pb bx  or 

2/qb bx   parallel and perpendicular to abv  motion will be independent from one another, and the 

components perpendicular to vu  will be independent of abv induced Relativistic effects (i.e., 
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behave in classical (5) Newtonian fashion).  Thus, similar to [8 pp. 236], observer a finds using 
/ /1 1 1p pb a b bx x

⊥ ⊥
= and / /2 2 2q qb a b bx x

⊥ ⊥
= from (5): 

 

 
1 1 11 1 1 11

2 2 22 2 2 22

/ / / / /

/ / / / /

. .

. .

p p p ppbb b ba a v v b v v ba b

q q q qqbb b b aa a v v b v v b b

x x u u x x u u x

x x u u x x u u x

α

α
⊥ ⊥

⊥ ⊥

= + = +

= + = +
 (18) 

 
where 
 

α = Constant factor to account for the constancy in speed-of-light measurement law of 
Relativity theory, or for setting to unity for compatibility with classical 
Newtonian kinematics. 

 
From Relativity theory, there is no preferred observation point (i.e., kinematic laws are the same 
for any observer), hence, the equivalent to (18) for observer b would be: 
 
 21 1 2 21 / // / / /1 2. .p qa ap q qa ap aa aa b a v v b a v vx x u u x x x u u xα α

⊥ ⊥
= + = +  (19) 

 
Note that for α set to unity, both (18) and (19) become Newtonian theory equalities in (5) with 
(17). 
 

Substituting 1 2/p q ax  from (16) and 1 1/pb ax , 2 2/qb ax  from (18) into the (3) 1 2/p q ax  

expression obtains 

 

( )

1 2

2 1

2 1

1 2

// 1 2

/ // / ,1 2/2 1

/ // / ,1 2/2 1

// ,1 2/21

.

. .

.

.

p qp q aa v v

q pq pb bb b b bb v v b v v ab a

q pq pb b b b b bb b v v ab a

qpp q bb v v ab a

x u u x

x u u x x u u x x

x x u u x x x

x u u x x

α α

α

α

⊥

→⊥ ⊥

→⊥ ⊥

→⊥

+

= + − − + Δ

= − + − + Δ

= + + Δ

 (20) 

 
Similarly, substituting 1 2/p q bx  from (16) and 1 1/pa bx , 2 2 /qa bx  from (19) into the (3) 1 2/p q bx

expression finds 
 
 

1 2 1 2/ // / ,1 2/1 2 1 2. .p q p qp q p qb ab v v a v v ba bx u u x x u u x xα →⊥ ⊥
+ = + + Δ  (21) 

 
Substituting ,1 2/ab ax →Δ  and ,1 2/ba bx →Δ  from (13) into (20) and (21), with rearrangement, then 
obtains a generalized version of the (15) Newtonian distance vector formulas that are compatible 
with either Newtonian or Relativity theory, depending on the value used for α: 
 

 

1 2 1 2

1 2 1 2

,1 2/ // /1 2 1 2

,1 2/ // /1 2 1 2

. .

. .

p q p qp q p q ab ba ba v v b v v v

p q p qp q p q ab ab ab v v a v v v

x u u x x u u x uv t

x u u x x u u x uv t

α

α

→⊥ ⊥

→⊥ ⊥

+ = + + Δ

+ = + − Δ
 (22) 
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The vu components of (22) can be rearranged into 
 

 

( )
( ) ( )

1 2 1 2

1 2 1 2

,1 2/ /

,1 2 ,1 2/ /

1. .

1. 1 .

p q p q ab ba v v b v v v

p q p qab b ab bb v v v b v v v

x u u x u u uv t

x u u u x u u uv t v t

α

α

→

→ →

= + Δ

⎛ ⎞= + + − +Δ Δ⎜ ⎟
⎝ ⎠

  

  (23) 

( )
( ) ( )

1 2 1 2

1 2 1 2

,1 2/ /

,1 2 ,1 2/ /

1. .

1. 1 .

p q p q ab ab v v a v v v

p q p qab a ab aa v v v a v v v

x u u x u u uv t

x u u u x u u uv t v t

α

α

→

→ →

= − Δ

⎛ ⎞= − + − −Δ Δ⎜ ⎟
⎝ ⎠  

 
Substituting the 

1 2/ .p q a v vx u u expression from (23) into (16) yields: 

 

 ( )
1 2 1 2

1 2

,1 2// / 1 2

,1 2/

.

1 1 .

p qp q p q ab baa b v v v

p q ab bb v v v

x x u u x uv t

x u u uv tα

→⊥

→

= + + Δ

⎛ ⎞+ − + Δ⎜ ⎟
⎝ ⎠

 (24) 

 
Then, recognizing from the perpendicular components of (22) that / /1 2 1 2p q p qa bx x

⊥ ⊥
= , and 

that from (16), 
1 2 1 2// /1 2. p qp q p qbb v v bx u u x x

⊥
+ = , (24) becomes 

                                                                                                                                                                                    

( )1 2 1 2 1 2,1 2 ,1 2/ / /
1 1 .p q p q p qab b ab ba b v b v v vx x u x u u uv t v tα→ →

⎛ ⎞= + + − +Δ Δ⎜ ⎟
⎝ ⎠

 (25) 

 
Using the identical procedure for the 

1 2/ .p q b vx u  expression in (23), finds similarly for 1 2/p q bx : 

 

( )1 2 1 2 1 2,1 2 ,1 2/ / /
1 1 .p q p q p qab a ab ab a v a v v vx x u x u u uv t v tα→ →

⎛ ⎞= − + − −Δ Δ⎜ ⎟
⎝ ⎠

 (26) 

 
Eqs. (25) and (26) comprise a set of generalized distance vector conversion formulas (from 

observer b to a and from observer a to b) that are compatible with either Newtonian or Relativity 
theory.  For a complete conversion set (as in the (15) Newtonian formulation) it remains to find 
generalized equations for converting ,1 2bt →Δ  to ,1 2at →Δ  and ,1 2at →Δ  to ,1 2bt →Δ .    
 

Eqs. (25) and (26) can be inverted to find general solutions for the ,1 2at →Δ  and ,1 2bt →Δ  time 
intervals.  Taking the dot product of (26) with vu obtains with rearrangement: 

 

 ( )1 2 1 2 ,1 2/ /
1. .p q p q ab ab v a vx u x u v tα →= − Δ  (27) 
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Substituting 
1 2/ .p q b vx u  from (27) into (25) (dotted into vu ) and solving for ,1 2bt →Δ  then gives:  

 

 ( ) 1 2
2

,1 2 ,1 2 /
1 1 . /p qb a aba vx ut t vαα→ →
⎡ ⎤= − −Δ Δ⎢ ⎥⎣ ⎦

 (28) 

 
Similarly, dotting (25) into vu  and substituting the 

1 2/ .p q a vx u  result into (26) (dotted into 

vu ) solves for ,1 2at →Δ : 
 

 ( ) 1 2
2

,1 2 ,1 2 /
1 1 . /p qa b abb vx ut t vαα→ →
⎡ ⎤= + −Δ Δ⎢ ⎥⎣ ⎦

 (29) 

 
Eqs. (25), (26), (28), and (29) summarize as follows 
 

 

( )
( )

( )
( )

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2

,1 2 ,1 2/ / /

2
,1 2 ,1 2 /

,1 2 ,1 2/ / /

2
,1 2 ,1 2 /

1 1 .

1 1 . /

1 1 .

1 1 .

p q p q p qab b ab ba b v b v v v

p qa b abb v

p q p q p qab a ab ab a v a v v v

p qb a a

x x u x u u uv t v t

x ut t v

x x u x u u uv t v t

xt t

α

αα

α

αα

→ →

→ →

→ →

→ →

⎛ ⎞= + + − +Δ Δ⎜ ⎟
⎝ ⎠

⎡ ⎤= + −Δ Δ⎢ ⎥⎣ ⎦

⎛ ⎞= − + − −Δ Δ⎜ ⎟
⎝ ⎠

= − −Δ Δ / abvu v⎡ ⎤
⎢ ⎥⎣ ⎦

 (30) 

 
Eqs. (30) constitute a generalized set of Point-to-Point kinematic conversion formulas that 

are compatible with either Newtonian or Relativity theory.  The distinguishing characteristic 
between either is the value selected for the α constant.  When α = 1, Eqs. (30) reduce to the 
classic (15) Newtonian form.  For compatibility with Relativity theory, α must be set so that the 
speed-of-light constancy law is satisfied. 

 
3.3 Setting Alpha For Relativity Compatibility 
 

For compatibility with Relativity theory, α is used to account for experimental and theoretical 
findings that the speed of light (or any electro-magnetic wave speed in open space) is the same 
constant to any observer.  Thus, consider what observers a and b would measure for the distance 
a photon of light would travel during the 1 2t →Δ  time interval.  Each observer would find the 
distance between event points 1 and 2 to be 1 2t →Δ  times the speed of light, or relative to each 
observer: 

 

 ( ) ( )1 2 1 2 1 2 1 2
2 22 2

,1 2 ,1 2/ / / /. .a br r r r r r r ra a b bx x x xc t c t→ →= =Δ Δ  (31) 

 
where 
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 ir   =  Photon location at event time i. 
 

1 2/r r ax , 1 2/r r bx   =  Distance vector between photon locations 1r  and 2r at times 1t  and 

2t  as determined at points a and b. 
 
 c  =  Speed of light. 
 
Recognizing that 

1 2/p q ax  and 
1 2/p q bx  are defined in (16) as being composed of components 

parallel to and perpendicular to vu  allows (31) to be written in the equivalent form: 
 

 
( ) ( )

( ) ( )

2 22
,1 2/ // 1 2 1 21 2

2 22
,1 2/ // 1 2 1 21 2

. .

. .

br r r rr r b bb v

ar r r rr r a aa v

x u x x c t

x u x x c t

⊥ ⊥

⊥ ⊥

→

→

+ = Δ

+ = Δ

 (32)  

 
Taking the difference between the (32) expressions then finds 
 

( ) ( )
( ) ( )

2 2
/ /1 2 1 2

2 22
,1 2 ,1 2 / / / /1 2 1 2 1 2 1 2

. .

. .

r r r rb v a v

b a r r r r r r r rb b a a

x u x u

x x x xc t t
⊥ ⊥ ⊥ ⊥→ →

−

⎡ ⎤= − − +Δ Δ⎢ ⎥⎣ ⎦

 (33) 

 
For this exercise it is convenient to use the equivalent (22) form of (30).  Identifying 1r  and 

2r  as “events” in accordance with the Section 2.1 definition, and recognizing that general Eqs. 
(22) apply for any two events occurring at time instants 1 and 2, (22) will remain valid for 

1 2/r r ax , 1 2/r r bx substituted for 1 2/p q ax , 1 2/p q bx .  Thus, distance vector Eqs. (22) become 

  

 
1 2 1 2

1 2 1 2

,1 2/ // /1 2 1 2

,1 2/ // /1 2 1 2

. .

. .

ab br r r rr r r ra ba v v b v v v

ab ar r r rr r r rb ab v v a v v v

x u u x x u u x uv t

x u u x x u u x uv t

α

α
→⊥ ⊥

→⊥ ⊥

+ = + + Δ

+ = + − Δ
 (34) 

 
The components of (34) parallel to and perpendicular to vu  can be written individually as 
 

 
1 2 1 2

1 2 1 2

,1 2/ /

,1 2/ /

/ /1 2 1 2

. .

. .
ab br r r ra v b v

ab ar r r rb v v a v

p q p qb a

x u x u v t

x u u x u v t

x x

α

α
→

→

⊥ ⊥

= + Δ

= − Δ

=

 (35) 

 
Solving for 1 2/ .r r b vx u  from the first expression in (35) and substitution in the second obtains 

with rearrangement: 
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 ( ) ( )1 2
2

,1 2 ,1 2/1 . ab b ar r a vx u v t tαα → →− = −Δ Δ  (36a) 

 
Similarly, solving for 1 2/ .r r a vx u  from the second expression in (35) and substitution in the first 

obtains: 
 
 ( ) ( )1 2

2
,1 2 ,1 2/1 . ab b ar r b vx u v t tαα → →− = −Δ Δ  (36b) 

 
Squaring (36a), (36b), and taking their difference then gives 
 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

2 222
/ /1 2 1 2

2 22
,1 2 ,1 2 ,1 2 ,1 2

2 22 2
,1 2 ,1 2

1 . .

1

r r r rb v a v

b a b aab

b aab

x u x u

t t t tv

t tv

α

α α

α

→ → → →

→ →

⎡ ⎤
− −⎢ ⎥

⎣ ⎦
⎡ ⎤= − − −Δ Δ Δ Δ⎢ ⎥⎣ ⎦

⎡ ⎤= − −Δ Δ⎢ ⎥⎣ ⎦

 (36c) 

or 
 

( ) ( ) ( ) ( ) ( )2 2 2 222
,1 2 ,1 2/ /1 2 1 21 . . b aabr r r rb v a vx u x u t tvα → →

⎡ ⎤ ⎡ ⎤− − = −Δ Δ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 (36d) 

 
which is (33) multiplied by ( )21 α− .  Substituting (33) in (36d) and applying the third expression 

from (35) finds 
 

 ( ) ( ) ( ) ( ) ( )2 2 2 222 2
,1 2 ,1 2 ,1 2 ,1 21 b a b aabc t t t tvα → → → →

⎡ ⎤ ⎡ ⎤− − = −Δ Δ Δ Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (36e) 

or 
 ( ) 22 21 abc vα− =  (36f) 

 
Eq. (36f) is then easily solved for α, yielding the well-known Relativity coefficient form: 
 
 2 21 /abv cα = −  (37) 
 
3.4 Point-To-Point Lorentz Conversion Formulas 
 

With α now in hand from (37), substitution in (30) with 21 α−  from (36f) obtains the general 
Point-to-Point conversion formulas: 
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( )
( )

( )

1 2 1 2 1 2

1 2

1 2 1 2 1 2

,1 2 ,1 2/ / /2 2

2
,1 2 ,1 2 /2 2

,1 2 ,1 2/ / /2 2

,1 2 2

1 1 .
1 /

1 . /
1 /

1 1 .
1 /

1

1

p q p q p qab b ab ba b v b v v
ab

p qa b abb v
ab

p q p q p qab a ab ab a v a v v
ab

b
ab

x x u x u uv t v t
v c

x ut t v c
v c

x x u x u uv t v t
v c

t

→ →

→ →

→ →

→

⎛ ⎞
⎜ ⎟= + + − +Δ Δ⎜ ⎟−⎝ ⎠

= +Δ Δ
−

⎛ ⎞
⎜ ⎟= − + − −Δ Δ⎜ ⎟−⎝ ⎠

=Δ
−

( )1 2
2

,1 2 /2
. /

/
p qa aba vx ut v c

v c
→ −Δ

(38) 

 
Eqs. (38) can be converted to a more traditional form by first substituting / / abv ab au v v=  from 
(9) as follows: 
 

( )
( )

( )

1 2 1 2

1 2 1 2

1 2

,1 2 ,1 2/ / /

2 2
,1 2 ,1 2/ / / / / / /

2 2
,1 2/ / /

. .

. / . /

. /

p q p qab b bb v v b v v ab a

p q p qb bb ab a ab a ab a b ab a ab aab ab

p q bb ab a ab aab ab

x u u x u u vv t t

x v v v x v vv t v t

x v vv t v

→ →

→ →

→

+ = +Δ Δ

= + = +Δ Δ

= + Δ

 

 ( )2 2
,1 2 ,1 2/ / / /. .b bab a ab a ab a ab aab abv v v vv v t t→ →= =Δ Δ  (39) 

( ) ( )

( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2

2 2 2
,1 2 ,1 2/ / / / / / /

2
,1 2 ,1 2/ / / / /

2
,1 2 ,1 2/ / / / /

. / . /

. . /

. . /

p q p qb bb ab a ab a b ab a ab a ab aab ab ab

p q p qab b bb v v b ab a ab a ab a ab

p q p qab a aa v v a ab a ab a ab a ab

x v v x v v vv t v t v

x u u x v v vv t t v

x u u x v v vv t t v

→ →

→ →

→ →

+ = +Δ Δ

∴

+ = +Δ Δ

− = −Δ Δ

 

 
Using the (39) result, / / abv ab au v v= from (9), and recognizing from (12) that / /ab a ab bv v= , 
Eqs. (38) then become 
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( )
( )

( )

1 2 1 2

1 2

1 2

1 2 1 2

1 2

,1 2/ / /

2
,1 2/ / / /2 2

2
,1 2 ,1 2 / /2 2

,1 2/ / /

,1 2/ / /2 2

1 1 . /
1 /

1 . /
1 /

1 1 .
1 /

p q p q ba b ab b

p q bb ab b ab b ab b ab
ab

p qa b b ab b
ab

p q p q ab a ab a

p q aa ab a ab
ab

x x v t

x v v vt v
v c

x vt t c
v c

x x v t

x v t
v c

→

→

→ →

→

→

= + Δ

⎛ ⎞
⎜ ⎟+ − + Δ⎜ ⎟−⎝ ⎠

= +Δ Δ
−

= − Δ

⎛ ⎞
⎜ ⎟+ − − Δ⎜ ⎟−⎝ ⎠

( )1 2

2
/

2
,1 2 ,1 2 / /2 2

/

1 . /
1 /

a ab a ab

p qb a a ab a
ab

v v v

x vt t c
v c

→ →= −Δ Δ
−

 (40)                                              

 
Eqs. (40) are the Point-to-Point conversion equivalent of the general Lorentz transformation 
operations in traditional Relativity theory [9 pp. 30]. 
 
3.4.1 Point-to-Point Geometrical Interpretation of Lorentz Conversion 
 

For almost all applications, approximating 2 21 /abv c−  by unity (i.e., α in general Eqs. (30) 
set to one as in Newtonian kinematics), creates negligible error.  For example, if abv = 1.E3 

meters per second (and as usual, c = 3.E8 meters per second), 2 201 .5  /abv cα = − +  
1 5.6E-12 1−= + ≈ .  For situations when abv  is unusually large (e.g., particle motion 

generated by a cyclotron), or when very small time intervals are important to system accuracy 
(e.g., Global Positioning System - GPS pseudo-range measurements), approximating α by unity 
is not acceptable, and the full 2 21 /abv c−  forms must be used. 

 
To illustrate the effect of 2 21 /abv c−  deviating significantly from unity, consider a case 

when 0.866ab cv = (corresponding to 2 21 / 0.5abv c− =  and 2 2/ 0.75abv c = ), and when observer 
b sees the p and q events at time instants 1 and 2 occurring simultaneously (i.e., ,1 2 0bt → =Δ ).  
Under this condition, (38) shows that 1 2 1 2 1 2/ / / .p q p q p qa b bx x x u uυ υ= + .  Fig. 5a illustrates the 

vector construction of 1 2/p q ax  from 1 2/p q bx  using this formula. 

 
The equivalent construction of 1 2/p q bx  from 1 2/p q ax  under the previous conditions, derives 

from the last two equations in (38).  The ,1 2bt →Δ equation in (38) shows that for 2 2/ 0.75abv c =  
and ,1 2 0bt → =Δ , the time interval between the p and q events observed on the point a clock will 
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be 
1 2,1 2 /0.75 . /p qa aba vx ut v→ =Δ .  Substituting this with 2 21 / 0.5abv c− =  into the (38) 

1 2/p q bx  equation finds that 
1 2 1 2 1 2/ / / .0.75p q p q p qb a a v vx x x u u= −  

( )1 2 1 2 1 2 1 2/ / / /. . .0.50.75p q p q p q p qa v a v v a a v vx u x u u x x u u+ = −− .  Fig. 5b illustrates how 

this result can be used to reconstruct 1 2/p q bx  from the 1 2/p q ax  value in Fig. 5a, thereby 

regenerating the original Fig. 5a 1 2/p q bx  vector. 

 

 
 

 Fig. 5a - Constructing 1 2/p q ax  Fig. 5b - Constructing 1 2/p q bx  

  From 1 2/p q bx When ,1 2 0bt → =Δ    From 1 2/p q ax When ,1 2 0bt → =Δ  

 
A similar analysis/construction can be performed for a case when the p and q events at time 

instants 1 and 2 occur simultaneously at point a (i.e., ,1 2 0at → =Δ ), leading to similar results (left 
as an exercise for the reader). 

 
3.4.2 Simplified Point-to-Point Lorentz Conversion Notation 
 

Now that the meaning of time and distance parameters in (40) have been clearly established, 
a simplified notation can be introduced that deletes the time instant 1 and 2 notation, treating all 
parameters as general variables: 

 

( )

( )

2
/ // / / / / / /2 2

2
/ / / /2 2

1 1 . /
1 /

1 . /
1 /

pq b pq bpq a pq b ab b pq b ab b ab b ab b ab
ab

pq a pq b pq b ab b
ab

x x v x v v vt t v
v c

x vt t c
v c

⎛ ⎞
⎜ ⎟= + + − +Δ Δ⎜ ⎟−⎝ ⎠

= +Δ Δ
−

 (41) 

Continued 
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(41) Concluded 
 

( )

( )

2
/ // / / / / / /2 2

2
/ / / /2 2

1 1 . /
1 /

1 . /
1 /

pq a pq apq b pq a ab a pq a ab a ab a ab a ab
ab

pq b pq a pq a ab a
ab

x x v x v v vt t v
v c

x vt t c
v c

⎛ ⎞
⎜ ⎟= − + − −Δ Δ⎜ ⎟−⎝ ⎠

= −Δ Δ
−

 

where 
 

/pq ax , /pq bx  = Distance vector from event point p to event point q based on 

observations of the events at points a and b. 
 

/pq atΔ , /pq btΔ  = Time interval between the p and q events based on time measurements for 
the events at points a and b. 

 
3.4.3 Point-To-Point Lorentz Conversion Vector Components 
 

Most past works in Relativity theory have expressed derivations and results in terms of 
component projections on coordinate frame axes.  Equivalent results are generated with the Point-to-
Point approach by first expressing Point-to-Point conversion formulas (41) in equivalent matrix 
format as described in Appendix B.  For example, consider two inertially non-rotating coordinate 
frames, one at angular orientation relative to the other.  Define the first as coordinate frame A in 
which the X axis is aligned with the point b to point a velocity vector /ab av , the second as coordinate 
frame B at some general angular orientation relative to frame A.  Appendix B shows how the angular 
orientations between the two frames can be represented as a direction cosine matrix in which rows 
and columns represent unit vectors along the coordinate frame axes.  Based on the A and B frame 
definitions, we then define the components of /pq ax , /pq bx , and /ab av  as elements of column 

matrices: 
 

A/ A/ B/ B/
A A B B

A/ A/ B/ B// / / /

A/ A/ B/ B/

XB
A A B B A A B

YB/ / / / / / /

ZB

0 . .
0

a b a b

a b a bpq a pq b pq a pq b

a b a b

ab a ab b ab a ab b ab a ab a ab a a

X X X X
x x x xY Y Y Y

Z Z Z Z
V V

Vv v v v v v vV
V

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥≡ ≡ ≡ ≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ≡ = ≡ ≡ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

B
/

2 2 2 2

b a

XB YB ZB

v

V V V V= + +

 (42) 

where 
 

A( ) , B( )  = Column matrices with elements equal to the projections of vector ( )  on 
coordinate frame A and B axes.  Note - Vector ( )  projections on coordinate frame A 
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or B axes are defined as the dot product of ( )  with the mutually orthogonal unit 
vectors that define coordinate frames A and B. 

 
V  = Magnitude of /ab av  (and of /ab bv since from (12), they are equal). 
 

Eqs. (41) are then converted to the equivalent matrix form by replacing all vectors with their 
equivalent column matrix forms (as in (42) by adding coordinate frame designation superscripts A or 
B for conversion to A or B frame coordinates ), replacing all ( ) column matrix dot-product 

operations ( ).with the matrix transpose operator equivalent ( )T , and replacing all cross-product 
operations ( )×  with the square matrix operator equivalent [ ]( )×  defined for a general vector W  in 

the A frame as 
XA ZA YA

A A B
YA ZA XA

ZA YA XA

0
0 and similarly for 

0

W W W
W W WW W W

W W W

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤= × = −⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

.  It 

is easily shown by standard matrix algebra that for an arbitrary vector U , the column matrix form of 

cross-product vector W U×  in the A frame, i.e., ( )AW U× , equals A AW U⎡ ⎤×⎣ ⎦ (and similarly for the 

B frame).  The individual components of (41) projected on coordinate frame A or B axes are then 
obtained by substituting (42) for column matrices in the converted (41) matrix equations, carrying out 
the indicated matrix operations, and identifying the rows of the result as the equations for individual 
components.  The result for (41) projections on A frame axes (including /pq atΔ  and /pq btΔ ) is 

 

 

( )

( )

( )

( )

A/ A/ A/ A/ A/ A//2 2

2
A// /2 2

A/ A/ A/ A/ A/ A//2 2

2
A// /2 2

1

1 /
1 /

1 /
1

1 /
1 /

1 /

a b a b a bpq b

bpq a pq b

b a b a b apq a

apq b pq a

V tX X Y Y Z Z
V c

t t V cX
V c

V tX X Y Y Z Z
V c

t t V cX
V c

= + = =Δ
−

= +Δ Δ
−

= − = =Δ
−

= −Δ Δ
−

 (43) 

 
The (43) form is what is known in Relativity theory as the “standard configuration” of the Lorentz 
Transformation [2 pp. 37, 7 Eqs. (12-7a) & (12-7b), 8 Eqs. (70a) & (70b), 9 Eqs. (10.41) - (10.44)].  
In traditional Relativity theory, the a and b observer distance vector components and time intervals in 
(43) would correspond to what would be measured in two coordinate frames that are translating at 
velocity V relative to each other in the X coordinate axis direction. 
 

Following the same procedure used to obtain the (41) frame A components, projections of (41) on 
B frame coordinate axes finds 
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( )
( )
( )

B/XB XB /

XB
B/ B/ Y/XB / YB YB /22 2

Z/ZB ZB /

1 1
1 /

b pq b

a b bpq b pq b

b pq b

V V tX
VV t V V tX X X
VV c

V V tX

⎛ ⎞+ Δ
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟= + + − + +Δ Δ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎜ ⎟⎜ ⎟+ + Δ⎝ ⎠

 

( )
( )
( )

B/XB XB /

YB
B/ B/ Y/YB / YB YB /22 2

Z/ZB ZB /

1 1
1 /

b pq b

a b bpq b pq b

b pq b

V V tX
VV t V V tY Y X
VV c

V V tX

⎛ ⎞+ Δ
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟= + + − + +Δ Δ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎜ ⎟⎜ ⎟+ + Δ⎝ ⎠

  (44) 

( )
( )
( )

( )

B/XB XB /

ZB
B/ B/ Y/ZB / YB YB /22 2

Z/ZB ZB /

B/ B// / YB ZBXB B/22 2 2

1 1
1 /

1 1

1 / /

b pq b

a b bpq b pq b

b pq b

b bpq a pq b b

V V tX
VV t V V tZ Z X
VV c

V V tX

Xt t V VV Y Z
cV c c

⎛ ⎞+ Δ
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟= + + − + +Δ Δ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎜ ⎟⎜ ⎟+ + Δ⎝ ⎠

⎛ ⎞= + + +Δ Δ⎜ ⎟
⎝ ⎠−

 

 
Eqs. (44) are the general version of the Lorentz Transformation [7 Eqs. (12-5a), 9 Eqs. (10.32) - 
(10.33) & (10.36) - (10.37)].  In traditional Relativity theory, the a and b observer distance 
vector components and time intervals in (44) would correspond to what would be measured in 
two coordinate frames translating relative to each other at relative velocity magnitude V and 
components XBV , YBV , ZBV .  The same procedure leading to (44) would be used to obtain B 
frame /pq bx  components and /pq btΔ  in terms of A frame /pq ax  components and /pq atΔ . 

 
Eqs. (44) can also be derived by transforming (43) from the A frame to the B frame using an 

A to B frame direction cosine matrix (left as an exercise for the reader - see Appendix B).  It is 
interesting to note that [9 Sect. 10] used the direction cosine transformation method to derive 
(44), and that the (41) general vector form was then deduced from (44).  In comparison, this 
article used a direct vector design approach to derive general vector Eqs. (41) with the (43) and 
(44) vector component equations then obtained by projection of (41) on coordinate frame A and 
B axes. 
 
 

4.0 THREE-POINT AND TWO-POINT FORMULATIONS 
 

The analytical developments thus far have been based on a four-point approach; two 
observation points and two distinct points where events occur.  This section analyzes cases 
where events occur at the same point but at different times; a three-point approach where the 
event point is remote from the observation points, and a two-point formulation in which events 
occur at one of the observation points. 
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4.1 Three-Point Approach 
 

Consider a case in which event point q at time instant 2 is defined to be point p that has 
moved from its time instant 1 location to a new location at time instant 2.  Using this concept, 
Point-to-Point Lorentz conversion formulas (40) become: 
 

 

( )

( )

,1 ,1

,1

,1

,1 ,1

,1

,1 22/ 2/ /

2
,1 22/ / / /2 2

2
,1 2 ,1 2 2/ /2 2

,1 22/ 2/ /

2/2 2

1 1 . /
1 /

1 . /
1 /

1 1
1 /

bp a p b ab b

bp b ab b ab b ab b ab
ab

a b p b ab b
ab

ap b p a ab a

p a ab
ab

x x v t

x v v vt v
v c

x vt t c
v c

x x v t

x
v c

→→ →

→→

→ → →

→→ →

→

= +Δ Δ Δ

⎛ ⎞
⎜ ⎟+ − +Δ Δ⎜ ⎟−⎝ ⎠

= + ΔΔ Δ
−

= −Δ Δ Δ

⎛ ⎞
⎜ ⎟+ − −Δ
⎜ ⎟−⎝ ⎠

( )

( ),1

2
,1 2/ / /

2
,1 2 ,1 2 2/ /2 2

. /

1 . /
1 /

aa ab a ab a ab

b a p a ab a
ab

v v vt v

x vt t c
v c

→

→ → →

Δ

= − ΔΔ Δ
−

(45) 

 
where 
 

,1 2/p ax →Δ , ,1 2/p bx →Δ  = Change in position location of point p from time instant 1 to 

time instant 2 as observed at points a and b. 
 

,1 2at →Δ , ,1 2bt →Δ  = Time interval time for the ,1 2/p ax →Δ , ,1 2/p bx →Δ  point p position 

changes as measured on the point a and b clocks. 
 
Similar to (41), the point 1 and 2 distinction notation in (45) can then be eliminated to obtain the 
simplified notation version: 

 

( )

( )

2
/ / / / / / /2 2

2
/ /2 2

1 1 . /
1 /

1 . /
1 /

b bp a p b ab b p b ab b ab b ab b ab
ab

a b p b ab b
ab

x x v x v v vt t v
v c

x vt t c
v c

⎛ ⎞
⎜ ⎟= + + − +Δ Δ ΔΔ Δ⎜ ⎟−⎝ ⎠

= + ΔΔ Δ
−

 

(46) 

 
Continued 
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(46) Concluded 
 

( )

( )

2
/ / / / / / /2 2

2
/ /2 2

1 1 . /
1 /

1 . /
1 /

a ap b p a ab a p a ab a ab a ab a ab
ab

b a p a ab a
ab

x x v x v v vt t v
v c

x vt t c
v c

⎛ ⎞
⎜ ⎟= − + − −Δ Δ ΔΔ Δ⎜ ⎟−⎝ ⎠

= − ΔΔ Δ
−

 

where 
 

atΔ , btΔ  = Time interval measured on the point a and b clocks between point a and b 
observed point p position changes. 

 
/p axΔ , /p bxΔ  = Change in the vector position of point p over the atΔ , btΔ  time 

intervals based on point p position observations made at points a and b. 
 
4.2 Two-Point Approach 

 
This section analyzes a two-point version of the Point-to-Point Lorentz conversion formulas 

in which the first event at point p occurs at observation point b at time instant 1, and the second 
event at point q occurs at observation point b at time instant 2, i.e., the events occur at point b 
that moves from its location at time instant 1 to its location at time instant 2.  Then 1 2/p q bx  in 

(40) becomes 1 2/b b bx which equals zero at point b, hence, Point-to-Point Lorentz conversion 

formulas (45) become 
 

 

( )1 2 1 21 2

1 2

1 2 1 21 2 1 2

1 2

1 2 1 2 1 2

2
, ,/ / / / /2 2

,/2 2

2 2
, , , ,2 2

/

, , /2 2

1 1 . /
1 /

1

1 /

1 1 /
1 /

0

1

1 /

b b b bb bb b a ab b ab b ab b ab b ab
ab

b bbab b
ab

b b b ba b b ab b b bab
ab

b b b

b bb a b b b b
ab

x v v v vt t v
v c

v t
v c

t t t v c t
v c

x

t t
v c

→ →

→

→ →→ →

→ →

⎛ ⎞
⎜ ⎟= + −Δ Δ⎜ ⎟−⎝ ⎠

= Δ
−

= ⇒ = −Δ Δ Δ Δ
−

=

= −Δ Δ
−

( )2
/. /a ab ax v c

(47) 

 
where 
 

1 2,a b bt →Δ , 1 2,b bbt →Δ  = Time interval between the point b event at time instant 1 and the 
point b event at time instant 2, as measured on the point a and b clocks. 
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1 2/b b ax , 1 2/b b bx  = Distance vector from the point b event at time instant 1 to the point  

b event at time instant 2, as observed at points a and b. 
 
Substituting the 1 2,b bbt →Δ  result from the second (47) equation into the (47) 1 2/b b ax  equation 

with / /ab b ab av v=  from (12) obtains: 
 
 1 21 2 ,/ / a b bb b a ab ax v t →= Δ  (48) 

 
For the assumed constant /ab av , (48) is the integral of /ab av  in (8) over the 1 2,a b bt →Δ  time 
interval.  The 1 2,a b bt →Δ  expression from (47) and its substitution in (48) gives 
 

 1 2 1 2 1 21 2 , , ,/ /2 2 2 2

1 1

1 / 1 /
b a bb b b b b bb b a ab a

ab ab

x v t t t
v c v c

→ → →= =Δ Δ Δ
− −

 (49) 

 
Similar to (48), the integral of /ba bv  in (8) (with / /ba b ab av v= − ) over the 1 2,b bbt →Δ time period 
shows that, as in (13): 
 
 1 21 2 ,, / b bbb bba abbx v t →→ = −Δ Δ  (50) 

 
where 
 

1 2, /b bba bx →Δ  = Change in the distance vector from point b to a during the time interval 

between point b events at time instants 1 and 2, as determined at point b - Similar 
to ,1 2/ba bx →Δ in Eq. (4). 

 
The 1 2,b bbt →Δ  expression from (47) and its substitution in (50) shows that: 
 

1 21 2 1 21 2
2 2 2 2

, , ,, // 1 / 1 /b ba b ab b b bb bba ab aab abbx vv c t t v c t→→ →→ = − − = −Δ Δ Δ Δ  (51)  

 
Eqs. (49) and (51) describe observations at points a and b of the other’s distance and time 

interval measurements, both based on time instant 1 and 2 events occurring at observation point 
b.  An analysis similar to that leading to (49) and (51) can also be performed for a two-point case 
in which the events occur at point a.  For clarity, we define the point a event time instants to be 
1' followed by 2' , but independent of sequential time instants 1 and 2 (which in this section 
designate events occurring at point b).  (Note that time instants 1' or 2 '  may occur before or 
after 1 or 2).  With the 1', 2 '  designation for point a events, 1 2/p q ax  in (40) becomes 1' 2'/a a ax  

which equals zero).  Assuming the same constant velocity /ab av  between points a and b for 
events occurring at either a and/or b, the equivalent to the (48), (49), and (51) results would then 
be 
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 ' '1 21 2' ,' / / a aba a b ab ax v t →= − Δ  (52) 

 

' '' ' 1 2 ' '1' 2 ' 1 2 1 2, , ,/ /2 2 2 2

1 1

1 / 1 /
a aa b aa a a aa a b ab a

ab ab

x v t t t
v c v c

→→ →= − =Δ Δ Δ
− −

 (53) 

 

' ' ' ' ' '1 2 1 2 1 2' '1 2
2 2 2 2

, , ,, // 1 / 1 /a a a a a ab a ba aab a ab aab abx vv c t t v c t→ → →→ = − = −Δ Δ Δ Δ  (54) 

 
where 
 

' '1 2,a aat →Δ , ' '1 2,a abt →Δ  = Time interval between the first point a event at time instant 1' 
and the second point a event at time instant 2 ' , as measured on the point a and b 
clocks. 

 

1' 2 '/a a bx   = Distance vector from the point a event at time instant 1' to the point a event 

at time instant 2 ' , as observed at point b. 
 

' '1 2, /a aab ax →Δ  = Change in the distance vector from point a to b during the time interval 

between point a events at time instants 1' and 2 ' , as determined at point a - 
Similar to ,1 2/ab ax →Δ  in Eq. (4). 

 
Eqs. (49) and (53) are equivalent to what has been derived using traditional Relativity theory, 
e.g. [7 pp. 517], demonstrating the difference in observations when conditions defining the 
events are similar, but different. 
 
 

5.0 POINT-TO-POINT LORENTZ TIME DILATION, LENGTH CONTRACTION, 
AND PROPER TIME 

 
Two well-known consequences of traditional Relativity theory are the lengthening of time 

intervals (time dilation) and shorting of distances (distance contraction) predicted by Lorentz 
analytics [2 Chpt. 12, 7 pp. 517, 8 pp. 248 - 250, 9 Sects. 14.0 & 15.0].  In traditional Relativity, 
Lorentz analytics also defines a combined distance/time “proper time” parameter that has the 
same value when evaluated in coordinate frames translating relative to one-another [7 pp. 519, 9 
Sect. 12].   These effects also arise with Point-to-Point Relativity. 

 
5.1 Point-to-Point Lorentz Time Dilation 

 
Point-to-Point Lorentz time dilation has already been demonstrated in the Section 4.2 two-

point solutions where events occurring at one observer were seen by the other observer.  When 
events occurred at point b, results in (49) showed that 1 2 1 2

2 2
, , / 1 /a bb b b b abt t v c→ →= −Δ Δ , i.e., 

the time interval measured at point a during the spatial movement of point b over time instants 1 
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and 2, was longer than the same time interval measured at point b.  Similarly, when events 
occurred at point a, results in (53) showed that ' '1 2 ' '1 2

2 2
, , / 1 /a ab a a a abt t v c→ →= −Δ Δ , i.e., the 

time interval measured at point b during the spatial movement of point a over time instants 1'  
and 2' , was longer than the same time interval measured at point a.  The effect is known as 
Lorentz “time dilation”.  The same effect would be obtained for the four and three point 
solutions when one observer sees distant events at time instant 1 and 2 occurring at the same 
spatial location and the other sees the events occurring at different times, i.e., when 1 2/ 0p q bx =  

in four-point solution (40), or when ,1 2/ 0p bx → =Δ  in three-point solution (45).  These results are 

equivalent to what has been obtained with traditional Relativity theory [2 Chpt. 12, 7 pp. 517, 8 
pp. 248 - 250, 9 Sect. 14]. 

 
5.2 Point-to-Point Lorentz Distance Contraction 

 
Point-to-Point distance contraction has been graphically demonstrated in Section 3.4.1 for the 

particular case when 2 21 / 0.5abv c− = , where distant events p and q occurred simultaneously 
relative to observer b (but separated in time relative to observer a).  The Fig. 5a construction then 
showed that the distance between points p and q was shorter (“contracted”) when measured by 
observer b compared to when measured by observer a.  The effect can be analytically 
demonstrated in general from (41) for simultaneous observations of p and q at b (i.e., 

/ 0pq bt =Δ ) which finds 
 
 2

/ / /. /pq a pq a ab ax vt c=Δ  (55) 

 
Substituting (55) in the (41) /pq bx  equation shows what observer b will then find for the 

distance between events p and q in terms of observer a findings.  For the development, it is first 
expeditious to rearrange the (41) /pq bx  equation: 

( )

( )
( )

2
/ // / / / / / /2 2

2
/ // / / / / /

2
// / / /2 2

1 1 . /
1 /

. /

1 . /
1 /

pq a pq apq b pq a ab a pq a ab a ab a ab a ab
ab

pq a pq apq a ab a pq a ab a ab a ab a ab

pq apq a ab a ab a ab a ab
ab

x x v x v v vt t v
v c

x v x v v vt t v

x v v vt v
v c

⎛ ⎞
⎜ ⎟= − + − −Δ Δ⎜ ⎟−⎝ ⎠

= − − −Δ Δ

+ − Δ
−

 (56) 

 
Substituting (55) in (56) then obtains 
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( )
( )

( )

2
/ // / / / / / /

2
// / / /2 2

2 2 2
/ / / / / / / / / /

. /

1 . /
1 /

. / . / . /

pq a pq apq b pq a ab a pq a ab a ab a ab a ab

pq apq a ab a ab a ab a ab
ab

pq a ab a pq a ab a pq a ab a pq a ab a ab a ab a ab

x x v x v v vt t v

x v v vt v
v c

x v x v x v x v v vc c v

= − − −Δ Δ

+ − Δ
−

= − − −

 

 ( )2 2
/ / / / / /2 2

1 . / . /
1 /

pq a ab a ab a ab a pq a ab aab
ab

x v v v x vv c
v c

+ −
−

 (57) 

 

( )

2
/ / / / / / /2 22 2

2 2 2 2
/ / / / / / /

2 2 2
/ / / /

1 1 1. / .
1 /

. / 1 / . /

1 1 / . /

pq a pq a ab a ab a pq a ab a ab aab
abab

pq a pq a ab a ab a pq a ab a ab aab ab ab

pq a pq a ab a ab aab ab

x x v v x v vv
v cv c

x x v v x v vv v c v

x x v vv c v

⎛ ⎞
= − + −⎜ ⎟⎜ ⎟− ⎝ ⎠

= − + −

= − − −

 

 
Eq. (57) shows that /pq bx , the p to q distance seen by observer b, will equal the /pq ax  

observer a determined  p to q distance, but with the component parallel to /ab av  shortened by the 

factor 2 2 2 211 1 / /
2ab abv c v c− − ≈ .  The same effect would be seen by observer a when 

/ 0pq at =Δ .  Equating the (41) /pq atΔ equation to zero finds 2
/ / /. /pq b pq b ab bx vt c= −Δ  which, 

when applied in the (41) /pq ax  equation, would show that for observer a: 

( )2 2 2
/ / / / /1 1 / . /pq a pq b pq b ab b ab bab abx x x v vv c v= − − − .  The effect is known as Lorentz 

“distance contraction”.  The same effect would be obtained for observer b in a Section 4.1 type 
three-point solution when events relative to observer b occur simultaneously, i.e., ,1 2 0bt → =Δ  in 
(45), or when events relative to observer a occur simultaneously, i.e., ,1 2 0at → =Δ  in (45). 

 
The results in this section are equivalent to what has been obtained from traditional Relativity 

theory [2 Chpt. 12, 7 pp. 520 - 523, 8 pp. 248 - 250, 9 Sect. 15]. 
 

5.3 Point-to-Point Proper Time 
 

In traditional Relativity theory, Lorentz “proper time” is a “time-like” parameter that is 
invariant in coordinate frames translating relative to one-another [7 pp. 519, 9 pp. Sect. 12].  The 
equivalent for Point-to-Point Relativity derives directly from (46).  To expedite the derivation 
process, it is convenient to reintroduce the vu terminology in (10) for the velocity vector

/ abab a vv uv= .  Then with / /ab b ab av v=  from (12), the first two of (46) become 
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( )

( )

/ / /2 2

2
/2 2

1 1 .
1 /

1 . /
1 /

ab b ab bp a p b v p b v v
ab

a b abp b v
ab

x x u x u uv t v t
v c

x ut t v c
v c

⎛ ⎞
⎜ ⎟= + + − +Δ Δ ΔΔ Δ⎜ ⎟−⎝ ⎠

= + ΔΔ Δ
−

 (58) 

 
In the limit as the Δ terms become infinitesimally small, (58) goes to 
 

 

( )

( )

/ / /2 2

2
/2 2

1 1 .
1 /

1 . /
1 /

ab b ab bp a p b v p b v v
ab

a b abp b v
ab

d x d x u d x u uv dt v dt
v c

d x udt dt v c
v c

⎛ ⎞
⎜ ⎟= + + − +
⎜ ⎟−⎝ ⎠

= +
−

 (59) 

 
where 
 
 adt , bdt  = Differential time intervals measured on the point a and b clocks. 
 

/p ad x , /p bd x  = Differential changes in point p position vector over the adt , bdt  

differential time intervals. 
 
As with traditional Relativity [7 pp. 519, 9 pp. Sect. 12], Point-to-Point Relativity proper time is 
based on its squared value: 
 
 2 2 2. /p pd x d xd dt cτ ≡ −  (60) 

where 
 
 dτ  = Point-to-Point differential proper time interval. 
 

dt  = Differential time interval measured on a traditional local clock without particular 
observer specification ( adt  or bdt ). 

 
pd x = Differential changes in point p position vector over the dt  differential time 

interval without particular observer specification ( /p ad x  or /p bd x ). 

 
Note that (60) is similar to the equivalent for traditional Relativity in which proper time is 
defined as a differential time change function of differential changes in measured distance and 
time.  Similar to traditional Relativity, it will now be shown that Point-to-Point proper time as 
defined in (60) is the same (i.e., invariant) between observers a and b translating relative to one 
another. 
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For observer a, proper time dτ  calculates from (60) as 
 
 2 2 2

/ /. /a p a p ad x d xd dt cτ = −  (61) 

 
The differential terms in (61) derive from (59).  For the derivation, it is first useful to expand 

/p ad x  and /p bd x  into components parallel and perpendicular to vu : 

 
 / // / / /v vp a p bp a p a p b p bd x d x d x d x d x d x

⊥ ⊥
= + = +  (62) 

 
where 
 
 / vp ad x , / vp bd x = Components of /p ad x , /p bd x  parallel to vu . 

 
 /pq ad x

⊥
, /p bd x

⊥
= Components of /p ad x , /p bd x  perpendicular to vu . 

 
With (62), (59) becomes 

 

 

( )
( )

/ / /2 2

2
/2 2

1

1 /

1 . /
1 /

v

v

ab bp a vp b p b
ab

a b abvp b
ab

d x d x d x uv dt
v c

d x udt dt v c
v c

⊥
= + +

−

= +
−

 (63) 

 
Note also that from the definition of the (62) components: 
 

 
( ) ( )

/ // /

2 2
/ // / / /

. .

. . . .

v v

v v v v

p a v v p b v vp a p b

p a v p b vp a p a p b p b

d x d x u u d x d x u u

d x d x d x u d x d x d x u

= =

= =
 (64) 

 

 
/ / / / / /

/ / / / / /

. . .

. . .
v v

v v

p a p a p a p a p a p a

p b p b p b p b p b p b

d x d x d x d x d x d x

d x d x d x d x d x d x
⊥ ⊥

⊥ ⊥

= +

= +
 (65) 

 

The 2
adt  and / /.p a p ad x d x  terms in (61) are from (63) with (64) for ( )2

/ . vp bv
d x u : 
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( )

/ /

/ /

/ /

2 2 2 2

/ /
/ / 2 22 2

/

.

.1 1

1 / 1 /

.1.
2 .1 /

v v

v v

v

p a p a

p b p b

p b pq b

ab b ab bv vab ab

p b p b
p b p b

ab bvp b ab bab

d x d x

d x d x

d x d x

u uv dt v dtv c v c

d x d x
d x d x

d x u v dt v dtv c

⊥ ⊥

⊥ ⊥

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ +

⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥+ +− −⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥= +
⎢ ⎥+ +−
⎣ ⎦

 

  (66) 

 
( ) ( )

( ) ( )

2
2 2

/2 2

2
2 2 2 4

/ /2 2

1 . /
1 /

1 2 . / . /
1 / v

a b abvp bv
ab

ab bv vp b p bb abv
ab

d x udt dt v c
v c

d x u d x udt v dt c v c
v c

= +
−

⎡ ⎤
= + +⎢ ⎥

− ⎣ ⎦

 

 
Substituting (66) in (61) then finds for Point-to-Point Relativity proper time: 
 

 

( )

( )

( ) ( ) ( )

2 2 2 2 4
// / /2 2

2
/ /

2 2 2
/ / /2 2

2 2 2 2 4 2
/ /2 2

1 2 . / . /
1 /

. /

1 . 2 . /
1 /

1 1 / ./ 1 /
1 /

v v v

v v v

v v

ab pq bvp b p b p bb ab
ab

p b p b

ab bvp b p b p b ab b
ab

p b p bab b ab
ab

d x u d x d xd dt v dt c v c
v c

d x d x c

d x d x d x u v dt v dt c
v c

d x d xv c dt v c c
v c

τ

⊥ ⊥

⎡ ⎤= + +⎢ ⎥⎣ ⎦−

−

⎡ ⎤− + +⎢ ⎥⎣ ⎦−

⎡ ⎤= − + −⎢ ⎥⎣ ⎦−

( )
2

/ /

2 2
/ / / /

. /

. . /
v v

p b p b

p b p b p b p bb

d x d x c

d x d x d x d xt c

⊥ ⊥

⊥ ⊥

−

= − −Δ

(67) 

 
or with (65) and (61): 
 
 2 2 2 2 2

/ / / /. / . /a p a p a p b p bbd x d x d x d xd dt c dt cτ = − = −  (68) 

 
Eq. (68) demonstrates the invariance of Point-to-Point proper time formula (60) as determined by 
observer a or by observer b.  The (68) results are equivalent to what has been obtained with 
traditional Relativity theory [7 pp. 519, 9 Sect. 12]. 
 

Eq. (68) can also be used to show the relationship between proper time and the time 
differential measured on the point a and b clocks.  From (68), 
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 / /2 2 2 2 2
/ /. / 1 . /p a p a

a ap a p a
a a

d x d x
d x d xd dt c c dt

dt dt
τ

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 (69) 

 
Then, from (69) and the equivalent for the observer b time differential: 
 

 

2 2
/ / / /

/ /
/ /

/ 1 . / / 1 . /a bp a p a p b p b

p a p b
p a p b

a b

d dv v v vdt c dt c

d x d x
v v

dt dt

τ τ= − = −

≡ ≡
 (70) 

where 
 

/p av , /p bv  = Velocity vector of point p as determined by observers a and b. 

 
Eqs. (70) also show that: 
 

 
( )
( )

2
/ /

2
/ /

1 . /

1 . /
p b p ba

b p a p a

v v cdt
dt v v c

−
=

−
 (71) 

 
 

6.0 POINT-TO-POINT DERIVATIVE FORMS 
 

The analysis thus far has concentrated on formulations of relative distance measurements 
from the viewpoint of two observers traveling relative to one-another.  In this section, the 
moving point p approach in Section 4.1 is extended to encompass a and b point observations of 
point p velocity and acceleration: 

 

 / / / /
/ / / /

p a p a p b p b
p a p a p b pq b

a a b b

d d dd x v x v
v a v a

dt dt dt dt
≡ ≡ ≡ ≡  (72) 

 
where 
 

/p av , /p bv  = Velocity vector of point p as determined by observers a and b. 

 
/p aa , /p ba  = Change in the point p velocity vector per differential time interval (i.e., the 

acceleration of point p), as determined by observers a and b.   
 

6.1 Velocity 
 

The derivation of point p velocity relative to point a begins with a restatement of (63): 
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( )
( )

/ / /2 2

2
/2 2

1

1 /

1 . /
1 /

v

v

ab bp a vp b p b
ab

a b abvp b
ab

d x d x d x uv dt
v c

d x udt dt v c
v c

⊥
= + +

−

= +
−

 (73) 

 
Dividing (73) by bdt  finds 
 

 

///
2 2

/ 2
2 2

1

1 /

1 1 . /
1 /

v

v

p bp bp a
ab v

b b bab

p ba
abv

b bab

dd xxd x
uv

dt dt dtv c

d xdt u v c
dt dtv c

⊥
⎛ ⎞
⎜ ⎟= + +
⎜ ⎟− ⎝ ⎠

⎛ ⎞
⎜ ⎟= +
⎜ ⎟− ⎝ ⎠

 (74) 

 
From (62) and (64): 
 

/ / / // / /. .
v vp b v v p b p b p b v vp b p b p bd x d x u u d x d x d x d x d x u u

⊥
≡ = − = −  (75) 

 
so that with (72): 
 

 

/ /
/

/ / /
/ /

. .

. .

vp b p b
v v p b v v

b b

p b p b p b
v v p b p b v v

b b b

d x d x
u u v u u

dt dt
d x d dx x

u u v v u u
dt dt dt

⊥

= =

= − = −

 (76) 

 
Substituting (76) in (74) then obtains 
 

 

( )

( )

/
/ / /2 2

2
/2 2

1. .
1 /

1 1 . /
1 /

p a
abp b p b v v p b v v

b ab

a
abp b v

b ab

d x
v v u u v u uv

dt v c

dt v u v c
dt v c

= − + +
−

= +
−

 (77) 

 
Trivially, from (72): 
 

 
1

/ / /
/

p a p a p ab a
p a

ba b a b

d d dx x xdt dtv
dtdt dt dt dt

−
⎛ ⎞

= = = ⎜ ⎟
⎝ ⎠

 (78) 

 
Substituting (77) into (78) yields 
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( )

( )
( )

( )
2 2

/ / /
/ 2 2

/ /

1 / . .

1 . / 1 . /

abp b p b v v p b v vab
p a

ab abp b v p b v

v v u u v u uv c v
v

v u v uv c v c

− − +
= +

+ +
 (79) 

 
or since / / abv ab bu v v=  from (9) and (12): 
 

( )
( )

( )
( )

2 2 2 2
/ / / / / / /

/ 2 2
/ / / /

1 / . / 1 . /

1 . / 1 . /
p b p b ab b ab b p b ab b ab bab ab ab

p a
p b ab b p b ab b

v v v v v v vv c v v
v

v v v vc c

− − +
= +

+ +
 (80) 

 
From the equivalent (79) form of (80) it should be apparent that the second term in (80) is 
parallel to vu (i.e., parallel to /ab bv ), and the first term is perpendicular to /ab bv  (i.e., /p bv  

minus the 2
/ / / /. . /p b v v p b ab b ab b abv u u v v v v=  parallel component). 

 
The (80) result is equivalent to what has previously been obtained using traditional Relativity 

theory [7 pp. Eq. (12-12), 9 pp. Eq. (16.07)].  Similar results can be formulated for /p bv  

components in terms of /p av  and /ab av . 

 
6.2 Acceleration 
 

The derivation of the point p acceleration formula begins with (79), the a

b

dt
dt

 equation in (77), 

and the acceleration definitions in (72).  Taking the derivative of (79) (with abv  constant for this 
article), and applying definitions (72) yields 

 

 

( )
( )

( )
( ) ( )

( )
( )

2 2
/ //

2
/

2 2 2
/ / / /

2 22 //

2
/ /

22
/

1 / .

1 . /

1 / . . / .

1 . /1 . /

. . /

1 . /

p b p b v vabp a

b p b v ab

abp b p b v v p b vab p b v v

abp b vabp b v

ab abp b v v v p b v

abp b v

a a u udv v c

dt v u v c

v v u u a u a u uv c v c

v u v cv u v c

v u u u a uv v c

v u v c

− −
=

+

− −
− +

++

+
−

+

 (81) 

 
Trivially, with (72): 
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1

/ / /
/

p a p a p ab a
p a

ba b a b

d d dv v vdt dta
dtdt dt dt dt

−
⎛ ⎞

= = = ⎜ ⎟
⎝ ⎠

 (82) 

 

Substituting (81) and the (77) a

b

dt
dt

 expression into (82) then yields 

 

 

( )( )
( )

( )( )
( ) ( )

( )
( )

2 2
/ /

/ 22
/

2 2 2 2 2
/ / / /

3 22 2
/ /

2 2 2
/ /

32
/

1 / .

1 . /

1 / . . / 1 / .

1 . / 1 . /

1 / . . /

1 . /

p b p b v vab
p a

abp b v

abp b p b v v p b vab p b v vab

ab abp b v p b v

ab abp b v v v p b vab

abp b v

a a u uv c
a

v u v c

v v u u a u a u uv c v c v c

v u v uv c v c

v u u u a uv c v v c

v u v c

− −
=

+

− − −
− +

+ +

− +
−

+

 (83) 

 
The last two terms in (83) combine as follows: 
 
 

 

( )
( )

( )

( )
( )

( )

2 2 22 2
/ //

2 32 2
/ /

22 2 / /
3 22 / //

2 2

3
/

1 / . . /1 / .

1 . / 1 . /

1 . / .1 /

. . /1 . /

1 /

1 .

ab abp b v v v p b vabp b v vab

ab abp b v p b v

abp b v p b v vab

ab abp b v v v p b vabpq b v

ab

abp b

v u u u a ua u u v c v v cv c

v u v uv c v c

v u a u uv cv c

v u u u a uv v cv u v c

v c

v uυ

− +−
−

+ +

⎡ ⎤+− ⎢ ⎥= ⎢ ⎥− ++ ⎢ ⎥⎣ ⎦

−
=

+( )
( )

( )
( )

( )

2 2
/

2 22 / / /

3/22 2
/

32
/

1 / .

. . / . //

1 / .

1 . /

p b v vab

ab abp b v v p b v p b v

p b v vab

abpq b v

a u uv c

v u u a u a uv c v cv c

a u uv c

v u v c

⎡ ⎤−
⎢ ⎥
⎢ ⎥+ −⎢ ⎥⎣ ⎦

−
=

+

 (84) 

 
with which (83) then becomes 
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( )
( )

( )( )
( )

( )( )
( )

3/2 2 22 2
/ //

/ 3 22 2
/ /

2 2 2
/ / /

32
/

1 / .1 / .

1 . / 1 . /

1 / . . /

1 . /

p b p b v vabp b v vab
p a

p b ab p b ab

abp b p b v v p b vab

p b ab

a a u ua u u v cv c
a

v v v vc c

v v u u a uv c v c

v v c

− −−
= +

+ +

− −
−

+

 (85) 

 
or since / / abv ab bu v v= from (9) and (12): 
 

( )
( )

( )( )
( )

( )( )
( )

3/2 2 2 22 2 2
/ / / // / /

/ 3 22 2
/ / / /

2 2 2 2
/ / / / / /

32
/ /

1 / . /1 / . /

1 . / 1 . /

1 / . / . /

1 . /

p b p b ab b ab bab abp b ab b ab bab ab
p a

p b ab b p b ab b

p b p b ab b ab b p b ab bab ab

p b ab b

a a v va v v v c vv c v
a

v v v vc c

v v v v a vv c v c

v v c

− −−
= +

+ +

− −
−

+

 (86) 

 
From the equivalent (85) form of (86) it should be apparent that the first term in (86) is parallel 
to vu (i.e., parallel to /ab bv ), the second term is perpendicular to /ab bv  (i.e., /p ba  minus the 

2
/ / / /. . /p b v v p b ab b ab b aba u u a v v v=

 
parallel component), and as in the previous section, the 

third term is also perpendicular to /ab bv  (i.e., /p bv  minus the component parallel to /ab bv :
2

/ / / /. . /p b v v p b ab b ab b abv u u v v v v= ). 

 
The (86) result is equivalent to what has been obtained previously based on traditional 

Relativity theory [7 Eq. (12-13)].  Similar results can be formulated for /p ba  components in 

terms of /p aa  and /ab av . 

 
7.0 CONCLUSIONS 

 
Point-to-Point Relativity kinematics provide an analytical equivalent to Lorentz 

transformation operations in modern Relativity Theory.  The analytical notation developed for 
the Point-to-Point approach enables straight-forward development of relativistic formulas, with 
clear definitions for time and distance parameters, and without the use of space-time diagrams, 
world lines intersecting space-time events, and the concept of space-time simultaneity prevalent 
in traditional Relativity formulations. 

 
Traditional Relativity theory is based on the comparative observation of remote events in 

coordinate frames that are translating relative to one another, and in which position locations are 
defined relative to the origin of the translating frames.  In the Point-to-Point formulation, remote 
phenomena are observed at two spatial points that translate relative to one another, and in which 
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position locations are defined relative to the observer location points.  Coordinate frames are 
only used as a means for determining the components of vector parameters as projected on 
specified coordinate frame axes. 

 
The basic Point-to-Point Lorentz conversion formulas define how the relative distance vector 

between space-time points measured by one observer are related to the same distance vector as 
measured by a second observer in motion relative to the first.  The relative distance formulas can 
be used to demonstrate relativistic time dilation and distance contraction of observed remote 
events, define a “proper time” interval that is invariant to any observer, and how relative velocity 
and acceleration vectors between space-time points measured by one observer are related to the 
same vectors measured by a second observer.  Overall results match their equivalents based on 
traditional Relativity theory. 

 
All Point-to-Point Relativity kinematic results presented in this article derive from basic Eqs. 

(3), (8), (13), (18), (19), and (37). 
 

 
APPENDIX A - NON-ROTATING INERTIAL COORDINATES 

 
Point-to-Point kinematics is presented in this article in vector format for vector component 

projection on so-called “non-rotating inertial coordinate frame” axes, i.e., as traditionally 
defined: “coordinate frames in which Newtonian and Relativity theory is valid”.  A measurable 
definition of non-rotating inertial coordinates is presented in [6] based on a redefined version of 
Newton’s dynamic law of motion: 

 

 
2

/ /2
i j

F j F i i j
xd

ga a
dt

= − + Δ  (A-1)  

where i jx  (as in this article) is the distance vector from mass point i to mass point j, 
2

2
i jxd

dt
is 

the vector acceleration of mass point j relative to mass point i,  /F ja  and /F ia  are local force 

generated vector accelerations of mass points i and j (sometimes denoted as “specific force”) 
measurable by accelerometers located at points i and j, and i jgΔ  is the difference in gravity at 

point j relative to point i (created by the distributed mass of the universe). 
 

An accelerometer is a device that directly measures force-generated acceleration using a 
proof mass located in a body whose force acceleration is to be measured.  The proof-mass 
position location is controlled by forces generated within the accelerometer to maintain a fixed 
location of the proof-mass within the body-mounted accelerometer case.  The resulting proof-
mass force acceleration is thereby controlled to equal the body's force-generated acceleration.  
By dividing the measured accelerometer control force by the mass of the proof mass, a direct 
measurement of body force acceleration is obtained.  Most accelerometers are designed to 
measure force acceleration along a single axis (the accelerometer “input axis”).  Three 
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accelerometers are then required to measure the three components of each of the force 
acceleration vectors, /F ja  and /F ia  in (A-1). 

Newton’s law states that (A-1) is valid in inertial non-rotating frames [1, pp. 416].  Thus, if 
arbitrary coordinate frame I is inertially non-rotating, the vector/matrix form of (A-1) using 
Appendix B notation, would be 
 

 
I2

II I
/ /2

i j
F j F i i j

xd
ga a

dt
= − + Δ  (A-2) 

 
where 
 

I
i jx = Column matrix with elements equal to the projections of i jx  on I frame axes.  

 
I2

2
i jxd

dt
= Column matrix with elements equal to the second derivative of the I frame 

component projections of i jx on coordinate frame I axes. 

 
In contrast, reference [6] shows that for i jx  projection on the axes of coordinate frame B 

that is rotating relative to frame I, (A-2) expands to: 
 

( )
B B2 B

BB B B B B B BIB
/ / IB IB IB2 2i j i j

F j F i i j i ji j

dx xd dga a x x
dt dtdt

ω
ω ω ω= − + − × − × × − ×Δ  (A-3) 

 
where 
 

B
IBω = “Inertial angular rate” of coordinate frame B relative to inertially non-rotating 

coordinate frame I (IB subscript) as projected on rotating frame B axes (B 
superscript). 

 
B2

2
i jxd

dt
= Column matrix with elements equal to the second derivative of the B frame 

component projections of i jx on coordinate frame B axes. 

 
Comparing (A-3) with (A-2), the appended last three terms in (A-3) have been denoted 
respectively as tangential acceleration caused by angular acceleration, centripetal acceleration, 
and Coriolis acceleration.  When B

IB 0ω = over time, coordinate frame B becomes inertially non-
rotating for which from (A-3): 
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B2

BB B
/ /2

i j
F j F i i j

xd
ga a

dt
= − + Δ  (A-4) 

 
which is of exactly the same form as (A-2).  Thus, to determine whether a particular B frame is 
inertially non-rotating, measure B B

/ /F j F ia a−  using accelerometers; then add B
i jgΔ .  If the result 

equals 
B2

2
i jxd

dt
measured by non-inertial means (e.g., by e/m transmission/reception as in 

Appendix C), the B frame is inertially non-rotating.  These results can also be used to define a 

non-rotating inertial frame of reference as being a coordinate frame in which 
B2

2
i jxd

dt
measured by 

non-inertial means satisfies (A-4). 
   

This article only deals with Point-to-Point vector kinematic projections on inertially non-
rotating coordinate frames.  Planned future articles will analyze Point-to-Point kinematics 
projections on inertially rotating coordinates. 
 

The previous equations are based on redefined Newtonian dynamic theory, hence, do not 
include the effects of Relativity on measurements by observers at different locations, or the 
impact of Relativity theory on gravity.  This article only deals with the kinematics of Point-to-
Point Relativity, not on the dynamics of velocity change produced by applied local forces and 
gravity as in (A-1) and (A-3).  Future articles will expand on these results to account for dynamic 
changes in the relative motion of mass points created by measurable locally applied forces ( /F ja  

and /F ia ), and for i jgΔ gravity differences between mass point locations. 

 
 

APPENDIX B - VECTORS AND COORDINATE FRAMES 
 
 As used in this article, a vector is a three-dimensional parameter that has length and direction.  
Vectors in this article are classified as “free vectors”, i.e., having no preferred location in 
coordinate frames in which they are analytically described.  A coordinate frame is defined in this 
article as an analytical abstraction represented by three mutually orthogonal free vectors of unity 
magnitude.  The components of a vector in a particular coordinate frame equal the dot product of 
the vector with its coordinate frame unit vectors.  The physical position location of each 
coordinate frame’s origin is arbitrary. 
 

Based on the previous definitions, the component projection of an arbitrary vector W in an 
arbitrary coordinate frame A would be 
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XA YA ZAXA YA ZA

XA XA XA YA XA ZA

YA XA YA YA YA ZA

ZA XA ZA YA ZA ZA

. . .
. 1 . 0 . 0
. 0 . 1 . 0
. 0 . 0 . 1

W W Wu u uW W W
u u u u u u
u u u u u u
u u u u u u

= = =
= = =
= = =
= = =

 (B-1) 

 
where 
 

XAu , YAu , ZAu  = Mutually orthogonal unit vectors associated with coordinate 
 frame A. 
 

XAW , YAW , ZAW  = Components of vector W “along coordinate frame A axes” or “in 
A frame coordinates”. 

 
Based on (B-1), vector W can then expressed as the sum of its A frame component projections: 
 
 XA YA ZAXA YA ZAW u u uW W W= + +  (B-2) 
 
The same vector W can also be expressed in terms of its projections along the axes of another 
arbitrary coordinate frame B: 
 
 XB YB ZBXB YB ZBW u u uW W W= + +  (B-3) 
 
where 
 

XBu , YBu , ZBu  = Mutually orthogonal unit vectors associated with coordinate frame B. 
 

XBW , YBW , ZBW  = Components of vector W along coordinate frame B axes. 
 

with as in (B-1): 
 

 

XB YB ZBXB YB ZB

XB XB XB YB XB ZB

YB XB YB YB YB ZB

ZB XB ZB YB ZB ZB

. . .
. 1 . 0 . 0
. 0 . 1 . 0
. 0 . 0 . 1

W W Wu u uW W W
u u u u u u
u u u u u u
u u u u u u

= = =
= = =
= = =
= = =

 (B-4) 

 
An expression for the A frame component of W  in terms of the B frame components can be 

found by taking the dot product of (B-2) with the B frame unit vectors: 
 

 
XA XB YB ZBXA XB XA YB XA ZB

YA XB YB ZBYA XB YA YB YA ZB

ZA XB YB ZBZA XB ZA YB ZA ZB

. . .

. . .
. . .

u u u u u uW W W W
u u u u u uW W W W
u u u u u uW W W W

= + +
= + +
= + +

 (B-5) 
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The frame B components as a function of the frame A components are obtained similarly using 
dot products of (B-3) with the A frame unit vectors: 
 

 
XB XA YA ZAXB XA XB YA XB ZA

YB XA YA ZAYB XA YB YA YB ZA

ZB XA YA ZAZB XA ZB YA ZB ZA

. . .

. . .
. . .

u u u u u uW W W W
u u u u u uW W W W
u u u u u uW W W W

= + +
= + +
= + +

 (B-6) 

 
Because iBu and jAu are unit vectors, iB jA.u u in (B-5) and (B-6) (i and j being X, Y, or Z) 

equals the cosine of the angle between iBu  and jAu .  Thus, (B-5) and (B-6) can also be 

expressed using the matrix notation introduced by Britting in [10]: 
 

A B B AA B
B A

XA XB 11 12 13 11 21 31
A B A A

YA YB 21 22 23 12 22 32B B

ZA ZB 31 32 33 13 23 33

W W W WC C

W W
W WW W C C

W W

γ γ γ γ γ γ
γ γ γ γ γ γ
γ γ γ γ γ γ

= =

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥≡ ≡ ≡ ≡⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (B-7) 

 
where 
 

AW , BW  = Column matrices with elements equal to the components of W  projected on 
(“along”) A frame and B frame axes. 

 
A
BC , B

AC  = Direction cosine matrices that transform vectors from their A frame matrix 
form to their B frame matrix form, and from their B frame matrix form to their A 
frame matrix form. 

 
ijγ  = Cosine of the angle between A frame unit vector i and B frame unit vector j;  i and 

j from 1 to 3 corresponding to X, Y, and Z in (B-5) and (B-6). 
 

Note from (B-7) that B
AC is the matrix transpose of A

BC . 
  
 

APPENDIX C - MEASURING RELATIVE DISTANCE AND VELOCITY BY 
ELECTRO-MAGNETIC WAVE TRANSMISSION/REFLECTION 

 
Distances between two points can be determined by measuring the time for a wave of 

electro-magnetic (e/m) radiation to travel from one point to the other, divided by the velocity of 
e/m wave propagation through space.  Past experiments have demonstrated that relative to any 
observer, all e/m waves, regardless of wavelength and original source velocity, propagate 
through open space at the same speed (i.e., at the “speed of light”).  Using this principle, range-
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radars, and recently laser radars (“ladars”), have been commonly used to measure the range to 
distant targets.  For a radar or ladar receiving antenna that is stabilized relative to non-rotating 
inertial space, the angular direction of the received e/m wave can also be determined, hence, the 
direction vector from the antenna to the target.  Combining the antenna-to-target distance and 
direction vector determines the distance vector from the antenna to the target. 

 
C.1 Target Distance And Time Instant At Target Illumination 

 
For a target at point p and a radar transmitter at point a, consider that a radar e/m pulse is 

transmitted at time instant 1, reflected from point p at time point 2, and the reflection received at 
point a at time instant 3. (Note: The 1, 2, 3 time instant notation used in this appendix is different 
from the time instant notation used in the main article).  The range from a to p and time instant 2 
at target reflection would then be determined at point a from 

 
 ( ),1 2 ,3 ,1 ,1 3/ 2 / 2a a a at t t t→ →Δ = − = Δ  (C-1) 
 
 ,2/ ,1 2 ,1 3 / 2ap a a ac cx t t→ →= Δ = Δ  (C-2) 
 

 ( ) ( )
,1 2 ,1 ,1 3

,1 ,3 ,1 ,3 ,1

/ 2

/ 2 / 2
a a a

a a a a a

t t t

t t t t t

→ →Δ = + Δ

= + − = +
 (C-3) 

 
where 
 

c = The propagation velocity of electro-magnetic (e/m) waves through open space (the 
“speed of light”). 

 
,1at  = Time instant 1 on a clock at point a when the e/m wave pulse was emitted. 

 
,3at  = Time instant 3 when the reflected e/m wave pulse at point p is received back at 

point a. 
 

,1 3at →Δ  = Elapsed time from ,1at  to ,3at  on the point a clock, as observed at point a. 
 

,2/ap ax  = Range (distance) from a to p when the e/m pulse arrived at p at time instant

,2at .  Note: This distance is not measured directly, but is calculated at point a based 
on the ,1 3at →Δ measurement.  

  
,2at = Time instant 2 when the e/m pulse from point a reached target p.  Note: This time 

instant is not measured directly, but is calculated at point a based on the ,1 3at →Δ
measurement. 
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When there is no relative motion between a and p, and because the speed of light is constant, 
(C-2) makes sense because the time for the pulse to travel from a to p would be the same as the 
time for the reflection from p to reach a.  Eq. (C-3) would also make sense, because the time 
increment for the pulse to travel from point a-to-p-to-a would be half the time for the pulse to 
travel from a to p.  But are (C-2) and (C-3) correct when there is relative motion between a and 
p? 

 
  To answer this question, consider another target at point q being stationary relative to point 

a.  Eqs. (C-2) and (C-3) would then apply for target q, yielding a (C-2) distance-from-point-a 
solution of ,2/aq ax  at (C-3) time ,2at .  Consider now that target p has been in general motion 
relative to point a, but that it has reached target q at exactly the time that the e/m pulse from a 
arrived at q (i.e., at ,2at ).   Then the distance from a to p at ,2at  (i.e.,

 ,2/ap ax ) would be identical 
to ,2/aq ax .  But there is no difference between this scenario and another in which point p was 
actually point q in motion, being at distance ,2/ap ax  when illuminated by the e/m pulse.  Thus, it 
can be concluded that (C-2) and (C-3) will accurately measure ,2/ap ax  for any motion of point p 
relative to point a. 

 
It is very fortuitous that the velocity of light is constant to any observer.  This is what makes 

(C-2) and (C-3) accurate regardless of the relative velocity between the e/m pulse source and 
target.  If the speed of propagation of the transmit signal was constant relative to the medium in 
which points a and p were immersed (e.g., a sonar pulse in water), (C-2) and (C-3) would have to 
account for the velocity of a and p relative to the medium, another parameter needing separate 
measurement. 
 
C.2 Direction Vector To Target 

 
The previous section discussed how e/m transmission/reflection can be used to determine 1) 

The distance to a target when the target was illuminated by the transmitted e/m pulse, and 2) The 
time instant of target illumination.  At the instant of illumination (time ,2at on the point a clock), 
the reflection will generate an expanding e/m spherical wave of radiation, the distance from the 
wave back to the target illumination point being the same for any point on the wave, the 
amplitude depending on the geometry and composition of the target reflection surface.  A photon 
in the wave will travel away from the target along a natural motion trajectory in non-rotating 
inertial space, deviating from a straight line only by the difference in gravity at the current 
photon location and at the reflection-from-target point (See Appendix A for a measurable 
definition of non-rotating inertial space).  Thus, when the wave reaches the point a antenna, the 
travel direction vector for photons in the wave reaching the antenna will be along a natural 
motion trajectory leading back to the target point reflection event.  As such, the angular direction 
of an inertially stabilized antenna trained toward the target will accurately measure the angular 
orientation of a pointing vector to the target location at time ,2at on the point a clock (call it 

,2/aq au ). 
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C.3 Distance Vector To Target 
 

Multiplying the target pointing vector ,2/aq au  in Section C.2 by the measured target distance 

,2/ap ax  in Section C.1 provides a distance vector measurement ,2/ap ax from point a to where 

target p was at time ,2at on the point a clock. 
 

C.4 Time Instant Of Target Distance Vector Determination 
 

The time instant ,2at  associated with the ,2/ap ax  distance vector determination in Section 

C.3 is calculated as half the time interval from e/m transmission at point a (at ,1at ) to the e/m 
reflection receive time at point a (at ,3at ) as derived previously in (C-3).  The time instant ,2at   
would be the “time stamp” assigned to the ,2/ap ax  measurement. 

  
C.5 Relative Target Velocity Determination 

 

The relative velocity between points a and b (e.g., / abab a v
a

d
x uv

dt
= as defined in (8) for a 

point a observer) can be determined from successive e/m pulse transmission/receipt 
measurements as the change in /ab ax  over sequential point a clock time intervals, divided by the 
time interval between the successive measurements.  Similarly, the relative velocity between 

points b and a (defined in (8) for a point b observer as / ba abba b v v
b

d
x u uv v

dt
= = − ) can be 

determined from successive e/m pulse transmission/receipt measurements as the change in /ba bx  
over sequential point b clock time intervals, divided by the time interval between the successive 
measurements. 

 
 

APPENDIX D - MEASURING THE DISTANCE VECTOR TO 
A REMOTE SPACE-TIME EVENT 

 
This appendix provides a general example of how the distance vector to a remote event can 

be measured at an observation point using radar-like equipment and means to detect the event 
occurrence.  The example assumes that the event occurrence will generate an electro-magnetic 
(e/m) pulse wave that travels at the speed of light from the event spatial location (e.g., a lightning 
strike or a pulse transmitted by a beacon at the event location), eventually arriving at the 
observation point where the distance vector to the event is to be determined.  The method of 
determining the distance vector to the event is based on the speed of light being constant relative 
to any observer for all e/m waves, not only the e/m pulse generated by the event.  Thus, if an e/m 
radar pulse is transmitted from the observation point (call it point a) and is reflected from the 
event spatial location (call it point p) at the event time instant, the reflected radar return pulse and 
the event generated pulse will arrive at point a at the same time instant (on a clock located at 
point a).  Conversely then, if the radar return and the event generated pulses arrive 
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simultaneously at point a, and if it is known that the radar pulse was reflected from point p, it can 
be concluded that the radar pulse traversed the same distance as the event pulse. 

 
The previous conclusion presents a method for determining the distance vector from point a 

to spatial point p at the point p event time.  As in Appendix C, define time instants 1, 2, and 3 
respectively as the time a radar pulse is transmitted from point a, is reflected from point p, and is 
received back at point a.  Section C.5 of Appendix C describes how the radar transmit/return 
time instants 1 and 3 (detected on a point a clock) would be used to determine the distance vector 
from point a to point p at the time 2 instant of radar pulse point p reflection (in terms of point a 
clock time) - call it /ap ax , the a to p distance vector as measured at point a.  (Note that /ap ax  

would be calculated at time instant 3 when the radar return was received, not at reflection time 2 
which is calculated (using (C-3) of Appendix C) from the point a time instant 1 and 3 
measurements.)  Let us further assume that the point a  radar has been continually tracking point 
p, hence, continually calculating /ap ax  measurements.  Let us also assume that the event 

occurrence detector at point a (e.g., a beacon pulse receiver) is continually “listening” for the 
occurrence of an event at point p.  Based on the conclusion of the previous paragraph, the 
distance vector from point a to the event at point p can then be determined as equal to the /ap ax  

radar measurement at event pulse point a arrival time ( “announced” by the event detector).  The 
time stamp for that /ap ax  measurement would be the radar calculated point p reflection time 2 

using (C-3) of Appendix C. 
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