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ABSTRACT

Point-To-Point Relativity is a revised form of traditional Relativity theory in which position is
described as the distance vector between two points in space as viewed by observers translating
relative to one-another. Unlike traditional Relativity theory, the Point-to-Point approach avoids
the use of relatively translating coordinate frames, space-time diagrams, world lines intersecting
with space-time events, and the concept of space-time simultaneity. In the Point-to-Point
approach, distance vectors are represented as free vectors having no preferred location in
coordinate frames in which they are described, and coordinate frames are used only as angular
references for projecting vector quantities along their axes (as the dot product with mutually
orthogonal coordinate frame unit vectors). This article describes the Point-to-Point kinematic
approach, deriving Point-to-Point Lorentz relationships between observers travelling relative to
one-another and from this, analytically demonstrating Lorentz time dilation, distance contraction,
and invariant proper time. Overall results match their equivalents obtained using traditional
Relativity theory. As part of the Point-to-Point formulation, a new notation is developed to
explicitly identify point-to-point distance-vectors/time-intervals measured by a particular
observer, and their relationship with equivalent measurements taken by another observer. A
significant advantage for the new approach is eliminating the requirement for clock
synchronization between the observers.

1.0INTRODUCTION

Newton’s fundamental laws of motion state that the velocity of one spatial point relative to
another is of the same magnitude but oppositely directed from the velocity of the second point
relative to the first [1, pp. 423]. Einstein’s theory of Relativity generalized the Newtonian
concept, stating that general laws of motion are the same for any observer [2 Chpt. 5, 3 pp. 177].
A key element in Relativity theory is the early findings (e.g., Michelson and Morley [4]) that the
velocity of electro-magnetic (e/m) radiation (i.e., the “velocity of light”) through space is the
same when measured by any observer, regardless of whether the e/m emission source is in
motion relative to the observer. Theoretical investigations by Lorentz in1895 [5, Sect. II) used
this principle and Maxwell’s electro-magnetic equations to describe the propagation of e/m
waves in space as viewed by two observers in motion relative to one another. A key result of
these investigations was the Lorentz Transformation formulas relating distance and time
measurements between the observers. Among other significant findings, Einstein’s theory of
Relativity leads to the same transformation formulas developed by Lorentz.



Both traditional Newtonian and Relativity theory describe relative motion in classical
Cartesian coordinate frames that translate relative to one-another, with relative motion reported
by observers translating with the coordinate frames. In contrast, Point-to-Point kinematics
describes relative motion in terms of the distance vector between two points in space as
measured at two observation points translating relative to one-another. Coordinate frames are
only used as devices for numerically evaluating orthogonal components of relative motion vector
parameters (position, velocity, acceleration). As such, a Point-to-Point coordinate frame is
represented by three orthogonal unit free vectors having no specific coordinate origin, with
Point-to-Point vector components “along” coordinate frame axes numerically calculated as the
dot product between the vector and the coordinate frame unit vectors.

Point-to-Point kinematic theory was formally introduced in [6] based on a modified version
of Newtonian dynamics. For compatibility with Relativity theory, this article expands on the
Point-to-Point kinematic approach so that observations of e/m wave propagation through space
(at the “speed-of-light”) is the same for any observer. As with traditional Relativity theory, the
expanded Point-to-Point approach evolves into the requirement that both time and distance
become interrelated parameters, dependent on the relative motion between observers. Thus,
Point-to-Point kinematics generate equivalent conclusions obtained by traditional Relativity
theory relating kinematic parameters measured by observers that are in motion relative to one-
another; e.g., time dilation and distance contraction of comparative events, “proper time”
invariance between observers, and the equivalent to Lorentz transformation operations.

Formulations of traditional Relativity theory have typically included a hypothetical means to
synchronize clocks between separated observers so that observed spatial events can be compared
at common instants of time [2 Chpt. 8, 7 Sect. 12-2, 8 Chpt. VI Sect. 1]. This has typically
involved a hypothesized clock measurement e/m message transfer procedure between observers
while observing remote identifiable spatial events (or an instant of time when the separated
observers are at the same spatial location). Because the Point-to-Point approach is based on the
distance between two remote events during the time interval between event occurrences, the need
to account for clock time synchronization between observers is avoided.

Point-to-Point kinematics is presented in this article in vector format for vector component
evaluation in “non-rotating inertial space”, i.e., coordinate frames in which traditional Newtonian
and Relativity theory have been defined to be valid. Appendix A provides a measurable
definition of non-rotating inertial coordinates based on the redefined Newtonian motion
formulation in [6]. It will be assumed in this article that the Appendix A inertial space definition
also applies for Relativity theory in general. Planned future articles will expand on the results of
this article for compatibility with projection on coordinate frames that are rotating relative to the
Appendix A defined inertial space.

As has been past practice in simplified derivations of traditional Relativity formulas, this
article is based on a constant relative velocity between observers in non-rotating inertial space.
Planned future articles will expand on these results to account for changing velocity between
observers during the time interval that remote events are observed.



This article begins with a generalized analytical description of Point-to-Point kinematics in
terms of the relative distance vector between two event points in space determined at two
observation points, first for compatibility with Newtonian kinematic theory, then for
compatibility with Relativity theory. The result for Point-to-Point Relativity is the equivalent of
the Lorentz transformation in traditional Relativity theory relating remote event distance
measurements at one observation point to those at another that is in motion relative to the first.
This article also analyzes degraded versions of the two-event/two-observer case; for two events
occurring at two different times at a single point, and for two events occurring at two different
times at one of the observation points.

Based on the Lorentz transformation equivalency results, this article then demonstrates the
Point-to-Point equivalent to Lorentz time dilation, length contraction, and proper time
invariance, the latter in terms of infinitesimal distance changes over an infinitesimal time
interval. The article concludes with a derivation of the Point-to-Point equivalent to Lorentz
velocity and acceleration transformation of remote points in relative motion as viewed by
observers in motion relative to one-another.

20 TERMINOLOGY

2.1 Space-Time, Events, Observations, And Transfor mations

For those familiar with inertial navigation, “space-time” in traditional Relativity parlance is a
way of describing position locations at particular time points (commonly referred to as “time
stamps™). Thus, position with a time stamp is what has been defined as a location in four-
dimensional “space-time”, three being the traditional spatial position dimensions, the fourth
being time. An “event” in traditional Relativity theory is something that occurs instantaneously
at a specific point in space-time [2 pp. 36, 7 pp. 515, 8 pp. 28]. Examples of events typically
used in deriving Relativity equations are lightening strikes, reflected light signals, and reflections
from radar transmissions [2 pp. 29, 7 pp. 521, 9 pp. 10]. This article will use similar
terminology, but with the general understanding that an “event” analytically represents a
particular location/time-instant, regardless of the example used to characterize it. Symbols p and
g will be used to identify event point locations, a and b will be used to identify location points
where the events are observed, with points a and b being in motion relative to each other. In
some examples, an event may be defined to occur at one of the observation points at the event
time instant, thereby classifying the observation point as an event at that instant of time.

In traditional Relativity, “transformation” refers to a change in data measurements from one
coordinate frame to another, both in linear motion relative to the other (e.g., the “Lorentz
transformation” which is referred to extensively in this article). The Point-to-Point Relativity
equivalent to Lorentz transformation is referred to in this article as Lorentz “conversion”. The
word “transformation” will refer to transforming vector data from its component form in one
coordinate frame to its component form in another, both at angular orientation relative to the
other. Those familiar with modern-day inertial navigation will recognize this as the process used
in “transforming” accelerometer data measured in inertial sensor assembly coordinates (parallel



to user vehicle axes) to their equivalent form in navigation coordinates (e.g., a locally level
reference frame).

2.2 Basic Notation

For compatibility with [6], the following basic notation is used in this article to describe
spatial distance and time parameters measured by observers at particular spatial position
locations. For convenience to the reader, the definitions are repeated where they are first
introduced, as are variations and other definitions introduced in the main text.

X = Distance vector between spatial points i and j at an arbitrary time instant.

Appendix C shows how the distance vector from point i to j can be ascertained by
an observer at point i using electro-magnetic (e/m) time of travel measurements
from point i to point j, then reflected back to point i.

Time instants 1 and 2 = Particular time instants when measurable events occur, at point p
at time instant 1, and another at point ¢ at time instant 2 (e.g., when radar
transmitted e/m pulses were reflected from points p and ¢ being tracked). Time
instant 2 is defined to be later than time instant 1. An example is provided in
Appendix D, showing how the time instant for an event can be ascertained on a
clock located where the event is being observed.

Xjj1» Xijp = X;; attime instants 1 and 2.

Xipy/i> Xigyli = Measured distance vector from observation point i to event point p at

event time instant 1, and from point i to event point g at event time instant 2, both
measured at point i (i = a or b).

Xpiayli = Distance vector from event point p at time instant 1 to event point g at time
instant 2 as calculated at point i (i = a or b) from distance vector measurements
taken at points a and b to event points p and q.

Xabi/a> Xabsla = Observer a measured distance vector (/a notation) from observation

point a to observation point b at event time instants 1 and 2.

A)—Cab,l _2/q = Change in the distance vector from point a to point b during the time

interval from event time instant 1 to 2 as calculated at point a from x and

abi/a
X 4py/q MEASUTEmENts.

Xbay/b> Xbarlb = Observer b measured distance vector (/b notation) from observation

point b to observation point a at event time instants 1 and 2.



A)—Cba,l _yp/p = Change in the distance vector from point b to point a during the time
interval from event time instant 1 to 2 as calculated at point b from x, al/b and

Xpar/b measurements.

Xpipi/ar Xbrgrla = Distance vector from observation point b to event point p at time

instant 1, and from observation point b to event point g at time instant 2, both
estimated at observation point @ based on measured values of x;, pi/b and Xbgo/b-

The estimation method depends on whether the basis is Newtonian or Relativity
theory.

Xa1py/b> )_caz @b = Distance vector from observation point a to event point p at time

instant 1 and from observation point a to event point g at time instant 2, both
estimated at observation point 5 based on measured values of x,, ,, andx,q /, -

The estimation method depends on whether the basis is Newtonian or Relativity
theory.

fals ta,2> th1> tp2 = Event time instants 1 and 2 (1 occurring before 2) registered on

clocks located at observation points a and b.

Ata1-2> Atp 12 = The time interval between event time instants 1 and 2 elapsed on the

observation point a and b clocks.

Vapa — Rate of change of x , ~measured using a point a clock (i.e., velocity of point b

relative to point @ as measured at point a).

Vpap = Rate of change of x, , measured using a point b clock (i.e., velocity of point a

relative to point b as measured at point b).

Vap/p = The negative of v, . (also showntobe vy, . defined previously).
u,,= Unit vector parallel toy_,, .
vab = Magnitude of y ., (and ofy, ).

Xp| agli, = Component ofzp1 qoli perpendicular to u , (i = a or b).



3.0POINT-TO-POINT KINEMATIC FUNDAMENTALS

Consider two events in space-time, one occurring at spatial point p at time instant 1 (call it
space-time point p, ), the other at spatial point ¢ at time instant 2 (call it space-time point g, ).

Consider two observers, one at point a, the other at point b, and that the observers can
independently calculate the distance vector from their location to the p, and ¢, events (e.g., as in

the Appendix D example):
Xp1as/a =2Xaqy/a ~ Xapy/q Xp1ay/b = 2bq,/b™ Xbpy/b (1)
where

Xap/a > Xagslq = Distance vectors from point a to point p at time instant 1, and from

point a to point ¢ at time instant 2, both measured at point a.

Xbpi/b s Xbgsih = Distance vectors from point b to point p at time instant 1, and from

point b to point g at time instant 2, both measured at point b.

Xpigslas Xpiayb = Distance vectors from point p at time instant 1 to point ¢ at time

instant 2 determined from the point @ and b measurements.

Figs. 1a and 1b illustrate the Eq. (1) geometry from the perspective of the point a and b
observers.

Xp192/b = Xbga/b —Xbpib

Ap1gaia = Zagaia —Xapyia

Fig. 1a - Distance Vectors From Fig. 1b - Distance Vectors From
Observer a Viewpoint Observer b Viewpoint

In Figs. la and 1b, p, and ¢, refer to spatial points p and g at event time instants 1 and 2. In

Fig. 1a, p; and p, refer to the location of observation point b at event time instants 1 and 2. In
Fig. 1b, g1 and g, refer to the location of observation point a at event time instants 1 and 2.



Included in the figures (for discussion to follow) are distance vectors from each observer to the

other at time instants 1 and 2 (Eabl/a’ Xabolas Xbay/b ’—Cbaz/b)’ and the change in each

observer’s x ,  measurements over the time instant 1 to 2 interval (AX,,1_5/4,>AXp, 1 50/p)-

Distance vectors that are directly measureable by each observer (as discussed previously) are
shown as solid lines. Dotted lines identify vectors that are calculated from the measurable
vectors.

Note, that because there is no preferred observation point in Newtonian or Relativity theory,
a vector from point a to point b at a particular time instant will be equal in magnitude, but
oppositely directed, from a vector from point b to point a at the same time instant. Thus, the
Xupy/a VECtOr from observation point a top; in Fig. la is equal in magnitude but oppositely

directed from b to aj distance vector x, al/b in Fig. 1b. Similarly, the Xaby/a VECtOr from

observation point a to p5in Fig. la, is equal in magnitude but oppositely directed from b to g»
distance vector Xbar/b in Fig. 1b.

Using the distance vector measurements between p and g events determined in (1), and the
distance vectors between observers shown in Figs. 1a and 1b, each observer can deduce what the
other should find for the distance vector between the p and g events. First, we express the
Xagsiar Xapyia» Xbqy/b and Xbpy/b measured terms in (1) as functions of measureable

distances between a and b and observer immeasurable parameters Xbogsla> Xbipya gaz galb
Xapi/b*

Xaqs/a = Xbrqy/at Xabo/a Xapi/a= Xb1p/a™ Xaby/a )

Xbqyb = Xarqa /b Xbay/b Xbp1/b = Xa1py/ bt Xbar/p

To illustrate the geometrical relationships between the Egs. (2) parameters, portions of Figs.
la and 1b have been redrawn in Figs. 2a and 2b, but adding Xpadalas Xbipiia> Xarqalb and

Xa1p1/b observer immeasurable vectors (shown dotted). In Figs. 2a, 2b, and in Egs. (2):

Xpipiar Xbrgyla = Distance vectors from point b to event points p and ¢ at event time

instants 1 and 2, both as determined at observation point a.

Xa1py/b> )_caz b = Distance vectors from point a to event points p and ¢ at event time

instants 1 and 2, both as determined at observation point b.

Xabi/a® Xabala> baybs Xbaslb = Measurements at points a and b of the distance vector

between the two points at time instants 1 and 2.



Xpp1ib = Xaipyi bt Zbanib

Xa =ZXp +x —

Xaqyia = Zbagaia Y Xabyia

Fig. 2a - Construction of Xbrqsla Fig. 2b - Construction of Xayq/b
And Xpipy/a By Observer a And Xa1py/b By Observer b

Substituting (2) in (1) obtains

Xp1asia = 2bags/a tXapy/a™ Xpipy/a ™ Labi/a T Xb2qy/a T bipy/a + AEab,l—>2/a 3)
Xp14a/b = Xayq2/b T Xbaz/b ™ Xa1py/b T Xbar/b = Xarqy b T Xarpyp T AXpa 15270

in which, as in Figs. 1a and 1b,

AXob152/a=Xabria = Xabia AXba1—2/b =2bar/b ™ Xbay/b (4)
where

Ax abl—2/a> Ax,, al—2/b = Change in the distance vectors between points a and b during

time instants 1 and 2 as determined at points a and b.

Note that Xp1pi/a and Xprdy/ a in Fig. 2a appear equal to Xppi/b and Xbg,/b in Fig. 2b.
Also, that Xa1py/b and Xu2q5/b in Fig. 2b appear equal to Xap,/q and Xaqy/a in Fig. 2a. That is

because Figs. 1a, 1b and 2a, 2b were constructed from Eqgs. (1) and (2) assuming these quantities
would be equal, whether calculated or measured in the a or the b frames. In Newtonian
kinematic theory this would exactly be true. In Relativity theory, however, it is only
approximately true, the accuracy depending on the relative motion between points @ and b during
time instants 1 and 2.



3.1 Newtonian Formulation

In Newtonian kinematic theory, distance vectors between two points are the same whether
determined or calculated at point @ or point . Thus, referring to Figs. 2a and 2b:

Based on Newtonian kinematic theory:

©)

)—Cb1p1/a:§bp1/b )—Cbzqﬂazzb(h/b §a1p1/b:)—cdpl/a )—Caqu/b:)—CaQQ/a
Substituting (5) into (3) obtains

Xp1dala =2bayb™ Xbpyb T AXap 15270 = Xpyaab T AXap152/a ©)

Xp1aa/b = Xaqyia ™ Xapyia T BXpa152/6 = Xpiasia T DXpa152/p

Xp1aaib=2p1qaz/a™ A)—Cab,l—>2/a Xp1aria=2Ep1ayb~ A)—Cba,l—>2/b (7

Figs. 3a and 3b illustrate the construction of x PL4a/b and x PLd2/a in (7) and their comparison

with Xpi /b and Xpidsla from Figs. la and 1b.

Ep192/b = Xbgaib —Xbpi/b

Xp1q2/b=Xp)g2/a—AZab,1 >2/a

Fig. 3a - Point a Vector Construction of x PL4a/b (On Left) Compared
With The Point » Construction Of x PL42/b From Fig. 1b (On Right)



Xp1ga/a=Xp|q2/b— AZba,152/b

Ep1gaia = Xaqyia —Xapi/a

Fig. 3b - Point b Vector Construction of x Pldola (On Right) Compared
With The Point a Construction Of x P1d2/a From Fig. 1a (On Left)

The A)—Cab,l /4 and A)—Cba,l _yp/p terms in (6) and (7) can be expressed as functions of the

relative velocity between points a and b during the interval between time instants 1 and 2. From
both traditional Newtonian and Relativity theory, the relative velocities between points @ and b
are equal and opposite with respect to each other’s time reference:

d d

Vab/a=—"—X Vpa/p =X Ypa/p="Y (8)
ab/a dt ab/a bal/b dtp bal/b bal/b ab/a

where
Vaba = Rate of change of x ,, ~as measured on the point a clock (i.e., velocity of point

b relative to point a as measured at point a).

Vpa/p — Rate of change of x, ,, as measured on the point b clock (i.e., velocity of point a

relative to point b as measured at point b).

Figs. 4a and 4b illustrate the Eq. (8) velocity vectors from the perspective of the point @ and b
observers.

Yabla
o / o
a Xahla b Xbalb b
Fig. 4a - Relative Velocity Vector Fig. 4b - Relative Velocity Vector
From Observer a Viewpoint From Observer b Viewpoint

10



We can also define:

vab=Vabjal Uy =Vabja! vab ©)
so that from (8),
Vabla=Vably  Voa/h=—Vabja=—VabUy  |Vbass| = vab (10)

where

u,,= Unit vector parallel toy ,, .
vab = Magnitude of y ., (and ofy, ).
It is to be noted that from the basic definition of distance vectors between spatial points:
Xpatb =" Xap/b (11
where

x,,, = Distance vector from point a to point b from the viewpoint of observer b.

Then (for future use), based on vy, ,=-v ,, in (8), the y, ,, definition following (8), and
with (11):
d d

i Xbalb =~ Xablb = Vabb (12)

v =—vV =
Zab/a Zbalb dip dtp

where

vapp = Rate of change of x , . (the negative of x, ,, ) as measured on the point b clock

(i.e., velocity of point b relative to point @ as measured at point b).

Per traditional introductory Relativity analytical design procedures, we now assume (and for
the remainder of this article) that the relative velocity between points a and b will be constant.
Then during the time interval between p and g event times 1 and 2, theAx .5, and

Ax,, a1-2/b distance vector changes in (6) and (7) will be from (8) and (10):

AX b 152/a = Yabia Mta—>2 = Vab Ata1 52U, (13)

AXpy 15216 = Voa/b Ath1—52= = vab Atp 12 U,
in which

11



Atg1—525ta 2=t  Ath152=tp2~1h)] (14)
where

Atg1-2> Atp1—p = Time interval time between p and g event time instants 1 and 2 as
measured on the point a and b clocks.

With (13), (7) becomes the classical Newtonian form [2 pp. 37, 7 pp. 508, 8 pp. 237, 9 pp.19]:

Xp1qs/b =Xp1qola " Vab Ata 52U, Atp152=Atg 152

(15)

)_Cpl C]z/a = )_Cpl qz/b + Vab Atb,l—)Z zv Afa,l—>2 = Atb,l—)Z

Included in Egs. (15) is the Newtonian kinematic assumption of equality between time intervals
measured at points a or b.

3.2 General Formulation For Newtonian And Relativity Compatibility

To develop a general formulation that is compatible with either Newtonian and Relativity
theory, means must be introduced in (15) to account for constancy in speed-of-light
measurements when specializing to Relativity kinematics. For the development, we first
decompose the Egs. (1) Xpidsiar Xpyaylb computed vectors and the Xapy/a » Xagqyia> Xbp/b

Xbqy/b measurable vectors, into components parallel and perpendicular tou,, :

EP1‘12/azzplqz/a'ﬂvﬂv-"fplqz/aj_ )—Cplqz/bzzpqu/b‘zvﬂv+§P1(I2/bL (16)

Xapja = Xapy/a - YUy Zv+£apl/al Xaqy/a = Xaqy/a Yy zv-l_iaqz/al

(17)

Xbpi/b = Xbpy/b Yy by T Xbpyb  Xbayib= Xbgy/b vyt Xb g
where

Xp1azia Eplqz/bl= Components of Xpiaala and Xp1qa/b perpendicular tou .

Xapi/a L’ Xaqy/a L’ Xpp1/b % Xbqo/b l: Components of Xapy/a > Xaqy/a> Xbpi/b > Xbq,/b

perpendicular tou .

Based on traditional Relativity theory, the components of either Xapy/a » Xaqy/a > Xbpyp OF
Xbqo/h parallel and perpendicular to vy, motion will be independent from one another, and the

components perpendicular to u, will be independent of v, induced Relativistic effects (i.e.,

12



behave in classical (5) Newtonian fashion). Thus, similar to [8 pp. 236], observer a finds using
Y1py/a, =Xppyb, 34 Xy g3/a | = Xpgyp from (5):

Xb1py/a = Eb1py/a - Uy Uy T Xb1p1/a L = Ibpl/b Uy u,t Ibpl/bJ_ (18)

E172612/612)—CZ7ZQ2/61'ZV z\/-'_5172612/@_: alcb@/b'zv 2v-FEbCIz/[)J_

where

a = Constant factor to account for the constancy in speed-of-light measurement law of
Relativity theory, or for setting to unity for compatibility with classical
Newtonian kinematics.

From Relativity theory, there is no preferred observation point (i.e., kinematic laws are the same
for any observer), hence, the equivalent to (18) for observer b would be:

J_Calpl/b:afapl/a ‘zvgv+£apl/al lcczzflz/bzazaqz/a'%}L—’v+zﬂl‘12/aL (19)

Note that for a set to unity, both (18) and (19) become Newtonian theory equalities in (5) with
(17).

Substituting X, ¢,/, from (16) and X/, > Xpygq,/, from (18) into the (3) xp 4,/,
expression obtains
Xpraga-YUyly T Xpraga,

=X Xpgy /b Uy Uyt X golp T F Xbpy/p Uy Uy T Xppyp T AXyp152/a
(20)
=a (?_Cb q2/b~ Xbp/b ) U, U, T X q92/b |~ )_Cbpl/bL + A)—Cab,l—>2/a

= Xprayib-Uyly + Xpy qz/bL + AEab,l—>2/a

Similarly, substituting x PL4a/b from (16) and from (19) into the (3) x PL4a/b

Xa1py/b> Xazq, /b
expression finds

EP1 q,7/b u, QV+EP1 612/bJ_ = aEpI qr/a U, gv-'_ipl 42/aJ_+A£ba,1—>2/b (21)

Substituting Ax 1,5/, and Ax, |, from (13) into (20) and (21), with rearrangement, then

obtains a generalized version of the (15) Newtonian distance vector formulas that are compatible
with either Newtonian or Relativity theory, depending on the value used for a:

X Xpigy/a-UylytXp 92/a =Xpiqy/p-Uy Uyt Xpy QQ/bJ_'i'Vab Atpi1sou,
(22)
azpl qo/b Uy Uy, +Ep1 ‘I2/bl =Xpigs/a-Uy Ev—l_ipl QZ/aJ__ Vab Atg 152U,

13



The u,, components of (22) can be rearranged into

1

Vv = E(Epl qZ/b . ZV ZV + Vab Afb,1—>2 ZV)

Epﬂz/a'zvﬂ

1
= (Epl q7/b gv Zv + Vab Atb,lﬁz gv) + (; - lj(§p1 q>/b " EV Zv + Vab Atb,1—>2 Z\;)
(23)

1

Xprag/b-Uyly = E(Epl qo/a Uy Uy = Vab Atg1-2 Ev)

1
= (Epl Q2/a : ZV ZV ~Vab Al‘a,leZ ZV) + (; - IJ(EIJI Q2/a . ZV ZV ~Vab Afa,1—>2 ZV)
Substituting the x, 1q2/a Uy Uy expression from (23) into (16) yields:

)—Cpl qr/a = )—Cpl q7/b - u,u,+ Xpy (I2/aJ_ Tvap Atb,1—>2 u,
1 (24)
+ o 1 (Epl qo/b - Uy Uy T vab Atp152 ﬂv)

Then, recognizing from the perpendicular components of (22) thatx Pldala =Xp1aaib > and
- 1L - L

that from (16), xp g,/p -1, U, +Xp, 92/b, =Xpqs/b: (24) becomes

1
)_Cpl q2/a = Epl qz/b + Vab Al‘b,l—>2 ZV + (;_ IJ(EPI Q2/b . Zv ZV + Vab Atb,1—>2 Zv) (25)

Using the identical procedure for the x, 1qy/b - Uy expression in (23), finds similarly for x PLaa/b "

1
Xp1ayib=Xp qy/a~ Vab Ala 152Uy F (; - 1)(&71 qata - Uy Uy~ Vab Ata 12 Zv) (26)

Egs. (25) and (26) comprise a set of generalized distance vector conversion formulas (from
observer b to a and from observer a to b) that are compatible with either Newtonian or Relativity
theory. For a complete conversion set (as in the (15) Newtonian formulation) it remains to find
generalized equations for converting Atp 152 10 Aty 12 and Azg 152 10 Atp 10 -

Egs. (25) and (26) can be inverted to find general solutions for the Az, 1_,» and Azp ) time

intervals. Taking the dot product of (26) with u , obtains with rearrangement:

1
)_Cpl qZ/sz:;(Epl Q2/a'gv_vab Afa,l—>2) (27)
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Substituting x PLaa/b- Uy from (27) into (25) (dotted intow,, ) and solving for Azj1_,, then gives:

1
Atp 12 = E[Ata,l—ﬂ - (1 - 062) Xpiqaia-ty/ Vab} (28)

Similarly, dotting (25) into u,, and substituting the x, \92la- result into (26) (dotted into

uy

u,)solves forAz,157:

1
Atg152= ;[Afb,lez + (1 - 0!2) Xpiqqib-ty/ Vab} (29)

Egs. (25), (26), (28), and (29) summarize as follows

Epqu/a XPICI2/b+VabAtb1—)2u +( j xpqu/b u 2v+vab Atb,l—)ZZ\))

1 2
Ata,Hz—— Atp 1—>2+(1 07 ) Xp qyp -ty Vab

(30)

I><

1
E]91 q,2/b = Epl qo9/a~ Vab Afa,leZ ﬂv"' (;_ lj( P1492/a SULUL,TVah Ata’1_>2 u,

|><

1 2
Afb,1—>2=E Atg1—-2— (1 o 142/a'2v/‘)ab

Egs. (30) constitute a generalized set of Point-to-Point kinematic conversion formulas that
are compatible with either Newtonian or Relativity theory. The distinguishing characteristic
between either is the value selected for the o constant. When o = 1, Egs. (30) reduce to the
classic (15) Newtonian form. For compatibility with Relativity theory, o must be set so that the
speed-of-light constancy law is satisfied.

3.3 Setting Alpha For Relativity Compatibility

For compatibility with Relativity theory, a is used to account for experimental and theoretical
findings that the speed of light (or any electro-magnetic wave speed in open space) is the same
constant to any observer. Thus, consider what observers a and b would measure for the distance
a photon of light would travel during the Azj_, time interval. Each observer would find the

distance between event points 1 and 2 to be Arj_p times the speed of light, or relative to each
observer:

2 2
_ 2 _ 2
Xr1rala-Xrirala =€ (Ata,l%Z) Xrira/b - Xrira/p =€ (Atb,1—>2) €1y

where

15



ri = Photon location at event time i.

X1 rajas Xrirp = Distance vector between photon locations 71 and 72 at times 71 and

t2 as determined at points a and b.
¢ = Speed of light.

Recognizing that x PLdala and x pi1da/b ATC defined in (16) as being composed of components

parallel to and perpendicular to u, allows (31) to be written in the equivalent form:

2 ) 2
()—Crl r2/b- 2‘,) tXp r2/b | ~Xriralb =€ (Afb,l—ﬂ)

(32)
2 2
()—Crl r2/a 'gv) T X r2la - X ra2la =c (Afa,1%2)
Taking the difference between the (32) expressions then finds
2 2
(Ei’l r2/b- 2v) - ()_Crl r2la: Ev)
(33)

2 2
_ 2
=c [(Ath_)z) - (Ata,1—>2) :l_)_crl ra/b | " Xrira/b T X rala, *Xrira/a;

For this exercise it is convenient to use the equivalent (22) form of (30). Identifying i and
7o as “events” in accordance with the Section 2.1 definition, and recognizing that general Egs.

(22) apply for any two events occurring at time instants 1 and 2, (22) will remain valid for

Xy ra/a> Xri ro/p Substituted for X, g/, Xp g,/ - Thus, distance vector Egs. (22) become

24 Er] r2/a- u,u, +)_Cr1 r2/aJ_ = fr] r2/b - u,u, + J_Crl rz/bl + Vab Atb,l—>2 u, (34)

O Xy posp - Uy Uy T X ralb, = Xp1rojg Uy Uy T X0 r2/a, ~Vab Atg 152U,
The components of (34) parallel to and perpendicular to u,, can be written individually as

O Xyl pa)q Uy =Xy posp - Uyt vap Atp 152
O Xy yoip- Uy Uy =Xy 40/ Uy~ Vab Atat,l—)Z (35)

Xpq q92/b, = Xp; 92/a

Solving for x p - U, from the first expression in (35) and substitution in the second obtains

rir2/
with rearrangement:
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(02 =1) X, 2y -y = v (@ Atp 12 = Ata12) (36a)

Similarly, solving for x .u,, from the second expression in (35) and substitution in the first

rir2/a
obtains:

(a2 — 1) Xt ras Uy =vab (At 12— O Aty 52) (36b)

Squaring (36a), (36b), and taking their difference then gives

2 2 2
FER [ESOPN PN
= Vabz[(Atb,l—ﬂ—Of Ata,1—>2)2 - (05 Al‘b,l—>2_Al‘a,l—>2)2} (36¢)

=vap’ (1-a?) [(Afbal—ﬂ)z ~(ar ”’1*2)2}

or

(1 - 0‘2) {(Erl r2/b 'Zv)2 - (im r2/a %vﬂ =vab [(Alb,l—ﬂ)z - (Ata,1—>2)2:| (36d)

which is (33) multiplied by(l - az) . Substituting (33) in (36d) and applying the third expression
from (35) finds

(1 - 0!2) c? [(Atb,l—ﬂ)z - (Ala,1—>2)2} =vap [(Atb,1—>2)2 - (Afa,lez)z} (36¢)
or
(1-0?) 2 =vap” (36f)

Eq. (36f) is then easily solved for a, yielding the well-known Relativity coefficient form:

a’=1/1—v§b/cz (37)

3.4 Point-T o-Point L orentz Conversion For mulas

With a now in hand from (37), substitution in (30) with 1 — g2 from (36f) obtains the general
Point-to-Point conversion formulas:
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1

Epl C]z/a = Epl q2/b + Vab Afb,l—)Z ZV + _1 (Epl qz/b . 2v+ Vab Atb,l—)Z) ZV

I=vgy/ e
1
_ 2
Atg152= > 2 (Afb,1—>2 +§p1 q,/b %y Vab e )
1- Vab / C

(38)
1

Xp1da/b =Xp1as/a~ Vab Mg 152Uy, F 1—2/2—1 Xpiqa/a- Uy~ Vab Ala)>2 | U,

_vab C

1

2 2

2
(Ata,1—>2 _Ipl q>/a Uy, Vab / ¢ )
1_vab/c

Atp152=

Egs. (38) can be converted to a more traditional form by first substituting u,=v,,,,/ v4p from

(9) as follows:
(Epl qo/b Uy +vab Afb,1—>2) Uy=Xprqyp-Uy Y,y +Vob/a Ath1-52
_ 2 _ 2
=Xp1qy/b-Yabla Yabla / Vab T Yabia Ath1—-2 = (Epl q2/b - Yab/a / Vab T Atb,1—>2) Yabla
=|x y +2, At y / v2
Ap142/b-Yabla ™ Vab Alb1-2) Yab/a’ Vab
(39)

2 _ 2 _
Vab = Yab/a *Yab/a Vab Atp152= (Yab/a Alb,1—>2) “Yabla

2 2 _ 2
(Epl q2/b-Yabla T Vab Afb,laz) Vabia! Vab = (Epl q2/bF Yabla Afb,1+2) Vaba Yabla' Vab

_ 2
()—Cpl q5/b Uy T vab Atb,1—>2) u,= ()—Cpl q-/b T Vab/a Atb,1—>2) “Yabla Yab/a / Vab

_ 2
(Epl qs/a Uy~ Vab Ata,1—>2) u,= (Epl dr/a " Yab/a Ata,1—>2) “Yabla Yab/a / Vab

Using the (39) result, u,=v,,,,/vapfrom (9), and recognizing from (12) thaty ,  =v_ ..,
Egs. (38) then become
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Xp1da/a = 2p1a2/b T Yab/b Ath,1-2

1
2
+| T ——=-1 (Epl a2/b T Yab/b Afb,lez) “Yabib Yabib! Vap
1- V /c
_ 2
Atg1-2= ) (Atb,1—>2+£p1 qz/b"—’ab/b/c )
(40)
Xp192/b=Ep1q2/a " Yab/a Atg,1-2
+ ! -1 ||x -V At 14 v /v2
> > Ap149y/a Yabla Blal=2 ) Yab/a Labla’ Vab
JI=vip/c
a
A = (A - / c?
lb,1—>2 ) ) la,1—>2 EPIQ2/Q"_}ab/a c
l_vab/c

Egs. (40) are the Point-to-Point conversion equivalent of the general Lorentz transformation
operations in traditional Relativity theory [9 pp. 30].

3.4.1 Paint-to-Point Geometrical Inter pretation of Lorentz Conversion

For almost all applications, approximating /1 —12 ! ¢2 by unity (i.e., a in general Egs. (30)
set to one as in Newtonian kinematics), creates negligible error. For example if vyp= 1.E3

meters per second (and as usual, ¢ = 3.E8 meters per second), & =1-0.52 ! 24
=1-5.6E-12+---=1. For situations when v, is unusually large (e.g., particle motion

generated by a cyclotron), or when very small time intervals are important to system accuracy
(e.g., Global Positioning System - GPS pseudo-range measurements), approximating o by unity

is not acceptable, and the full /1— V2 b / ¢? forms must be used.

To illustrate the effect of w/1—\%])/ ¢? deviating significantly from unity, consider a case
when v, =0.866 ¢ (corresponding to /1 — V2 b/ c2=05 andvgb /c2=0.75 ), and when observer

b sees the p and g events at time instants 1 and 2 occurring simultaneously (i.e., Atp;2=0).

Under this condition, (38) shows that X, ./, =Xp, g,/bF Xp| qo/p- Uy Uy~ Fig. Saillustrates the

vector construction of x Pl49ala from x P qp/b USING this formula.

The equivalent construction of x PLa2/b from x PLd2/a under the previous conditions, derives

from the last two equations in (38). The Agj,1_,» equation in (38) shows that for V2 o/ 2=0.75

and Arp 1,2 =0, the time interval between the p and g events observed on the point a clock will
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be Ata152=0.75Xp, qp/q 4,/ vap- Substituting this with Jl—vgb/&:o.s into the (38)
Xp14ay/b equation finds that Xp1aa/b=2p1a2/a=0.75Xpqp/a - Uy Yy
+(’—Cp1q2/a'ﬂv—0-751p1q2/a'ﬂv)ﬂvzlplqz/a_oj’—Cplqz/a'ﬂvﬂv' Fig. 5b illustrates how
this result can be used to reconstructx PL4a/b from the Xpidala value in Fig. 5a, thereby

regenerating the original Fig. 5a x P1qo/b VECLOr.

Xp1gaia = Xp1gaib HXp|qaib - Uylly Xp1q2/b = Xpygaia —0.5 Xp1gyia - Uylly

pl/b / £y Eplqzla by

Fig. 5a - Constructing Xpids/a Fig. 5b - Constructing Xp1ay/b

From Epl q5/b When Atb,1—>2 =0 From )_Cpl q7/a When Atb’1_>2 =0

A similar analysis/construction can be performed for a case when the p and ¢g events at time
instants 1 and 2 occur simultaneously at point a (i.e.,Az, 1,2 = 0), leading to similar results (left

as an exercise for the reader).
3.4.2 Simplified Point-to-Point L orentz Conversion Notation

Now that the meaning of time and distance parameters in (40) have been clearly established,
a simplified notation can be introduced that deletes the time instant 1 and 2 notation, treating all
parameters as general variables:

1
_ 2
Vab' ¢ (41)

_ 2
Atpgla= (A’pq/bJ”_Cpq/b-‘_’ab/b/C )

I=vay/ e

Continued
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(41) Concluded

1
— 2
Xpq/b=Xpgla " Yabla Atpglat 5 ) -1 (qu/a_‘—}ab/a Atpq/a)-yab/a ‘—}ab/a/vab
l=viy/c
a
— 1 / -2
At pg/b= 5 Z(Atpq/a_qu/a"—)ab/a C)

where

Xpgla> Xpglb = Distance vector from event point p to event point g based on

observations of the events at points a and b.

At pglas Mt pgib = Time interval between the p and g events based on time measurements for

the events at points a and b.
3.4.3 Point-To-Point Lorentz Conversion Vector Components

Most past works in Relativity theory have expressed derivations and results in terms of
component projections on coordinate frame axes. Equivalent results are generated with the Point-to-
Point approach by first expressing Point-to-Point conversion formulas (41) in equivalent matrix
format as described in Appendix B. For example, consider two inertially non-rotating coordinate
frames, one at angular orientation relative to the other. Define the first as coordinate frame A in
which the X axis is aligned with the point b to point a velocity vector v, , , the second as coordinate

frame B at some general angular orientation relative to frame A. Appendix B shows how the angular
orientations between the two frames can be represented as a direction cosine matrix in which rows
and columns represent unit vectors along the coordinate frame axes. Based on the A and B frame

definitions, we then define the components of x pala> Xpglb> and Vab/a 85 elements of column
matrices:
XAla XA/b XBla XB/b
A _ A _ B _ B _
ZAla ZA/b ZB/a ZB/b
V VXB
A _ A _ B _ B _ _ A A _ B B
Vabia=Yab/b=| 0| Yabia=Yarn=|VyB| V= \/ Vabia-Yabla = \/ Vabia-Yabla (42
0 V7B
V2=VigtVigtVzs
where

(), ()B = Column matrices with elements equal to the projections of vector ( ) on
coordinate frame A and B axes. Note - Vector () projections on coordinate frame A
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or B axes are defined as the dot product of ( ) with the mutually orthogonal unit
vectors that define coordinate frames A and B.

V' =Magnitude of v, (and of y _, , since from (12), they are equal).

Egs. (41) are then converted to the equivalent matrix form by replacing all vectors with their
equivalent column matrix forms (as in (42) by adding coordinate frame designation superscripts A or
B for conversion to A or B frame coordinates ), replacing all ( )column matrix dot-product
operations ( ).with the matrix transpose operator equivalent ( )T , and replacing all cross-product
operations ()X with the square matrix operator equivalent [( )x]| defined for a general vector W in

Wxa 0 ~Wza  Wya
the A frame as EA = Wya [EAXJ =| Wyza 0 —Wxa | and similarly for EB. It
WzA ~Wya Wxa 0
is easily shown by standard matrix algebra that for an arbitrary vector U, the column matrix form of
cross-product vector W XU in the A frame, i.e., (ZX U )A , equals [@Ax} U (and similarly for the

B frame). The individual components of (41) projected on coordinate frame A or B axes are then
obtained by substituting (42) for column matrices in the converted (41) matrix equations, carrying out
the indicated matrix operations, and identifying the rows of the result as the equations for individual
components. The result for (41) projections on A frame axes (including A¢ ,;/, and Az ,q/p) 18

1
XAla=—T7————=XamtVAt pg/p Yaia=YAb  ZAla=ZAlb
e )

1

At pg/a zﬁ(Aqu/b +VXan! )
-V-ic
(43)
1
XA/b:m(XA/a_VAqu/a) YAb=YAla  ZAb=ZAla
—Vic

1

At pg/b= W(Af‘pq/a ~VXaA/a/ 02)

The (43) form is what is known in Relativity theory as the “standard configuration” of the Lorentz
Transformation [2 pp. 37, 7 Egs. (12-7a) & (12-7b), 8 Egs. (70a) & (70b), 9 Eqgs. (10.41) - (10.44)].
In traditional Relativity theory, the a and b observer distance vector components and time intervals in
(43) would correspond to what would be measured in two coordinate frames that are translating at
velocity V relative to each other in the X coordinate axis direction.

Following the same procedure used to obtain the (41) frame A components, projections of (41) on
B frame coordinate axes finds
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VXB(X B/b TV XB At pq/b)
+ VYB(XY/b +VyB Atpq/b)

+ VZB(XZ/b +VzB Atpq/b)

V' xB
V2

1
XB/a=XB/htVXB At pg/bt -1
rq [\/I—Vz/cz

(44)

1 VYB
YB/a=YB/p+tVYB Atpq/bJ{\/l 2 2 —1] JrVYB(XY/b+VYB Aqu/b)
-V=/lc

VXB(XB/b +VXxB Atpq/b)
2
+ VZB(XZ/b +VzB Atpq/b)
VXB(X B/b TV XB At pq/b)
1 VzB
ZB/a=ZB/hTVzB At pg/pt+ \/1 2 2 -1 2 + VYB(XY/b +VyB Alpq/b)
—V-ic

+ VZB(XZ/b +tVzB Atpq/b)
1

1_V2/02/62

1
At pgla= [Alpq/b+?(VXB XgiptVyBYB/n+VZB ZB/b )j

Eqgs. (44) are the general version of the Lorentz Transformation [7 Eqgs. (12-5a), 9 Egs. (10.32) -
(10.33) & (10.36) - (10.37)]. In traditional Relativity theory, the a and b observer distance
vector components and time intervals in (44) would correspond to what would be measured in
two coordinate frames translating relative to each other at relative velocity magnitude V" and
components V'xg, Vyp, Vzg. The same procedure leading to (44) would be used to obtain B

frame x pq/b COMponents and At ,/p 1n terms of A frame x pqla COMPpoOnNents and At g/ -

Egs. (44) can also be derived by transforming (43) from the A frame to the B frame using an
A to B frame direction cosine matrix (left as an exercise for the reader - see Appendix B). It is
interesting to note that [9 Sect. 10] used the direction cosine transformation method to derive
(44), and that the (41) general vector form was then deduced from (44). In comparison, this
article used a direct vector design approach to derive general vector Eqs. (41) with the (43) and
(44) vector component equations then obtained by projection of (41) on coordinate frame A and
B axes.

4.0 THREE-POINT AND TWO-POINT FORMULATIONS

The analytical developments thus far have been based on a four-point approach; two
observation points and two distinct points where events occur. This section analyzes cases
where events occur at the same point but at different times; a three-point approach where the
event point is remote from the observation points, and a two-point formulation in which events
occur at one of the observation points.
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4.1 Three-Point Approach

Consider a case in which event point ¢ at time instant 2 is defined to be point p that has
moved from its time instant 1 location to a new location at time instant 2. Using this concept,
Point-to-Point Lorentz conversion formulas (40) become:

AX 15210 = DX p 15276 T Yabip Ath12

1

2
-1 (Ax pa—2/b T Yabib Al Hz) Yab/b Yab/b! Vab
\/1 Vab /c?
1 2
Atg 2= 7 5 (Atb,1_>2 +AX ) 1 20b - Yabin ! € )
\/1 “Vab /e

+

(45)
Axp 1-2/b — Axp 1-2/a ~ Yab/a Ala1-2
1 /2
+ W -1 (Axp 1-2/a ~ Yabla Ata,1—>2) “Yab/a Yabla' Vab
T Vap' C
1 2
Atp12 = 1—2/2(Ata’1_>2 - AE,47),1%2/(1 Vabla' € )
“Vap' €
where

Ax pis2/a Ax a2/ Change in position location of point p from time instant 1 to

time instant 2 as observed at points a and b.

Atg1-2> Atp1—p = Time interval time for the Ax Ax pi—2/b point p position

=p,l->2/a’
changes as measured on the point @ and b clocks.

Similar to (41), the point 1 and 2 distinction notation in (45) can then be eliminated to obtain the
simplified notation version:

1 2
AX g =AX it Vapp Aty + 1—2/2 -1 (A)—Cp/b * Yab/b Alb) Yab/b Yab/b! Vab
Vap' € (46)
1 2
Atqg= —(Atb +AX b Vapip! € )
1 v /c
Continued
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(46) Concluded

1
_ 2
AXpip =A% p1a = Vap/a Atat 2,2 -1 (A’—‘p/a ~Yab/a Ala) Vab/a Yabla' Vab
“Vab' C

1
Atp= T(Ata ~AX 10 Yabla! 62)
l_vab / C

where

Aty, Atp = Time interval measured on the point a and b clocks between point a and b
observed point p position changes.

Azp/a’

intervals based on point p position observations made at points a and b.

Ax plb = Change in the vector position of point p over the Az, , Azp time

4.2 Two-Point Approach

This section analyzes a two-point version of the Point-to-Point Lorentz conversion formulas
in which the first event at point p occurs at observation point b at time instant 1, and the second
event at point ¢ occurs at observation point b at time instant 2, i.e., the events occur at point b
that moves from its location at time instant 1 to its location at time instant 2. Then x PLa2/b in

(40) becomes xj, p,/, Which equals zero at point b, hence, Point-to-Point Lorentz conversion

formulas (45) become

1
_ 2
Xb1boja = Yab/p Albb1—by T+ ) -1 (Zab/b At b,bez) -Yabib Yablb! Vap
l1=vo, /e
1

5 5 Yab/b Alb.b1>b2
J1=v3, /¢
ab
1
— — 2 2
Atapisby =5 Atbbisby = Atp by =\1=vgy/ ¢ Atapispy (47

- Vab / C
X1 bosp =0
1
_ 2
At b1—by = > > (Afa,b1—>bz ~Xpybata-Yabla! € )
- Vab / C
where

Atabiobys Mtbbisby = Time interval between the point b event at time instant 1 and the

point b event at time instant 2, as measured on the point @ and b clocks.
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Xpiboja> Xbyby/p = Distance vector from the point b event at time instant 1 to the point

b event at time instant 2, as observed at points @ and b.

Substituting the A¢p p,_,5, result from the second (47) equation into the (47) x4,/ equation

with y ., =v_, . from (12) obtains:

Xb1ba/a = Yabla Mla,b—bs (48)

For the assumed constant v ,, ., (48) is the integral of v, in (8) over the Aty p,_,p, time

interval. The A¢, p,_,p, expression from (47) and its substitution in (48) gives

1 1
Xbibola= 5 Yabla Mbbisby  Mabisby === Abbishy  (49)
_.2 2 _.2 2
1 Vab / C 1 Vab / C

Similar to (48), the integral of v, , in(8) (with v, ,, =—-v_, ) overthe Aty p,_p, time period
shows that, as in (13):

AXpy bisbasb =~ Yab Atbb1—shs (50)

where

Ax, a.bl—sbalb Change in the distance vector from point b to a during the time interval

between point b events at time instants 1 and 2, as determined at point b - Similar

The Atp py_b, expression from (47) and its substitution in (50) shows that:

__ | 2 /2 _ | 2 /2
AXpy bisbop =~ L=vip! e Yabra Atapi—bs At biby =1 = v/ ¢ Atapips (51)

Egs. (49) and (51) describe observations at points a and b of the other’s distance and time
interval measurements, both based on time instant 1 and 2 events occurring at observation point
b. An analysis similar to that leading to (49) and (51) can also be performed for a two-point case
in which the events occur at point a. For clarity, we define the point a event time instants to be
1' followed by2', but independent of sequential time instants 1 and 2 (which in this section
designate events occurring at point ). (Note that time instants 1' or 2' may occur before or

after 1 or 2). With the 1',2" designation for point a events, Xpiqala in (40) becomes X 4,1 45/
which equals zero). Assuming the same constant velocity v, between points a and b for

events occurring at either a and/or b, the equivalent to the (48), (49), and (51) results would then
be
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Xar ax/b =~ Yab/a Atb,ay—ay (52)

1 1
Eal' a2‘/b = 5 5 ‘_)ab/a Ata,alv_)azl Atb,al'_>a2' = ) 5 Ata,a1|_>a2| (53)
\Il_vab/c I_Vab/c

_ 2 2 _ 2 2
A)—Cab,al'—mz‘/a - \/l_vab/c Yab/a Atb,ay—ay Ata,ap—ay = \ll_vab /c Atp,ay—ay (54)

where

Ata.ap—sars Mbap—say = Time interval between the first point a event at time instant 1'

and the second point a event at time instant 2', as measured on the point a and b
clocks.

Xapayyp = Distance vector from the point a event at time instant 1' to the point a event

at time instant2', as observed at point b.

Ax

Xab.ay—ayia — Change in the distance vector from point a to b during the time interval
between point a events at time instants 1' and 2', as determined at point a -

Similar to AX 5,5/, in Eq. (4).

Eqgs. (49) and (53) are equivalent to what has been derived using traditional Relativity theory,
e.g. [7 pp. 517], demonstrating the difference in observations when conditions defining the
events are similar, but different.

5.0 POINT-TO-POINT LORENTZ TIME DILATION, LENGTH CONTRACTION,
AND PROPER TIME

Two well-known consequences of traditional Relativity theory are the lengthening of time
intervals (time dilation) and shorting of distances (distance contraction) predicted by Lorentz
analytics [2 Chpt. 12, 7 pp. 517, 8 pp. 248 - 250, 9 Sects. 14.0 & 15.0]. In traditional Relativity,
Lorentz analytics also defines a combined distance/time “proper time” parameter that has the
same value when evaluated in coordinate frames translating relative to one-another [7 pp. 519, 9
Sect. 12]. These effects also arise with Point-to-Point Relativity.

5.1 Point-to-Point L orentz Time Dilation

Point-to-Point Lorentz time dilation has already been demonstrated in the Section 4.2 two-
point solutions where events occurring at one observer were seen by the other observer. When

. . _ 2 2 .
events occurred at point b, results in (49) showed thatAta,blﬁbg = Ath b1shy /1= Vb /¢, 1.e.,
the time interval measured at point a during the spatial movement of point » over time instants 1
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and 2, was longer than the same time interval measured at point . Similarly, when events

occurred at point a, results in (53) showed thatAtb,al,_)aT:A;a’al.ﬁaz,/,ll—vzb/cz , 1.e., the
time interval measured at point b during the spatial movement of point a over time instants 1'
and2', was longer than the same time interval measured at point a. The effect is known as
Lorentz “time dilation”. The same effect would be obtained for the four and three point
solutions when one observer sees distant events at time instant 1 and 2 occurring at the same
spatial location and the other sees the events occurring at different times, i.e., when x PLaa/b= 0

in four-point solution (40), or when Ax p =0 in three-point solution (45). These results are

p.1-2/

equivalent to what has been obtained with traditional Relativity theory [2 Chpt. 12, 7 pp. 517, 8
pp. 248 - 250, 9 Sect. 14].

5.2 Point-to-Point L orentz Distance Contraction

Point-to-Point distance contraction has been graphically demonstrated in Section 3.4.1 for the
particular case when ,/1 _ng / ¢?=0.5, where distant events p and g occurred simultaneously

relative to observer b (but separated in time relative to observer a). The Fig. 5a construction then
showed that the distance between points p and ¢ was shorter (“contracted””) when measured by
observer b compared to when measured by observer a. The effect can be analytically
demonstrated in general from (41) for simultaneous observations of p and ¢ at b (i.e.,

At pg/bp=0) which finds

_ 2
AZ‘PCI/G_qu/a“—}ab/a/c (55)

Substituting (55) in the (41) x, , equation shows what observer b will then find for the

pq/
distance between events p and ¢ in terms of observer a findings. For the development, it is first
expeditious to rearrange the (41) x palb equation:

1
_ _ o _ 2
Xpg/b = Xpgla Yabla Mt pgla™ /1 2/ 2 1<)—Cpq/a ‘—}ab/aAtpq/a)"—}ab/a‘—}ab/a/vab
“Vap' C

_ 2
=X pgla ™ Yabla At pgla— (qu/a ~Yab/a Alpq/a) VablaYabla' Vab (56)
1

2
+ 2 2()—Cpq/a_‘—)ab/a Atpq/a)"—}ab/azab/a/vab
“Vab' €

Substituting (55) in (56) then obtains
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— 2
Xpq/b = 2pgla = Yab/a Atpgla— (Ipq/a ~Yabla Atpq/a) Vabla Yabla' Vab
1

- — 2
+ [ > Z(qu/a Yab/a Atpq/a)-‘_’ab/a ‘—}ab/a/vab
l_Vab/C

— 2 2 2
=Xpgla " Yab/a qu/a"—}ab/a/c _(qu/a_yab/a qu/a'zab/a/c )'Eab/a Zab/a/vab
1

2 2
m()—cpq/a VabiaYabla’ Vab " Yabla Xpg/a-Yabla /c ) (57)
ab

1 1 1
— 2
=Xpgla”Lpgia-Yabla ‘—}ab/a/vab—i_ > 5|2 2 Xpgla-Yabla Yabla
l—vab/c Vab €

— _ 2 _.2 2 2
“Xpgla qu/a'zab/azab/a/vab—l_\/l Vab/c qu/a'zab/a‘—}ab/a/vab

— 2 2 2
_zpq/a_(l_ \/l_vab/c )qu/a Yabla ‘—}ab/a/vab

Eq. (57) shows thatx

+

palb the p to g distance seen by observer b, will equal the x pala

observer a determined p to g distance, but with the component parallel to vy, ~shortened by the

1
factor 1—«/1—v§b/02 za‘%b/cz' The same effect would be seen by observer a when

Atpq/a=0. Equating the (41) At ,/, equation to zero finds Alpq/b=_£pq/b-2ab/b/02 which,

when applied in the (41) equation, would show that for observer a:

qu/a

?_Cpq/azépq/b_(l_*“_"?zb/cz)zpq/b"—’ab/bfab/b/"%zb' The effect is known as Lorentz

“distance contraction”. The same effect would be obtained for observer 4 in a Section 4.1 type
three-point solution when events relative to observer b occur simultaneously, i.e., Azp 1,2 =0 in

(45), or when events relative to observer a occur simultaneously, i.e., A¢, -2 =0 in (45).

The results in this section are equivalent to what has been obtained from traditional Relativity
theory [2 Chpt. 12, 7 pp. 520 - 523, 8 pp. 248 - 250, 9 Sect. 15].

5.3 Point-to-Point Proper Time

In traditional Relativity theory, Lorentz “proper time” is a “time-like” parameter that is
invariant in coordinate frames translating relative to one-another [7 pp. 519, 9 pp. Sect. 12]. The
equivalent for Point-to-Point Relativity derives directly from (46). To expedite the derivation
process, it is convenient to reintroduce the u,terminology in (10) for the velocity vector

Vab/a =Vab U, - Thenwithy ., =y . from (12), the first two of (46) become
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1
AX 1= AX i+ vab Atp U, + T2z =1 (Afp/b%v”abmb)%v
“Vap' C

(58)
1
Aty = T(Atb + Azp/b ‘U, Vab / c2)
\ll “Vab /e
In the limit as the A terms become infinitesimally small, (58) goes to
dx,q=dX,,+vap dtp i, + ﬁ—l (dzp/b Uyt vgp dtb) u,
Vab' € (59)

1
dta=——=—=/dtp+dx -1, v/ &)
[ 2,2 pro-=v

where

dtq , dtp = Differential time intervals measured on the point @ and b clocks.

d)—cp/a’

differential time intervals.

d)—cp/b = Differential changes in point p position vector over the dt, dtp

As with traditional Relativity [7 pp. 519, 9 pp. Sect. 12], Point-to-Point Relativity proper time is
based on its squared value:

drzzdtz—dzp.dzp/cz (60)

where
dt = Point-to-Point differential proper time interval.

dt = Differential time interval measured on a traditional local clock without particular
observer specification (dt, or dtp ).

dx = Differential changes in point p position vector over the dr differential time

p
interval without particular observer specification (d x pla OF dx o/ B)-

Note that (60) is similar to the equivalent for traditional Relativity in which proper time is
defined as a differential time change function of differential changes in measured distance and
time. Similar to traditional Relativity, it will now be shown that Point-to-Point proper time as
defined in (60) is the same (i.e., invariant) between observers a and b translating relative to one
another.
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For observer a, proper time d7 calculates from (60) as

dr?=dig—dx,, dx,,,/ (61)
The differential terms in (61) derive from (59). For the derivation, it is first useful to expand

dx and dx plb into components parallel and perpendicular tou,, :

pla
dﬁp/a:dﬁp/av"'dfp/aj_ dx b= =dx pib, +dx b, (62)
where
dxp/a , dgp/ = Components ofdxp/a, d)—Cp/b parallel tou .
dqu/a , d)_cp/ = Components ofdxp/a, d’_cp/b perpendicular to u, .

With (62), (59) becomes

1

dzp afxp/bL (dx /b, +vap dtp U )
1- v /c
(63)
1
dfa:—(dtb+dx b .U Vab/c)
1 vy /c
Note also that from the definition of the (62) components:
dzp/av:dzp/a'ﬂvzv dlp/bv:dzp/b‘zvﬂv
2 2 (64)
dx dx a, (dgp/a.gv) dxp/b a')_cp/b —(dxp/b )
dx /a'd)—c /a:dJ—C /a, Ldx pla, +dJ—C dxp/aJ_

(65)

dx bdx p=dx pib, .dx b+dx /b, 'dfp/b

2
The dr2 and dx . dx ,, terms in (61) are from (63) with (64) for(@p /bv.gv) :
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dxp/a dx
dxp/b dxp/b
‘[1 Vb/CZ +Vabdfbu A= Vb/CZ +Vabdtbu
1 dzp/bv‘dj—cp/bv

=dx .dx —_—
Xpib, DX pb 2 2
L (1—v2b/c2) +2 dEp/bv'ﬂv Vab dtpt vy, dty,

(66)

2
dts = )(dtb+dx /b, U vab/c)

(1‘V§b/02

1

2
— 2 4
Vap' €

Substituting (66) in (61) then finds for Point-to-Point Relativity proper time:

1

2 - 00
dr (l—vﬁb/cz)

[dtb+2dx b .u Vabdqu/b/c +a’xp/b dxp/b Vv b/c:|

_ 2
dx i, -dx,p e

1 2
Vab' C
1
= (12 ) g+ (2 -1/ x|
(1-v2,/c?)
2

— A2 2
= Aty = (dxp/b X, = dX X )/

or with (65) and (61):

Eq. (68) demonstrates the invariance of Point-to-Point proper time formula (60) as det

(67)

ermined by

observer a or by observer b. The (68) results are equivalent to what has been obtained with

traditional Relativity theory [7 pp. 519, 9 Sect. 12].

Eq. (68) can also be used to show the relationship between proper time and the time

differential measured on the point @ and b clocks. From (68),
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dx dx
/czZ(l—i/a.i/a/cz]dtg (69)

a a

pla

Then, from (69) and the equivalent for the observer b time differential:

dta:dr/\/l_‘_’p/a"_}p/a/cz dtb:dT/\/1_‘_’];/19'Yp/b/c2

d)—cp/a d)—cp/b (70)

v =
Zpl/b dtp

where

Yprar Yplb = Velocity vector of point p as determined by observers a and b.

Egs. (70) also show that:

diy _ (I—Xp/b-fp/b/cz) (71)
dtp (l—yp/a.yp/a/CZ)

6.0 POINT-TO-POINT DERIVATIVE FORMS

The analysis thus far has concentrated on formulations of relative distance measurements
from the viewpoint of two observers traveling relative to one-another. In this section, the
moving point p approach in Section 4.1 is extended to encompass a and b point observations of
point p velocity and acceleration:

_ d)—cp/a _ dyp/a _ dip/b _ dyp/b
Ypia= Apja™= Ypib =", Lpg/b= (72)
where
Votar Ypib = Velocity vector of point p as determined by observers a and b.
Qg Apihy = Change in the point p velocity vector per differential time interval (i.e., the
acceleration of point p), as determined by observers a and b.
6.1 Velocity

The derivation of point p velocity relative to point a begins with a restatement of (63):
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1

dx , =dx ——|dx + dtp u
Xpra=%4Xp/p, \/7( Xpib, T Vab dip U )
1 v /c
1 (73)
dta=—(dtb+d£ /b -zvvczb/c2)
VI=vey/ ¢ o
Dividing (73) by dtp finds
- + +Vabﬂv
dtp dtp \/1 - Vﬁb / 2\ dtp
4 (74)
X
dta _ 1 1+ _p/bv-ﬂv\/ab/cz
d \/l_Vﬁb/Cz din
From (62) and (64):
dxp/b —dfp/b u,u, dx plb, =dx plb dxp/b —dxp/b dxp/b u,u, (75)
so that with (72):
dtb 7 A
(76)
dtb dtp dtb 2vgv_‘—}p/b Yp/p-Uyly
Substituting (76) in (74) then obtains
dx
=pla 1
_—p/b_‘—}p/b'zvzv-i_ > 2(‘—)p/b'zv+"ab)ﬂv
dtp ’”_Vab/c 77
dta 1 2
=14y, .u, v/ c
Lplb-Ly Vab
dtp l—vﬁb/cz( )
Trivially, from (72):
y :dfp dxp/a dl‘b (dtaj dxp/a (78)
Pl g dty dtq \dtp dtp

Substituting (77) into (78) yields
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2 2
\/l_vab/c (Zp/b_‘—}p/b'zvz\/)_‘_ (‘—}p/b'zv+vab)ﬂv

(1+l}p/b'zvvab/02) (1+‘_’p/b-ZVVab/02)

Ypla™ (79)

orsince u, =V, / vqp from(9) and (12):

[[_ 2,2 2 2
I=vap/c (Yp/b—Xp/b “Yab/b Zab/b/Vab) N (1+2p/b-2ab/b/vab) Yab/b

2 2
(1+Yp/b-‘_’ab/b/c ) (1+Yp/b-2ab/b/c )

(80)

Ypla=

From the equivalent (79) form of (80) it should be apparent that the second term in (80) is
parallel to u, (i.e., parallel to v, ), and the first term is perpendicular to v, ., (i.e., Y plb

minus the Voib Uy Uy =V b Vanib Yab/b / szb parallel component).

The (80) result is equivalent to what has previously been obtained using traditional Relativity
theory [7 pp. Eq. (12-12), 9 pp. Eq. (16.07)]. Similar results can be formulated for Y plb

components in terms of Yy and y ./ .

a

6.2 Acceleration

The derivation of the point p acceleration formula begins with (79), the dia equation in (77),
)
and the acceleration definitions in (72). Taking the derivative of (79) (with v_, constant for this

article), and applying definitions (72) yields

2 2
dzp/a _ \ll_vab/c (Qp/b_gp/b'i’—‘vgv)

2
.2 2 _ 2
Imvap/e (zp/b zp/b-zvzv)ep/b-zmb/c o Gpiptvly @1
(1+v u / 2)2 (1+‘—} /b'ﬂvvab/cz)
_p/b'_v Vab'C p

2
(Yp/b U, U, Fvgp Zv) Qp/b U, Vab /c

5 2
(1+Yp/b .gv Vab/c )

Trivially, with (72):
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-1
Wpta _ Ppia @:[MJ Wpla (52)

a = —_—
=pla dty dt, \ dtp dtp

Substituting (81) and the (77) Z’ta expression into (82) then yields
b

2, 2
(l_vab e )(Qp/b‘ﬂp/b u, %v)

pla™ 2

.2 2 _ 2 2 2
(=2 A)pn =ty ) @ v ¢ N TV Sttty

2 3 2 2
(1+‘—}p/b'gvvﬂlb/c ) (1+Yp/b'ﬂvvab/c )

2 2 2
\ll_vab/c (‘—}p/b'Zlel’—‘v—i_Vabgv)gp/b'zvvdb/c

2 3
(1+2p/b'2vvdb/c )

The last two terms in (83) combine as follows:

2 2 _ .2 2 2
\Il_Vab/C Qp/[yﬂvﬂv_\/l Vab/c (‘—)p/b'Zvl’—lv—i_"abﬂv)gp/b'zvvélb/c

2 2 2 3
(1+‘—}p/b'zvvdb/c ) (1+‘—}p/b‘zvvdb/c )

2
J1=v2, /2 (142 p -0y vap/ )y -u,

3 2
(1+\_/pq/b 'ZV vab/cz) _(Zp/b2vgv+vab ZV) Qp/bZV Vab/c

=g (12027 2)a -, 1,

3 2 2
(l‘f‘yp/b.zvvab/cz) +Xp/b'£vﬁv (Qp/b'zvvab/c _Qp/b‘zv Vab/c )

(84)

(1_ vgb/02)3/2

Ap/p-UylUy

NE
(1 Y pgl Uy vable )

with which (83) then becomes
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)3/2

2,2 _.2 /.2 _
(l_vab/c gp/b'zvzv_l_(l Vab/c )(Qp/b Qp/b'zvzv)

(1 + Yp/b-Zab/02)3 (1 +2p/b-2ab/02)2

Qp/a:

(85)
2 2 2
(1 “Vab /e )(‘—)p/b_‘—}p/b Uy, zv) p/b-Uy Vab /e

(1+2p/b"—}ab /c2)3

or since u, =v,p,/ vap from (9) and (12):

)3/2

2,2 2 272 _ 2
(1_ Vap/c 2p/b-Yab/b Yabib! Vab N (1 vap! ¢ )(Qp/b 2p/b-Yab/b Vabib! Vab)

Qp/a:

(1 +Vprb -Zab/b/02)3 (1 + Vb ~‘_’ab/b/02)2 (86)

2 /2 2 2
(1 ~vap/c )(Zp/b “Ypib-Yab/b Yab/b / Vab) Apib-Yab/b /e

RE
(1+Zp/b-‘_’ab/b /e )

From the equivalent (85) form of (86) it should be apparent that the first term in (86) is parallel
to u, (i.e., parallel to v, , ), the second term is perpendicular to v, , (i.e., a0 minus the

QU Uy =y -Vapp ‘-’ab/b/"?zb parallel component), and as in the previous section, the

third term is also perpendicular to v, , (i.e., Volb minus the component parallel to v, :
— 2
Yoib- Uy Uy =Ypib-Yab/b Yab/b / Vab)'

The (86) result is equivalent to what has been obtained previously based on traditional
Relativity theory [7 Eq. (12-13)]. Similar results can be formulated for a p/p COmponents in

terms of a, and v,/ -

a

7.0 CONCLUSIONS

Point-to-Point  Relativity kinematics provide an analytical equivalent to Lorentz
transformation operations in modern Relativity Theory. The analytical notation developed for
the Point-to-Point approach enables straight-forward development of relativistic formulas, with
clear definitions for time and distance parameters, and without the use of space-time diagrams,
world lines intersecting space-time events, and the concept of space-time simultaneity prevalent
in traditional Relativity formulations.

Traditional Relativity theory is based on the comparative observation of remote events in
coordinate frames that are translating relative to one another, and in which position locations are
defined relative to the origin of the translating frames. In the Point-to-Point formulation, remote
phenomena are observed at two spatial points that translate relative to one another, and in which
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position locations are defined relative to the observer location points. Coordinate frames are
only used as a means for determining the components of vector parameters as projected on
specified coordinate frame axes.

The basic Point-to-Point Lorentz conversion formulas define how the relative distance vector
between space-time points measured by one observer are related to the same distance vector as
measured by a second observer in motion relative to the first. The relative distance formulas can
be used to demonstrate relativistic time dilation and distance contraction of observed remote
events, define a “proper time” interval that is invariant to any observer, and how relative velocity
and acceleration vectors between space-time points measured by one observer are related to the
same vectors measured by a second observer. Overall results match their equivalents based on
traditional Relativity theory.

All Point-to-Point Relativity kinematic results presented in this article derive from basic Egs.
(3), (8), (13), (18), (19), and (37).

APPENDIX A - NON-ROTATING INERTIAL COORDINATES

Point-to-Point kinematics is presented in this article in vector format for vector component
projection on so-called “non-rotating inertial coordinate frame” axes, i.e., as traditionally
defined: “coordinate frames in which Newtonian and Relativity theory is valid”. A measurable
definition of non-rotating inertial coordinates is presented in [6] based on a redefined version of
Newton’s dynamic law of motion:

d*x;
) :C—ZF/j_QF/i'l_Agij (A-1)
dt
dzx. .
. . . . . S C. Zij .
where x; j (as 1n this article) is the distance vector from mass point i to mass point j, 5 s

dt
the vector acceleration of mass point j relative to mass point i, ar, j and a,; are local force

generated vector accelerations of mass points i and j (sometimes denoted as “specific force™)
measurable by accelerometers located at points i and j, and Agl.j is the difference in gravity at

point j relative to point i (created by the distributed mass of the universe).

An accelerometer is a device that directly measures force-generated acceleration using a
proof mass located in a body whose force acceleration is to be measured. The proof-mass
position location is controlled by forces generated within the accelerometer to maintain a fixed
location of the proof-mass within the body-mounted accelerometer case. The resulting proof-
mass force acceleration is thereby controlled to equal the body's force-generated acceleration.
By dividing the measured accelerometer control force by the mass of the proof mass, a direct
measurement of body force acceleration is obtained. Most accelerometers are designed to
measure force acceleration along a single axis (the accelerometer “input axis”). Three
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accelerometers are then required to measure the three components of each of the force
acceleration vectors, ar, j and ap,; in (A-1).

Newton’s law states that (A-1) is valid in inertial non-rotating frames [1, pp. 416]. Thus, if
arbitrary coordinate frame I is inertially non-rotating, the vector/matrix form of (A-1) using
Appendix B notation, would be

d*x}
Yij 11 I
di2 Iy QF/i"'Ag,‘j (A-2)

where

5} I Column matrix with elements equal to the projections of x; j on I frame axes.

2.1
d Eﬁf:
dr*

component projections of x; jon coordinate frame I axes.

Column matrix with elements equal to the second derivative of the I frame

In contrast, reference [6] shows that for x; j projection on the axes of coordinate frame B

that is rotating relative to frame I, (A-2) expands to:

x5 g B doly B B [ B_ B 5 dx)
—1J ~1B —1J
——==ap,;—ap;tAg. .— XX — @ x(a) ><x..)—2a) X (A-3)
dl‘z ZFlj ZF/i 2 dt Zij ZIBT\ZIB™Zij ~IB dt
where
QIBBZ “Inertial angular rate” of coordinate frame B relative to inertially non-rotating
coordinate frame I (IB subscript) as projected on rotating frame B axes (B
superscript).
d 2 xB .
_21 J = Column matrix with elements equal to the second derivative of the B frame
dt

component projections of x; jon coordinate frame B axes.

Comparing (A-3) with (A-2), the appended last three terms in (A-3) have been denoted
respectively as tangential acceleration caused by angular acceleration, centripetal acceleration,

and Coriolis acceleration. When Qﬁg = 0 over time, coordinate frame B becomes inertially non-

rotating for which from (A-3):
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deB. B
=ty _ B _ B -
2 4Fl ap;+tA8;; (A-4)

which is of exactly the same form as (A-2). Thus, to determine whether a particular B frame is

inertially non-rotating, measure g?@ / j—g];l ;; using accelerometers; then add Agll.gj. If the result

2.B
equals 2” measured by non-inertial means (e.g., by e/m transmission/reception as in
dt
Appendix C), the B frame is inertially non-rotating. These results can also be used to define a
2.B
d X; j

non-rotating inertial frame of reference as being a coordinate frame in which measured by

dr?
non-inertial means satisfies (A-4).

This article only deals with Point-to-Point vector kinematic projections on inertially non-
rotating coordinate frames. Planned future articles will analyze Point-to-Point kinematics
projections on inertially rotating coordinates.

The previous equations are based on redefined Newtonian dynamic theory, hence, do not
include the effects of Relativity on measurements by observers at different locations, or the
impact of Relativity theory on gravity. This article only deals with the kinematics of Point-to-
Point Relativity, not on the dynamics of velocity change produced by applied local forces and
gravity as in (A-1) and (A-3). Future articles will expand on these results to account for dynamic
changes in the relative motion of mass points created by measurable locally applied forces (a, j

and a ), and for A 8 gravity differences between mass point locations.

APPENDIX B - VECTORS AND COORDINATE FRAMES

As used in this article, a vector is a three-dimensional parameter that has length and direction.
Vectors in this article are classified as “free vectors”, i.e., having no preferred location in
coordinate frames in which they are analytically described. A coordinate frame is defined in this
article as an analytical abstraction represented by three mutually orthogonal free vectors of unity
magnitude. The components of a vector in a particular coordinate frame equal the dot product of
the vector with its coordinate frame unit vectors. The physical position location of each
coordinate frame’s origin is arbitrary.

Based on the previous definitions, the component projection of an arbitrary vector # in an
arbitrary coordinate frame A would be

40



WA=W.uxpn Wya=W.uyp Wza=W . uzp
uxa-Uxa =1 uxa-uya =0 uxp-uza=0 (B-1)
uyp-Uxpa =0 Uya-uypa=l  dyp-uza=0
uzp-Uxa=0  uzp-uypa =0 uzp.uzp=1
where
Uxp > Uya > Uy = Mutually orthogonal unit vectors associated with coordinate

frame A.

Wxa> Wya, Wza = Components of vector W “along coordinate frame A axes” or “in
A frame coordinates”.

Based on (B-1), vector ¥ can then expressed as the sum of its A frame component projections:
W=Wxauxa+Wyatya+tWzaliza (B-2)

The same vector ¥ can also be expressed in terms of its projections along the axes of another
arbitrary coordinate frame B:

W=wxpuxg+tWyBuyg+WzBlzp (B-3)
where

Uxp» Uyp- Uyg = Mutually orthogonal unit vectors associated with coordinate frame B.

WxB, Wy, Wz = Components of vector ¥ along coordinate frame B axes.
with as in (B-1):

Wxg=W.uxg Wys=W.uyg Wzg=W .uzp

uxg-uxp=1 — uxp-uyp=0 uyxp-uzp=0 (B-4)
uyg-uxg=0 uyp.uyg=1I uyg-uzg="0

uzg-uxg=0 uzg.uyp="0 uzp-uzg=1

An expression for the A frame component of W in terms of the B frame components can be
found by taking the dot product of (B-2) with the B frame unit vectors:

WXA=uxa -UxpWXxBTUxp -UygWYBTUXA -Uzg W ZB
Wya=uya -UxgWXBTUys - UygWYB Uy -Uzg W 7B (B-5)
WzA=uUzp - UxgWXBTUZA - UygWYBTUZA - Uz W 7B
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The frame B components as a function of the frame A components are obtained similarly using
dot products of (B-3) with the A frame unit vectors:

WxB=Uxp -Uxa WXATUxp -Uya WYAtUXE -Uza WZA
WYB=Uyg -UXxa WXATUYR -Uya WYATUYR-Uza WZA (B-6)
Wzs=uzg -Uxa Wxa tuzg-Uya Wyatuzg -Uza Wza

Because u;zand u iaare unit vectors, Uig - U; A0 (B-5) and (B-6) (i and j being X, Y, or Z)
equals the cosine of the angle between u;; and Uip - Thus, (B-5) and (B-6) can also be

expressed using the matrix notation introduced by Britting in [10]:

EAZCQEB KBZCRKA
(B-7)
Wxa WxB 1 712 N3 i1 721 731
A_ B_ _ _
Wh=\wya| Wo=|Wwys| CB=|721 72 7| CB=|72 72 73
Wza WzB V31 V32 733 V13 723 733

where

EA, KB = Column matrices with elements equal to the components of ' projected on
(“along”) A frame and B frame axes.

Cg , CA = Direction cosine matrices that transform vectors from their A frame matrix

form to their B frame matrix form, and from their B frame matrix form to their A
frame matrix form.

Yi; = Cosine of the angle between A frame unit vector i and B frame unit vector j; i and

j from 1 to 3 corresponding to X, Y, and Z in (B-5) and (B-6).

Note from (B-7) that CE is the matrix transpose of Cg‘ .

APPENDIX C - MEASURING RELATIVE DISTANCE AND VELOCITY BY
ELECTRO-MAGNETIC WAVE TRANSMISSION/REFLECTION

Distances between two points can be determined by measuring the time for a wave of
electro-magnetic (e/m) radiation to travel from one point to the other, divided by the velocity of
e/m wave propagation through space. Past experiments have demonstrated that relative to any
observer, all e/m waves, regardless of wavelength and original source velocity, propagate
through open space at the same speed (i.e., at the “speed of light”). Using this principle, range-
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radars, and recently laser radars (“ladars”), have been commonly used to measure the range to
distant targets. For a radar or ladar receiving antenna that is stabilized relative to non-rotating
inertial space, the angular direction of the received e/m wave can also be determined, hence, the
direction vector from the antenna to the target. Combining the antenna-to-target distance and
direction vector determines the distance vector from the antenna to the target.

C.1 Target Distance And Time I nstant At Target | llumination

For a target at point p and a radar transmitter at point a, consider that a radar e/m pulse is
transmitted at time instant 1, reflected from point p at time point 2, and the reflection received at
point a at time instant 3. (Note: The 1, 2, 3 time instant notation used in this appendix is different
from the time instant notation used in the main article). The range from a to p and time instant 2
at target reflection would then be determined at point a from

Atg1oa=(taz—ta1)/2=2tg153/2 (C-1)
Xap,2/a=¢€ Al‘a,l—>2 =c Ata,1+3 /2 (C-2)

Atg1-2=ta1+Atg 1372

C-3
:ta,1+<ta,3_ta,1)/2:(ta,3+ta,l)/2 ()

where

¢ = The propagation velocity of electro-magnetic (e/m) waves through open space (the
“speed of light”).

t4,1 = Time instant 1 on a clock at point @ when the e/m wave pulse was emitted.

tq,3 = Time instant 3 when the reflected e/m wave pulse at point p is received back at

point a.

At, 13 = Elapsed time from ¢, | to ¢, 3 on the point a clock, as observed at point a.

Xap,2/a — Range (distance) from a to p when the e/m pulse arrived at p at time instant
tq,2 - Note: This distance is not measured directly, but is calculated at point a based

on the A¢, |_,3 measurement.

tq,2= Time instant 2 when the e/m pulse from point a reached target p. Note: This time
instant is not measured directly, but is calculated at point a based on the Az, 3

measurement.

43



When there is no relative motion between a and p, and because the speed of light is constant,
(C-2) makes sense because the time for the pulse to travel from a to p would be the same as the
time for the reflection from p to reach a. Eq. (C-3) would also make sense, because the time
increment for the pulse to travel from point a-to-p-to-a would be half the time for the pulse to
travel from a to p. But are (C-2) and (C-3) correct when there is relative motion between a and

p?

To answer this question, consider another target at point ¢ being stationary relative to point
a. Egs. (C-2) and (C-3) would then apply for target ¢, yielding a (C-2) distance-from-point-a
solution of x,, 5/, at (C-3) timez, 5. Consider now that target p has been in general motion
relative to point a, but that it has reached target ¢ at exactly the time that the e/m pulse from a
arrived at g (i.e., at¢, 5 ). Then the distance fromatop at ¢, 5 (i.e., x4y 2/, ) Would be identical

t0x44,2/4 - But there is no difference between this scenario and another in which point p was
actually point ¢ in motion, being at distance x,, 5/, when illuminated by the e/m pulse. Thus, it
can be concluded that (C-2) and (C-3) will accurately measure x,, 5/, for any motion of point p

relative to point a.

It is very fortuitous that the velocity of light is constant to any observer. This is what makes
(C-2) and (C-3) accurate regardless of the relative velocity between the e/m pulse source and
target. If the speed of propagation of the transmit signal was constant relative to the medium in
which points a and p were immersed (e.g., a sonar pulse in water), (C-2) and (C-3) would have to
account for the velocity of a and p relative to the medium, another parameter needing separate
measurement.

C.2 Direction Vector To Target

The previous section discussed how e/m transmission/reflection can be used to determine 1)
The distance to a target when the target was illuminated by the transmitted e/m pulse, and 2) The
time instant of target illumination. At the instant of illumination (time ¢, > on the point a clock),

the reflection will generate an expanding e/m spherical wave of radiation, the distance from the
wave back to the target illumination point being the same for any point on the wave, the
amplitude depending on the geometry and composition of the target reflection surface. A photon
in the wave will travel away from the target along a natural motion trajectory in non-rotating
inertial space, deviating from a straight line only by the difference in gravity at the current
photon location and at the reflection-from-target point (See Appendix A for a measurable
definition of non-rotating inertial space). Thus, when the wave reaches the point a antenna, the
travel direction vector for photons in the wave reaching the antenna will be along a natural
motion trajectory leading back to the target point reflection event. As such, the angular direction
of an inertially stabilized antenna trained toward the target will accurately measure the angular
orientation of a pointing vector to the target location at time ¢, > on the point a clock (call it

zaq,Z/a )-
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C.3 Distance Vector To Target

Multiplying the target pointing vector u in Section C.2 by the measured target distance

aq,2/a

Xap,2/a 10 Section C.1 provides a distance vector measurement x from point a to where

ap,2/a
target p was at time ¢, 5 on the point a clock.

C.4Timelnstant Of Tarqget Distance Vector Deter mination

The time instant ¢, 5 associated with the x distance vector determination in Section

ap,2/a
C.3 is calculated as half the time interval from e/m transmission at point a (at ¢, ) to the e/m
reflection receive time at point a (atz, 3) as derived previously in (C-3). The time instant ¢, »

would be the “time stamp” assigned to the x measurement.

ap,2/a

C.5 Rdative Tarqget Velocity Deter mination

: : : d .
The relative velocity between points a and b (e.g., —x,,5/, = vap U, as defined in (8) for a
a
point a observer) can be determined from successive e/m pulse transmission/receipt
measurements as the change in x ,, over sequential point a clock time intervals, divided by the

time interval between the successive measurements. Similarly, the relative velocity between

points b and a (defined in (8) for a point b observer asigba/b = Vpg Uy, =~ vgp U,) can be
dtp

determined from successive e/m pulse transmission/receipt measurements as the change in x, .

over sequential point b clock time intervals, divided by the time interval between the successive
measurements.

APPENDIX D - MEASURING THE DISTANCE VECTOR TO
A REMOTE SPACE-TIME EVENT

This appendix provides a general example of how the distance vector to a remote event can
be measured at an observation point using radar-like equipment and means to detect the event
occurrence. The example assumes that the event occurrence will generate an electro-magnetic
(e/m) pulse wave that travels at the speed of light from the event spatial location (e.g., a lightning
strike or a pulse transmitted by a beacon at the event location), eventually arriving at the
observation point where the distance vector to the event is to be determined. The method of
determining the distance vector to the event is based on the speed of light being constant relative
to any observer for all e/m waves, not only the e/m pulse generated by the event. Thus, if an e/m
radar pulse is transmitted from the observation point (call it point a) and is reflected from the
event spatial location (call it point p) at the event time instant, the reflected radar return pulse and
the event generated pulse will arrive at point a at the same time instant (on a clock located at
point a). Conversely then, if the radar return and the event generated pulses arrive
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simultaneously at point a, and if it is known that the radar pulse was reflected from point p, it can
be concluded that the radar pulse traversed the same distance as the event pulse.

The previous conclusion presents a method for determining the distance vector from point a
to spatial point p at the point p event time. As in Appendix C, define time instants 1, 2, and 3
respectively as the time a radar pulse is transmitted from point a, is reflected from point p, and is
received back at point a. Section C.5 of Appendix C describes how the radar transmit/return
time instants 1 and 3 (detected on a point a clock) would be used to determine the distance vector
from point a to point p at the time 2 instant of radar pulse point p reflection (in terms of point a

clock time) - call it x the a to p distance vector as measured at point a. (Note that x

apla’ apla

would be calculated at time instant 3 when the radar return was received, not at reflection time 2
which is calculated (using (C-3) of Appendix C) from the point a time instant 1 and 3
measurements.) Let us further assume that the point a radar has been continually tracking point

p, hence, continually calculating x apla MEasurements. Let us also assume that the event

occurrence detector at point a (e.g., a beacon pulse receiver) is continually “listening” for the
occurrence of an event at point p. Based on the conclusion of the previous paragraph, the

distance vector from point a to the event at point p can then be determined as equal to the x apla
radar measurement at event pulse point « arrival time ( “announced” by the event detector). The

time stamp for that x ap/q Measurement would be the radar calculated point p reflection time 2
using (C-3) of Appendix C.
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