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ABSTRACT 
 

This article develops formulas for converting Point-To-Point 
Relativity kinematic equations in non-rotating coordinates into their 
equivalent in rotating coordinates.  The formulas are then used to prepare 
generalized Point-To-Point Relativity equations in rotating coordinates as 
a function of their non-rotating equivalents. 

 
 
INTRODUCTION 
 

Point-To-Point Relativity is a revised version of traditional Special Relativity in which 
relative motion between observers is analytically defined by the vector distance between 
observation points (in contrast with traditional Relativity in which relative motion between 
observers is referenced to relatively translating coordinate frames).  The basic Point-To-Point 
concept was originally described in [2] based on the classical assumption of constant velocity 
between observers [3 – 6].  Using [1] as a base, [2] presented a differential Point-To-Point 
approach that allows differential changes in relative velocity between observers.  As in classical 
Relativity theory, [1], [2], and [3 – 6] are implicitly based on motion described in non-rotating 
inertial coordinates.  This article expands on [2], allowing for rotation of coordinate frames in 
which differential Point-To-Point Relativity motion is described. 

 
      

NOTATION 
 

The following general notation is used in this article: 
 

V  =  Vector parameter having length and direction.  Vectors in this article are classified 
as “free vectors” having no preferred location in coordinate frames in which they 
are analytically described. 

 
AV  =  Vector V  represented as a column matrix with elements equal to the projection of 

vector V  on coordinate frame A axes.  The projection of V  on each frame A axis 
equals the dot product of V  with a unit parallel to (i.e., defining) that frame A axis. 
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( )AV ×
 
= Skew symmetric (or cross-product) form of general A frame vector column AV   

represented by the square matrix 
0

0
0

ZA YA

ZA XA

YA XA

V V
V V
V V

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 in which XAV , YAV , 

ZAV  are the components of AV .  The matrix product of ( )AV ×  with another A 

frame vector (e.g., AW ) equals the A frame components of the cross-product of AV  

with the other A frame vector, i.e., ( )A A A AV W V W× = × . 

 
/ i  =  Vector subscript denoting the vector parameter being observed (measured or 

calculated from measurements) at observation point i (i being point a or b). 
 
Observable Event – An event at a position location in space at a particular instant in time 

(e.g., a lightning strike, explosion, or radar pulse illumination) that can be observed 
at a remote spatial location based on electro-magnetic wave propagation (e.g. light 
or radar) from the event to the observation point [3 pp. 29 & 36, 4 pp. 515 & 521, 5 
pp. 28 & 236-238, 6 pp. 10]. 

 
 
DIFFERENTIAL POINT-TO-POINT RELATIVITY KINEMATIC EQUATIONS 
 

Reference [1, Eqs. (41)] derives equations for the differential Relativistic position change of 
a remote point in space p observed at points a and b in motion relative to one another as 

 

( )

( )

( )

( )

2
/ / / / / / /2 2

2
/ /2 2

2
/ / / / / / /2 2

2
/ /2 2

1 1 . /
1 /

1 . /
1 /

1 1 . /
1 /

1 . /
1 /

b bp a p b a b p b a b a b a bab
ab

a b p b a b
ab

a ap b p a b a p a b a b a b aab
ab

b a p a b a
ab

d dx x v x v v vddt v dt
v c

x vddt dt c
v c

d dx x v x v v vddt v dt
v c

d x vdt dt c
v c

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟−⎝ ⎠

= −
−

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟−⎝ ⎠

= −
−  

 (1) 

 
where /p ad x  is the differential change in position of point p observed at point a, adt  is the 

differential time increment elapsed during the /p ad x movement on a clock located at point a, 

/b av  is the instantaneous velocity of point b observed at point a, abv  is the magnitude of /b av , c 
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is the speed of light, and similarly for /p bd x , bdt , /a bv for observations at point b.  Eqs. (1) are 

based on the speed of light being the same constant relative to any observer, a fundamental 
premise of Relativity theory, but also on /b av  and /a bv being of equal magnitude abv but 
oppositely directed, a fundamental premise of Newtonian [7] and Relatively theory [3 – 6]: 
 

 / /
/ / / / / /

B B
B B B B B Bb a a b

abb a a b a b b a b a a b
a b

d dx x
v v v v v vv

dt dt
≡ ≡ = − ≡ =  (2) 

 
The peculiar 2 21 /abv c−  term in (1) is a unique contribution from Relativity Theory that 
assures that if point p is travelling at the speed of light, the magnitude of p velocity relative to 
observation point a or b will be the same constant c, i.e., from Appendix A: 
 

 
( ) ( )
( ) ( )

/ / /

/ / /

/ / . /

/ / . /

a a ap a p a p a

b b bp b p b p b

d d dx x xdt dt dt

d d d cx x xdt dt dt

=

= = =
 (3) 

 
Eq. (3) is the reason that time intervals in (1) measured at observation points a and b (i.e., adt  
and bdt ) are unequal.  In contrast, time intervals in Newtonian theory are the same at all 
observation points, regardless of whether there is relative velocity between observers (i.e., 

a bdt dt= ).  From (1) we see that the Newtonian condition corresponds with the magnitude of 

relative velocity between points a and b (i.e, / / abb a b av v v= = ) being negligibly small 

compared to c, i.e., 2 21 / 1abv c− . 
   

Although not specifically stated in [1], the derivation of (1) is based on all observations being 
made in “non-rotating” inertial coordinates, the basis for both Newtonian and Relativity 
kinematic theory.  To derive the equivalent to (1) for observations in rotating coordinates for this 
article, we start from the [1] basics and rebuild a revised form that accounts for coordinate frame 
rotation.  As in [1], consider observers at points a and b observing the motion of a distant point p,  
each observer measuring the motion as the difference between observed p position locations 
(“events”) at two successive time points t1 and t2 (t2 following t1): 

 
 

2 1 2 1/ / / / / /p p p pp a a a p b b bx x x x x x= − = −Δ Δ  (4) 

 
where 

1/p ax , 
2/p ax  are distance vectors (positions) measured at point a from point a to p at 

times t1 and t2, /p axΔ  is the change (linear translation) in the point a observed p position vector 

over the t1 to t2 time interval, and similarly for 
1/p bx , 

2/p bx , /p bxΔ . 
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If points a and b have translated during the t1 to t2 time interval, /p axΔ  will differ from 

/p bxΔ .  Observers a and b can account for the relative translation when predicting what the 

other would observe: 
 

 / / / / / /bp a p a b a ap b p b a bx x x x x x= − = −Δ Δ Δ Δ Δ Δ  (5) 

 
where /bp axΔ  is the point a prediction of /p bxΔ  and similarly for /ap bxΔ .  As in (4) we can 

also write 
 
 2 1 2 1/ / / / / /b b a ab a a a a b b bx x x x x x= − = −Δ Δ  (6) 

 
 
KINEMATIC PARAMETERS  IN NON-ROTATING AND ROTATING COORDINATE 

FRAMES 
 

Eqs. (4) – (6) are valid in any non-rotating coordinate frame.  Let us now introduce non-
rotating coordinate frames B1 and B2 defined as parallel to the instantaneous orientation of 
rotating coordinate frame B at successive time instants t1 and t2.  Because B1 and B2 are non-
rotating relative to a common non-rotating space, the angular orientation of B2 relative to B1 will 
be constant.  For clarity, Eqs. (4) and (6) are now rewritten in B1 and B2 coordinates as     
 

 
1 1 1 1 1 1

2 1 2 1

1 1 1 1 1 1
2 1 2 1

/ // / / /

/ / / / / /

B B B B B B
p p p pp a p ba a b b

B B B B B B
b b a ab a a a a b b b

x x x x x x

x x x x x x

= − = −Δ Δ

= − = −Δ Δ
 (7)  

 

  
2 2 2 2 2 2

2 1 2 1

2 2 2 2 2 2
2 1 2 1

/ // / / /

/ / / / / /

B B B B B B
p p p pp a p ba a b b

B B B B B B
b b a ab a a a a b b b

x x x x x x

x x x x x x

= − = −Δ Δ

= − = −Δ Δ
 (8) 

 
where the B1 and B2 superscript identifies the coordinate frame on which the vector components 
are projected (i.e., as elements of a column matrix). 
 

The components of (7) – (8) observed at point a are related through 
 

( ) ( )
( ) ( )

1 1 2 1 1 2 1 2 1 1 2
2 2 22 1 2 1 2 1 2

1 1 2 1 1 2 1 2 1 1 2
2 1 2 1 2 1 22 2 2

/ / / / / / / /

/ / / / / / / /

B B B B B B B B B B B
p p p p p p pp a a a a a a a aB B B

B B B B B B B B B B B
b b b b b b bb a a a a a a a aB B B

I I Ix x x x x x x xC C C

I I Ix x x x x x x xC C C

Δ = − = − + − = − + −

Δ = − = − + − = − + −
 (9) 
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where I is the identity matrix and 1
2

B
BC  is a direction cosine matrix that transforms vector 

components from their values in inertial coordinate frame B2 to their values in inertial coordinate 
frame  B1. 
 

Since non-rotating frames B1 and B2 are defined as aligned with the rotating B frame at time 
instants 1 and 2, we can calculate the change in B frame values of a vector over time instants 1 
and 2 as the difference between the B1 and B2 projected values.  Thus, the equivalent to (7) and 
(8) in the rotating B frame is: 
 
 2 1 2 1

2 12 1 / // // /
B BB B B B

p p b ba aa ap a b ax x x xχ χΔ ≡ − Δ ≡ −  (10) 

 

where /
B
p aχΔ  , /

B
b aχΔ are the changes in distance vectors from observation point a to points p 

and b as measured at point a  in the rotating B frame (superscript) over the t1 to t2 time interval.  

We also note that 1
2

B
B IC −  in (9) represents the change in the 1B

BC direction cosine matrix from 

its identity value at t1 (when B = B1) to its 1
2

B
BC  value at t2.  For the angular rotation over t1 to t2, 

1
2

B
B IC −  can be equated to the equivalent rotation angle vector B

IBθΔ which for small angular 

rotation approximates as [8, Sect. 3.5.2 ]: 
 
 ( )1

2
BB
IBB IC θ− ≈ Δ ×  (11) 

 
where the IB subscript indicates the angular rotation of frame B from inertially non-rotating 
frame B1 to inertially non-rotating frame B2.  Substituting (10) and (11) in (9) then obtains  
 
 1 2 1 2

22/ / /// /
B BB BB B B B

p bIB IBp a b a aap a b ax x x xχ χθ θΔ = Δ + Δ × Δ = Δ + Δ ×  (12) 

 
Finally, we let the Δ  changes be infinitesimally small so that 2

2 //
BB

p p aax x→ , 2
2 //

BB
b b aax x→ , 

1
//

BB
p ap a dx xΔ → , / /

B B
p a p adχ χΔ → , 1

//
BB
b ab a dx xΔ → , / /

B B
b a b adχ χΔ → , and B B

IB IBdθ θΔ → .   

Then (12) becomes 
 

 / / / // /
B BB B B B B B

p a IB p a b a IB b ap a b ad d d d d dx x x xχ χθ θ= + × = + ×  (13) 

 
The same process yields for the point b observed position changes 
 

 / / / // /
B BB B B B B B

p b IB p b a b IB a bp b a bd d d d d dx x x xχ χθ θ= + × = + ×  (14) 
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Similar to (2), we can also define the relative linear velocity between observation points a 
and b, 
 

 / /
/ /

B B
B Bb a a b
b a a b

a b

d d
V V

dt dt

χ χ
≡ ≡  (15) 

 
where in rotating B frame coordinates, /

B
b aV  is the instantaneous velocity of point b observed at 

point a, and similarly for /
B
a bV at point b.  Dividing the /

B
b ad x  and /

B
a bd x  expressions in (13) 

and (14) by the corresponding time interval and applying (15) obtains 
 

 / /
/ / / // /

B B
B B B B B Bb a a b

a bb a IB b a a b IB a b
a b

d dx x
d dV x V xdt dt

dt dt
θ θ= + × = + ×  (16) 

 

Applying the (2) velocity definitions for /
B
b a

a

d x
dt

 and /
B
a b

b

d x
dt

, (16) becomes 

 

/ /
/ / / / / // /

B B
B B B B B B B Bb a a b

a bb a b a IB b a b a a b IB a b
a b

d dx x
d dv V x v V xdt dt

dt dt
θ θ= = + × = − = + ×  (17) 

 
where /

B
b av  is now more specifically defined as the instantaneous velocity of point b relative to 

point a as measured in a non-rotating coordinate frame that is instantaneously aligned with the 
rotating B frame.  
 

The first expression in (17) also shows with (2) that 
 

 

( ) ( )
( ) ( ) ( ) ( )

2
/ / / / / /

22
/ / / //

. / . /

2 . / . /

B B B B B B B B
a ab a b a b a IB b a b a IB b aab

B B B B B B B
a ab a IB b a IB b a IB b ab a

d dv v V x V xv dt dt

d d dV x x xV dt dt

θ θ

θ θ θ

= = + × + ×

= + × + × ×
 (18) 

 
where /b aV  is the magnitude of /b aV  in any B frame rotating through B

IBdθ  relative to non-
rotating inertial space.  Similarly, the second expression in (17) shows that 
 

 

( ) ( )
( ) ( ) ( ) ( )

2
/ / / / / /

22
/ / / //

. / . /

2 . / . /

B B B B B B B B
b ba b a b a b IB a b a b IB a bab

B B B B B B B
b ba b IB a b IB a b IB a ba b

d dv v V x V xv dt dt

d d dV x x xV dt dt

θ θ

θ θ θ

= = + × + ×

= + × + × ×
 (19) 

 
The pertinent results from (2), (13), (14), (15), (17), (18), and (19) summarize as follows 
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/ /
/ / / /

/ /
/ /

/ / / // /

/ / / / / /
2 2

//

/ /

2 .

B B
B B B Bb a a b
b a a b a b b a

a b
B B

B Bb a a b
b a a b

a b
B BB B B B B B

p a IB p a p b IB p bp a p b
B B B B B B B B

a bb a b a IB b a a b a b IB a b
B B
b a IBab b a

d dx x
v v v v

dt dt

d d
V V

dt dt

d d d d d dx x x x

d dv V x v V xdt dt

dVv V

χ χ

χ χθ θ

θ θ

θ

≡ ≡ = −

≡ ≡

= + × = + ×

= + × = + ×

= + ×( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
/ / /

22
/ / / //

/ . /

2 . / . /

B B B B B
a ab a IB b a IB b a

B B B B B B B
b ba b IB a b IB a b IB a ba b

d dx x xdt dt

d d dV x x xV dt dt

θ θ

θ θ θ

+ × ×

= + × + × ×

(20) 

 
Equations (20) can now be substituted into (1) to find differential point-to-point Relativity 
conversion equations in rotating coordinates. 

 
 
CONVERTING TO AND FROM ROTATING COORDINATES 

 
Three types of conversion formulas can be defined, 1) Converting rotating coordinate frame 

effects into non-rotating coordinates, 2) Converting rotating coordinate frame effects viewed  by 
observer a with their equivalent rotating coordinate frame effects viewed by observer b (and the 
converse for rotating observer b effects viewed by rotating observer a), and 3) Converting non-
rotating coordinate frame effects into rotating coordinates.  The 3) conversion equations are the 
simplest and will be presented last.  The 1) and 2) conversion equations are complex, but 
analytically straight-forward in their derivation.  The method of deriving the 1) and 2) formulas 
will only be outlined. 

 
To convert rotating coordinate frame effects into non-rotating coordinates, maintain the left 

side of (1) as shown, and substitute the following expressions from (20) on the right side: 
 /

B
p ad x , /

B
p bd x , /

B
b av , /

B
a bv , 2

abv .  To convert rotating coordinate frame effects observed by one 

observer into rotating coordinates observed by the other observer, substitute the previous 
expressions from (20) in both the left and right side of (1). 

 
To convert non-rotating coordinate frame effects into rotating coordinates, maintain the right 

side of (1) as shown, and substitute the /
B
p ad x  and /

B
p bd x  expressions from (20) on the left.  

Having the /
B
p ad x  and /

B
p bd x   conversion formulas in (20) defined in the B frame, and the 

definition for rotating B frame coordinates previously defined  as being instantaneously aligned 
with a non-rotating B frame, the B frame subscript notation in the conversion formulas can be 
eliminated yielding for the final result: 
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( )

( )

( )

//

2
/ / / / / /2 2

2
/ /2 2

//

2
/ / / / / /2 2

2 2

1 1 . /
1 /

1 . /
1 /

1 1 . /
1 /

1

1 /

p ap a

b bp b a b p b a b a b a bab
ab

a b p b a b
ab

p bp b

a ap a b a p a b a b a b aab
ab

b a
ab

d d x

d x v x v v vddt v dt
v c

x vddt dt c
v c

d d x

d x v x v v vddt v dt
v c

ddt dt
v c

χ θ

χ θ

+ ×

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟−⎝ ⎠

= −
−

+ ×

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟−⎝ ⎠

= −
−

( )2
/ /. /p a b ax v c

 (21) 

 
In (21), dθ  vector represents that incremental angular rotation of the rotating coordinate frame 
relative to non-rotating inertial space. 

 
 

APPENDIX A 
 

Demonstrating With Point-To-Point Relativity Kinematics That In Non-Rotating Space, 
Observers Travelling Relative To Each Other Will Measure The Same Speed For An 

Observed Remote Point Travelling At The Speed Of Light 
 

This appendix demonstrates with Point-To-Point Relativity Eqs. (1) that in non-rotating 
space, when a point p is travelling at a speed of light velocity as observed at point a, the point p 
velocity observed at another point b in motion relative to point a, will also be at the speed of 
light.  The derivation begins by first defining 

 

 / /
/ /

p b p a
p b p a

b a

d dx x
v v

dt dt
≡ ≡  (A-1) 

 
where /p av  and /p bv  are velocities of point p determined at observation points a and b.  

Dividing the /p bd x  and bdt  equations in (1) by adt  obtains with (A-1) and / abb a vv uv=  from 

(2): 
 



9 
 

 

( )

( )

( )

/
/ / /2 2

/ / /2 2

2
/2 2

1 1 .
1 /

1. .
1 /

1 1 . /
1 /

p b b
ab abp b p a v p a v v v

a a ab

abp a p a v v p a v v
ab

b
abp a v

a ab

d x dtv v u v u u uv v
dt dt v c

v v u u v u uv
v c

dt v u v c
dt v c

⎛ ⎞
⎜ ⎟= = − + − −
⎜ ⎟−⎝ ⎠

= − + −
−

= −
−

(A-2) 

 
The /p av  velocity in (A-3) is then defined as having light speed c so that 

 
 / /p a p acv u=  (A-3) 

 
where /p au  is a unit vector in the direction of /p av .  Substituting (A-3) in (A-2) obtains 

 

 
( )

( )

/ / / /2 2

/2 2

1. . /
1 /

1 1 . /
1 /

b
abp b p a p a v v p a v v

a ab

b
abp a v

a ab

dt c cv u u u u u u uv
dt v c

dt cu u v
dt v c

⎡ ⎤
⎢ ⎥= − + −
⎢ ⎥−⎣ ⎦

= −
−

 (A-4) 

 
Recognizing that / / .p a p a v vu u u u−  in (A-4) is perpendicular to vu  allows application of the 

Pythagorian Theorem to obtain for the magnitude squared of / /b ap bv dt dt :  

 

( )
( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

22
/2

/ / / / / /2 2

2 2 2 2/ /
/2 2

2 2 2
/ /

2 22 2 2 2
/ /

. /
. / . . .

1 /

. 2 . / /
1 .

1 /

. 2 . / /

1 . / . /

abp a vb
p b p b p a p a v v p a p a v v

a ab

abp a v p a v ab
p a v

ab

abp a v p a v ab

p a v p a vab ab

cu u vdtv v u u u u u u u uc
dt v c

cu u u u v v c
u u

v c

cu u u u v v c

u u u uv c v c

−⎛ ⎞
= + − −⎜ ⎟

−⎝ ⎠

− +
= + −

−

⎡ − +⎢
⎢
+ − − +
⎣= ( )2 21 /abv c

⎤
⎥
⎥

⎢ ⎥
⎦

−

(A-5) 

 
(Continued) 
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( )
( )

( )
( )

2 22 2
/ / /

2 2 2 2

2 . / 1 . / 1 . /

1 / 1 /

ab abp a v p a v p a vab

ab ab

c cu u u u u uv v c v

v c v c

− + + −
= =

− −
   (A-5) Concluded 

 
Identifying the (A-5) result as the square of the /b adt dt  term in (A-4) then shows that 
 

 2
/ /.p b p bv v c=  (A-6) 

 

Thus we see from (A-6), that when the magnitude of /p av  in (A-3) is the speed of light, the 

magnitude of /p bv  will also be the speed of light: 

 
 / / /.p b p b p b cv v v= =  (A-7) 
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