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ABSTRACT 

 
Ring laser gyros (RLGs) and fiber optic gyros (FOGs) measure angular rotation by 

the phase difference generated between oppositely directed monochromatic light waves 
traversing a closed optical waveguide embedded in the gyro structure.  This article 
presents a simplified but comprehensive analytical development showing how the 
rotation induced phase difference is created at the gyro readout photo detector by two 
effects, 1} Wavelength difference between the oppositely directed waves caused by 
classical Euclidean geometrical effects (the same predicted by Special Relativity when 
rotation induced velocity of the waveguide is small compared to the speed of light), and 
2} The speed of light being the same relative to the rotating gyro as it is in non-rotating 
inertial space, an exclusive property of Relativity.  This contrasts with previous 
explanations attributing rotation induced phase shift to a difference in optical path length 
between the oppositely directed waves, or to a time difference for the oppositely directed 
waves to traverse the waveguide.  These explanations, were with respect to non-rotating 
space, not to the rotating gyro readout used for angular rotation measurements.  Relative 
to the readout, it is shown that the time for each of the oppositely directed waves to 
traverse the waveguide is the same. 

 
This article first derives a general equation describing how rotation induces a change 

in optical power when the oppositely directed beams are combined to illuminate the 
readout detector.  Applying the equation to an RLG shows how cyclic outputs are 
generated from the photo detector, each representing a known increment of angular 
rotation.  Application to a FOG shows how successive angular rotation increments are 
measured, each over the time for the waves to traverse the fiber coil.  Analysis of 
“closed-loop” FOG operations describes how to operate lithium–niobate crystals inserted 
in the fiber coil to balance rotation induced phase shift while generating angular rotation 
outputs. 

 
 
FOREWORD 
 

This article is a simplified version of [1] designed for the technical reader with limited 
analytical background.  As such, all analytical developments are based on simple algebra and 
trigonometry without resorting to vector calculus used in [1].  This is achieved by simplifying the 
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optical gyro wave path model to be circular.  As rigorously demonstrated in [1], both fiber optic 
and ring laser gyros can be analytically represented by an equivalent circular wave path 
configuration.    
 
 
INTRODUCTION 
 

Optical gyros (ring laser and fiber optic) have been in broad usage since the late 1970s.  
Curiously, however, their basic principle of operation has varied between designers and users.  
Optical gyros measure the change in phase induced by angular rotation in oppositely directed 
monochromatic light waves created within the gyro.  Some attribute the phase change to 
Relativity theory while others characterize it as a classical kinematic Doppler effect.  Many of 
these and other explanations have relied on heuristic reasoning to explain actual measured 
optical gyro operating characteristics.  The purpose of this article is to provide a rigorous 
comprehensive analytic derivation of equations governing the operation of optical gyros and in 
the process, identify those attributed to classical vector kinematics, and those uniquely 
contributed by Relativity.  The analysis is based on idealized optical gyro configurations in 
which oppositely directed light waves occupying the same physical space are independent from 
one-another, unaffected by imperfections in the closed waveguide directing their motion within 
the gyro, and having the same polarization direction when combined at the readout photo 
detector(s).  
 

Relativity theory relates the motion of a point in space as measured by two remote observers 
in motion relative to one-another.  When the velocity magnitude between observers is small 
compared to the speed of light, the observed motion forecasted by Special Relativity theory [2 
Part 1; 3 Chpt VI; 4] reduces to classical Euclidean kinematic predictions [2 pp 37-38; 3 Chpt III 
Sect 7; 5 Sect 12-1].  Such is the case for optical gyros when analyzing how angular rotation 
impacts each of two oppositely directed light waves travelling within the gyro along a common 
closed optical path.  Similar to the Doppler-like frequency shift observed in light waves 
emanating from receding stars, both Euclidean and Relativistic kinematics predict an angular 
rotation induced wavelength shift in the optical gyro light waves, increasing for the wave 
travelling in the direction of rotation, decreasing for the oppositely directed wave.  Coupled with 
the wavelength shift, Relativity predicts that the propagation speed for each of the oppositely 
directed light waves will be the same “speed-of-light” relative to the rotating waveguide, the 
same as for light waves propagating through non-rotating inertial space.  Light wave frequencies 
equate to the speed-of-light constant divided by their wavelength, thus, decrease for waves 
travelling with rotation and conversely for oppositely directed waves, generating a frequency 
difference between the oppositely directed waves.  When the oppositely directed waves are 
mixed by the gyro readout, a combined beam power signal is generated whose intensity 
measures the rotation induced frequency difference.   The combined beam power illuminates a 
readout photo detector, thereby generating a measurement of angular rotation.  This is exactly 
what is produced in operating optical gyros under rotation, and what is predicted by the 
analytical development in this article.    

 
Beginning from classical vector geometry, this article first analytically describes the distance 

vector to the same remote point in space as measured by each of two observers.  Classical 
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Euclidean kinematics then describes how the observed remote point location is impacted by 
relative motion between the observers.  The equivalent result is also derived in the Appendix 
based on Special Relativity theory, producing the same result when the relative velocity 
magnitude between observers is small compared to the speed of light. 

 
Both the Euclidean and Relativity results are derived in non-rotating coordinates.  The article 

then derives the equivalent in rotating coordinates by projecting the relative position vector 
geometry onto two non-rotating coordinate frames, one rotated from the other by a small angular 
rotation.  The difference between the two projections is identified as the change that would be 
measured in a rotating coordinate frame undergoing the small angular rotation.  Substituting the 
original non-rotating coordinate result, derives an equation relating the motion of the remote 
point as measured by one observer in non-rotating coordinates, in terms of the differential 
measurement taken by the other observer in rotating coordinates. 

 
The analytical development to this point in the article is general in nature.  Continued 

analysis specializes the two observation points to be fixed within a rigid body (a gyro), defining 
the observed point in motion to be a photon of light traversing a waveguide within the gyro, 
defining one of the observation points to be within the waveguide at the start of a photon’s 
motion, the other at a reference “rotation center” external to the waveguide, with gyro rotation 
equated to that of the rotating coordinate frame.  In the process, the photon in motion is defined 
to be part of a travelling light wave whose wavelength relative to the rotating gyro is a function 
of the wavelength in non-rotating space, the distance from the reference point to the photon, and 
the gyro’s angular rotation during the time the photon traverses a wavelength of distance.  The 
wavelength solution is then used to obtain independent integral solutions for each of the 
oppositely directed light waves traversing the gyro waveguide. 

 
Combining the individual light wave solutions in the readout zone at the same instant of time 

(a common intersection in space/time) requires application of Relativity theory.  The method is 
to first recognize that in a non-rotating frame, the wave propagation speed at any point in the 
waveguide will be at the same speed-of-light constant as it is open-space.  Second, for the 
observer stationed in the rotating waveguide, the small movement of a passing photon, although 
rotated through a small amount, will (to first order in the rotation angle) be of the same 
magnitude as when measured in a non-rotating frame at the same location.  By joining these 
observations, it is analytically shown that relative to the rotating waveguide, the propagation rate 
for each of the oppositely directed beams will be at the same speed-of-light, hence, the time 
interval for each wave to traverse a given distance relative to the waveguide will also be the 
same.  Applying this finding to each of the oppositely directed waves allows them to be 
analytically summed (at a common space/time location) into a single equation defining the beam 
power that will illuminate the gyro readout photo detector(s).  The result equates the cumulative 
difference in phase between the individual waves to the integrated effect of angular rotation over 
a selected time interval.  For the remainder of the article, the combined beam power equation is 
used to explain the operating characteristics of fiber optic and ring laser optical gyros.  

 
The ring laser gyro result analytically demonstrates how combining the oppositely directed 

waves at the gyro readout creates an optical interference pattern that moves across the photo 
detector(s) at a linear rate proportional to the gyro angular rate, thus generating cyclic outputs, 
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each representing a known increment of angular rotation.  The fiber optic gyro result describes 
two types FOGs, those classified as “open-loop” and those classified as “closed-loop”.  By 
injecting phase bias into the light waves with lithium-niobate (L/N) integrated-optics crystals 
inserted in the fiber coil, the closed-loop configuration provides control bias to the oppositely 
directed light beams that adds to the phase induced by angular rotation.  Using outputs from the 
gyro photo detector, L/N bias command equations are derived to balance the rotation induced 
phase, while simultaneously generating successive outputs of gyro angular rotation over the time 
interval for a light wave to traverse the fiber coil. 

 
The more detailed FOG L/N bias routines in [1] include provisions to eliminate round-off 

error generated by three closed-loop electronics interface operations; 1) Digitally sampling photo 
detector analog measurements into the digital control loop processor, 2) Creating L/N analog 
bias control voltages from the digital control-loop processor, and 3) Converting angular rotation 
increments calculated in the control-loop processor for digital output format compatibility. 
 
 
NOTATION 
 

The following general notation is used in the article: 
 

/ i  =  Subscript denoting the parameter being observed (measured) at position location 
point i . 

 
k (t) = A particular location in space/time at general spatial position point k at time t. 
 
Observable Event = An event at a position location in space at a particular instant of time 

(e.g., a lightning strike, explosion, illumination by a radar pulse, or passage of the 
leading edge of a light wave across a point in space) that can be observed at a 
remote spatial location based on electro-magnetic wave propagation (e.g. light or 
radar) [2 pp 29, 36; 3 pp 28, 236-238; 6 pp 10]. 

 
 
DIFFERENTIAL POSITION MOTION 
 

Consider a circularly shaped optical gyro wave path of radius r, e.g., a fiber optic gyro or the 
analytical equivalent of a circle inscribed within a symmetrical ring laser gyro that is tangent to 
each leg.  Define point a to be at the center of the circle and another point i fixed to the gyro in 
the wave path.  Now define point b to be coincident with i at a particular time instant t1 identified 
as i (t1), and a line from a to i at that time.  Further, define the a-to-b line to be non-rotating so 
that as the gyro rotates, i will move away from b.  At a time t2 later than t1, point i will be at i (t2).  
The geometry is depicted in Fig. 1. 

 
Now consider a photon p of light as it travels along the wave path, passing point b and i at t1 

and travelling to its location at t2, both identified in Fig. 1 as p(t1) and p (t2). 
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Fig. 1  Position Changes Along The Wave Path 
 
Define /p axΔ  in Fig. 1 as the inertial distance movement of p along a perpendicular to the a-

to-b inertial line over the t1 to t2 interval, as observed at point a (on the a-to-b line).  Similarly, 
/i axΔ  in Fig. 1 is defined as gyro rotation induced point i movement from the a-to-b inertial line 

as observed at point a, and /p ixΔ  is the p point motion that would be observed at point i on the 
rotating gyro wave guide.  Based on traditional Euclidean kinematics, Fig. 1 shows that the 

/p axΔ  photon motion observed at point a equates to p motion /p ixΔ  observed at point i plus i 
motion /i axΔ  (induced by gyro rotation) observed at point a: 

 
 / /p a p i i a/x x xΔ Δ Δ= +  (1) 
 
For a very small velocity of point i on the gyro relative to the speed of light, the appendix 
demonstrates that (1) is also compatible with Relativity kinematic theory. 
 

Fig.1 also shows that the /i axΔ  distance in (1) can be represented by the equivalent  
where  is a very very small inertial angular rotation of the gyro (and point i) at distance 

aix θΔ
a iθΔ x  

from gyro wave guide center point a  to point i on the wave path.  Then (1) becomes 
 
  (2) / /p a p i a ix x x θΔ Δ= + Δ
 
or equivalently, 
 

 
/

/ /
1

a ip a

p i p i

xx
x

θΔ Δ
= +

Δ Δ x
 (3) 
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Since (1) is compatible with both Euclidean and Relativity kinematic theory under normal 
operating conditions (as explained previously), (3) derived from (1), is also compatible with 
Euclidean and Relativity kinematic theory. 
 
 
WAVELENGTH EQUIVALENCE 
 

Now consider that p represents a point in a monochromatic light wave travelling across the 
rotating a-to-i line.  Say that the /p ixΔ

/p i

 measurement initiates when the leading edge of the p 
wave passes that line and terminates when the leading edge of the next wave crosses the line.  
Then the p distance change xΔ  observed at point i will equal /p iλ , the wavelength of the p 
wave as measured at point i and (3) becomes 

 

 
/

/ /
1

a ip a

p i p i

xx

x

θ
λ

Δ Δ
= +

Δ
 (4) 

 
Note from (1), however, that the /p axΔ

/p iλ

 measurement in (2) and (4) is independent of rotation 
(i.e., relative to point i motion), hence, it would be the same no matter the value of .  Thus, if 
we define  as the value of  under zero , we see from (4) that , and (4) 

becomes: 

θΔ
0 pλ0 pλ θΔ /p ax =Δ

 

 
0

/ /
1

p a i

p i p i

x

x

λ θ
λ

Δ
= +

Δ
 (5) 

 
Finally, we define  to be the time interval for a p wave to translate through /p itΔ /p ixΔ  across 

the a-to-i line.  For /p iV
/p i

defined as the p wave speed measured at point i we can write 
, and substitution in (5) finds // p ip i tVx Δ=Δ

 

 
0

/ / /
1

p a i

p i p i p i

x

V t

λ θ
λ

Δ= +
Δ

 (6) 

 
 
THE EFFECT OF RELATIVITY 
 

The derivations leading to (6) have been based on classical Euclidean kinematics.  To 
continue we now incorporate a basic precept of Relativity theory; that the speed of a photon of 
light is the same constant c when measured at any point space.  Thus, since /p iV  is the velocity 
of point p measured at point i, it follows that  will be c.  Then (6) becomes /p iV
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0

/ /
1

p a i

p i p i

x

c t

λ θ
λ

Δ= +
Δ

 (7) 

 
Now imagine a measuring tape attached to the gyro along the wave path, graduated in very 

fine increments for easy reading by an observer fixed to the gyro at point i.  Additionally, 
consider a clock at point i to measure the time interval for any observed p location change (i.e., 
Δτ  ).  Over a small distance Δs measured along the tape by the i observer, the measured Δτ  time 
interval for a light wave to traverse Δs (at the speed of light c) would be Δτ = Δs / c.  Thus,  
would be the same for a light wave travelling through Δs in either direction at any point on the 
wave guide, regardless of whether or not the gyro is rotating, hence we can rewrite (7) as 

τΔ

 

 
0

/
1

p a i

p i

x

c

λ θ
λ τ

Δ= +
Δ

 (8) 

 
The identical time/distance interval measurement for all waveguide mounted observers 

coupled with the wavelength change effect in (7) provides the mechanism for optical gyros to 
measure inertial angular rotation. 
 
 
OPTICAL GYRO OPERATION 
 

Optical gyros create two oppositely directed but superimposed monochromatic light waves 
that traverse a closed-optical path, one (as before) identified as a p wave viewed from a point i in 
the waveguide, the oppositely directed wave as q viewed from a point j in the waveguide.  
Following the development approach for p, consider a non-rotating line from point a to a point bʹ 
in the gyro wave, point j in the wave path and photon q both coincident with bʹ at the start of  
angular rotation.  Then, accounting for q motion along the wave path being opposite from p, the 
equivalent to (1) and (2) for photon q would be: 

θΔ

 
  (9) / / / /q a q j j a q j a jx x x x x θΔ ΔΔ Δ= − = − Δ
 
where /q axΔ  is the magnitude of point q distance change relative to non-rotating space as 
viewed from point a (i.e., from the non-rotating a-to-bʹ line at the start of the  angular 
rotation), 

θΔ
/q jxΔ is the magnitude of q motion as viewed from point j on the rotating gyro (i.e., 

from a line from a to j), /j axΔ  is the magnitude of j motion relative to non-rotating inertial 
space (i.e., from the a-to-bʹ line), and a jx  is the distance from a to j.  Following the procedure 
leading from (2) to (8), the equivalent for the q wave would be 
 

 
0

/
1

q a j

q j

x

c

λ θ
λ τ

Δ= −
Δ

 (10) 
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where  is the q light wave measured relative to the gyro at point j (during the  rotation), 
 is the  wavelength that would be measured under zero  inertial rotation, and 

 is time interval for  rotation as measured on a point bʹ located clock. 

/q jλ
λ

'

θΔ

0qλ

tΔ

/q j θΔ

/p b θΔ
 

For this simplified analysis the wave path has been assumed circular so that a ix  and a jx  
can be replaced by the circle radius r (see Fig. 1).  Additionally, as will be justified subsequently 
for particular optical gyro configurations, the p and q wavelengths under zero angular rate will be 
the same  value  (i.e., ).  Based on these observations, (7) and (10) rearranged 

become for the p and q waves: 
0λ 00 0q pλ λ λ= =

 

 
/ /0 0

1 1 1 11
p i q j

r
c c

θ
λ λλ τ λ

Δ⎛ ⎞ ⎛= + = −⎜ ⎟ ⎜Δ Δ⎝ ⎠ ⎝
1 r θ

τ
Δ ⎞

⎟
⎠

 (11) 

 
If we now let the Δ changes in (11) become infinitesimally small d changes, (11) becomes the 
differential equivalent 
 

 
/ /0 0

1 1 1 11 1
p i q j

r r
c c

θω ω
λ λλ λ

⎛ ⎞ ⎛ ⎞= + = − ≡⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

d
d

ω
τ

m

 (12) 

 
where  is the gyro angular rate relative to non-rotating inertial space. ω
 
 
LIGHT WAVE EQUIVALENCE 
 

Consider common point l where the “clockwise” p wave and “counterclockwise” q wave first 
enter the waveguide (at past time τ = 0).  Further, consider point m in the “readout zone” on the 
waveguide at current time τ = T where the p and q waves combine to generate an output 
measurement.  For a sinusoidal p wave, the wave “height” at points l and m would be 
 
 / /sin ( , ) sin ( , )( ) ( )p l p mB p l B pg T g Tφ φ= =  (13) 

 
where B is the p wave amplitude and ( , )p lφ , ( , )p mφ are the wave front phases at points l and m. 
 

Now consider two adjacent points along the waveguide between points l and m, points i and
1i , point 1i  being an infinitesimally small distance pd s  i.  Further, consider that the 

distance between points l and i is the distance travelled by the p wave front at the speed of light c 
over time interval , and that the distance travelled by the wave front over infinitesimally small 
time interval is .  Then the p wave front phase 

from

τ
dτ pd s 1( , )p iφ  at  will relate to1i ( , )p iφ , the 

phase at point i as  
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 1
/ /

2( , ) ( , ) ( , )p
p i p i

2p p i d p i c dsi
π πφ φ φ τ

λ λ
= + = +  (14) 

 
and the differential phase difference between points i and over  will be 1i dτ
 

 
/

2( , )
p i

cd p i dπφ τ
λ

=  (15) 

 
Beginning at τ = 0 at point l, the (15) differential can be accumulated (integrated) in the 

waveguide over a succession of i points from point l to point m (at time T): 
 

 
/0

( , ) ( , ) 2
T

p i
p m p l c dτ

τ
φ φ π

λ
τ=

=
= + ∫  (16) 

 

where (as before)  is the wavelength of the  p wave front when it reaches point i at time , 
after its traversal from point l along the waveguide since τ = 0.  Substituting for  from (12) 
then obtains 

/p iλ τ
/p iλ

 
0 0

2( , ) ( , ) 1 ( )
Tc rp m p l

c
d

τ

τ
τπφ φ

λ

=

=

⎡ ⎤
⎢ ⎥⎣ ⎦

= + +∫ ω τ  (17) 

 
where angular rate time dependence has now been more clearly delineated as .  For the q 
wave, the equivalent of (13) – (17) would be 

( )ω τ

 

 0 0

/ /

2( , ) ( , ) 1 (

sin ( , ) sin ( , )( ) ( )

)
T

q l q m

c rq m q l
c

B q l B q mg T g T

d
τ

τ

πφ φ
λ

φ φ

τω τ
=

=

⎡ ⎤
⎢ ⎥⎣

=

⎦
= + −∫

=
 (18) 

 
Under accumulating differential rotation, (17) and (18) show that the p wave phase will increase 

and the q wave phase decrease by
0 0

2 ( )
Tr d

τ

τ

π ω τ τ
λ

=

=
∫ .  The resulting phase difference in the gyro 

“readout zone” at time T provides the measurement of angular rotation for output. 
 
 
COMBINED OPPOSITELY DIRECTED WAVES IN THE READOUT ZONE 
 

Now consider the wave height at point m at time , a small time variation from time . 
As both the p and q waves pass by point m, they will generate sinusoidal outputs at point m of 
the form 

τΔ Tτ =

/ /
2 2sin ( , ) sin (( ) ( )p m q m

m m
, )B c p m B c q mg T g T

π πτ φ τ φτ τ
λ λ
⎡ ⎤ ⎡

= Δ + = Δ ++Δ +Δ⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦

 (19) 
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with ( , )p mφ  and ( , )q mφ  as defined in (17) and (18).  Note: Eqs. (19) are based on the very good 
approximation that  is very small, thus, angular rate can be considered constant during , 
and  will also be approximate as constant  - see (12) and note the very small dependence of 

τΔ τΔ
mλ λ  

on . ω
 
Because the p and q waves occupy the same space in the waveguide at point m, their (19) 

wave functions at common “readout zone” point m will add at time  to form Tτ = + Δτ
 

 

/ /( ) ( ) ( )

2 2sin ( , ) sin ( , )

m p m q m

m m

h T g T g T

B c p m B c q m

τ τ τ

π πτ φ τ φ
λ λ

≡ ++Δ +Δ +Δ

⎡ ⎤ ⎡
= Δ + + Δ +⎢ ⎥ ⎢

⎣ ⎦ ⎣

⎤
⎥
⎦

 (20) 

 
 or with (17) and (18): 

 
0 0

0 0

2 2sin ( , ) ( )( )

2 2sin ( , ) ( )

T
m

m

T

m

B c p l cT r dh T

B c q l cT r d

τ

τ

τ

τ

π πτ φ ω τ ττ
λ λ

π πτ φ ω τ τ
λ λ

=

=

=

=

⎧ ⎫⎡ ⎤⎪ ⎪= Δ + + ++Δ ∫⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎪ ⎪+ Δ + + − ∫⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 

 

0 0

0 0

0 0

0

2 2( , ) ( )
12 sin
2 2 2( , ) ( )

2 2( , ) ( )
1cos
2 2 2( , ) ( )

T

m

T

m

T

m

m

c p l cT r d

B

c q l cT r d

c p l cT r d

c q l cT r d

τ

τ

τ

τ

τ

τ

π πτ φ ω τ τ
λ λ

π πτ φ ω τ τ
λ λ

π πτ φ ω τ τ
λ λ

π πτ φ ω τ τ
λ λ

=

=

=

=

=

=

⎧ ⎫⎡ ⎤⎪ ⎪Δ + + + ∫⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭= ×
⎧ ⎫⎡ ⎤⎪ ⎪Δ + + − ∫⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎪ ⎪Δ + + + ∫⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

− Δ − − −
0

Tτ

τ

=

=

⎧ ⎫⎡ ⎤⎪ ⎪
∫⎨ ⎬⎢ ⎥

⎪ ⎪⎣ ⎦⎩ ⎭

(21) 

0 0

2 ( , ) ( , ) ( , ) ( , ) 22 sin ( ) cos ( )
2 2

T

m

c p l q l p l q l rB T d
τ

τ

π φ φ φ φ πτ ω
λ λ

=

=
τ τ

⎡ ⎤⎡ ⎤+ −= + Δ + + ∫⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

  
 
where  is a combined p and q wave function at point m in the readout zone at t

Tτ τ= ote: Eq. (38) assumes that the (g T  (g T ctions lie in 

the same plane around the waveguide at the same instant of time and space, so that they add 
algebraically as shown.  An important part of optical gyro design is based on meeting this 
requirement.) 

( )mh τΔ
+ Δ .  (N

ime
and  fun/) p mτ+Δ  /)q mτ+Δ
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The normalized power  in the combined optical beam signal is proportional to 
the square of  in (21): 

( mW T τ+Δ )
)( mh T τ+Δ

2

2

2 2

0 0

( )
( )

2 ( , ) ( , ) ( , ) ( , ) 2( ) ( )sin cos4 2 2

m
m

T

m

h
W T

B
c p l q l p l q l rT d

τ

τ

τ
τ

π φ φ φ φ πτ ω
λ λ

=

=

Δ
≡+Δ

τ τ
⎡ ⎤⎡ ⎤+ −= + Δ + + ∫⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

 (22) 

 

 
or with trigonometric expansion, 
 

0 0

( )

4 41 cos ( ) ( , ) ( , ) 1 cos ( , ) ( , ) ( )

m
T

m

W T

c rT p l q l p l q l
τ

τ

τ

π πτ dφ φ φ φ ω τ τ
λ λ

=

=

+Δ

⎧ ⎫⎧ ⎫ ⎡ ⎤⎡ ⎤⎪ ⎪⎪= − + Δ + + + − + ∫⎨ ⎬⎨
⎪
⎬⎢ ⎥⎢ ⎥

⎪ ⎪⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭⎩ ⎭

 (23) 

 
Eq. (23) describes the power that would be measured by a photo detector located at point m 

in the waveguide at time , being simultaneously illuminated by the p, q light beams. 
The power magnitude is modulated at high frequency by the first cosine term.  For a typical 
optical gyro wavelength  of 0.63 microns (for a ring laser gyro), the modulation 
frequency 2 /  in the (40) cosine term is high enough (2 × 3.0e8 / 0.63e-6 = 9.52 e14 Hz) to 
be eliminated by attenuation in the photo-detector/readout electronics.  Thus, (23) simplifies to 

t T t= + Δ

0mλ λ≈
mc λ

 

 0 0

41 cos ( , ) ( , ) ( )( )
T

m
rp l q l dW T

τ

τ

πφ φ ω τ τ
λ

=

=

⎡ ⎤
= + − + ∫⎢

⎣ ⎦
⎥

)

 (24) 

 
where  is  at time (when ).  ( )mW T ( mW T τ+Δ Tτ = 0τΔ =
 

Eq. (24) is the basis for the design of both ring laser and fiber optic gyros.  It demonstrates 
that optical gyros are integrating instruments whose combined optical beam power  
measures the integral of gyro input angular rate relative to non-rotating inertial space. 

( )mW T

 
 

RING LASER GYROS 
 

A ring laser gyro (RLG) creates two oppositely directed beams of monochromatic light that 
traverse a closed optical path formed by three or more reflecting mirrors [7; 8].  The beams 
occupy the same physical space (“optical cavity”) and are constrained to travel along a fixed 
“waveguide” relative to the gyro by an aperture and curved surface mirror(s). The concept is 
depicted in Fig. 2 for a 3-mirror RLG configuration, the individual laser beams identified as 
travelling in the clockwise (cw) and counter-clockwise (ccw) directions. 
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Fig. 2 - Ring Laser Gyro Operating Elements 
 
The RLG light beams in Fig. 2 are sustained by the lasing action of a helium-neon gas 

discharge within the optical cavity.  The reflecting surfaces are dielectric mirrors designed to 
selectively reflect the frequency associated with the particular helium-neon transition being used 
(typically of 0.63 micron wavelength).  A small fraction of each beam escapes the cavity at the 
readout, one reflected through a corner prism, then recombined with the other on readout photo 
detectors (mounted in the gyro “readout zone”).  The corner prism is designed to produce a small 
angle between the recombining beams, thereby creating optical interference fringes (light and 
dark bands) on the photo detectors, each illuminated by a different portion of the fringe pattern.  
The fringe pattern is stationary under zero angular rotation of the cavity.  Under cavity rotation, 
the fringes move across the photo detectors, generating a sinusoidal output at a frequency 
proportional to the gyro angular rate around its input axis (perpendicular to the plane of the Fig. 
2 diagram).  Photo detector readout logic converts the sinusoidal output into a digital square 
wave for each fringe passage.  The rise and fall of the square wave edges generate output pulses, 
each representing an angular rotation through a known angular increment (the gyro output pulse 
scale factor).  Two photo detectors are used, separated from each other by one quarter of a photo-
detector-sensed fringe so that resulting sinusoidal outputs are 90 deg phase separated.  
Comparison between photo detector  generated square wave outputs determines the direction of 
rotation, positive or negative, depending on whether one square wave is leading or lagging the 
other. 

 
Beam power losses in an RLG are compensated by amplification within the helium/neon 

plasma, adding photons at the same wavelength and in phase with returning photons (i.e., 
through Light Amplification by the Stimulated Emission of Radiation – LASER [7; 8]).  When 
lasing is achieved, a returning wave at the same point in the waveguide will be in phase with 
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itself, and the total length of the closed wave path will contain an integral number of 
wavelengths.  To sustain maximum beam power (average of the cw and ccw beams), the wave 
path is continuously adjusted through path length control (PLC), a closed-loop piezoelectric 
driven micro-movement of one of the RLG mirrors normal to its surface.  Average beam power 
is measured for the PLC control loop by a separate photo detector mounted on one of the mirror 
substrates. 

 
The amplification factor (“gain”) in a laser is a narrow Gaussian distribution function of light 

wave frequency (the “atomic gain curve”) centered at the nominal wavelength being excited by 
the Fig. 2 gas discharge (e.g., 0.63 microns for an RLG).  An important part of RLG operation is 
control of the wavelength so that it coincides with the peak of the gain curve.  (Operation away 
from the gain curve peak can produce complex deleterious performance effects that are beyond 
the scope of this article to explain. For very small RLGs, the impact can be large enough that 
there is insufficient gain for lasing.)  When lasing frequency is at the gain curve peak, beam 
power is also maximized.  Thus, PLC control to maximize beam power implicitly maintains 
operation at the gain curve peak, thereby stabilizing performance.  An added benefit is 
maximizing illumination of the readout photo detectors, hence, improving output signal-to-noise 
ratio. 

 
Under zero angular rotation, the RLG He-Ne stimulated emission process provides photons 

to both the clockwise and counterclockwise beams at their respective wavelengths, thus assuring 
that , the basic assumption in (11) leading to general optical gyro combined 
beam power equation (22) for RLG application.  Under non-zero angular rotation, “Doppler 
broadening” within the He-Ne transition process [8] provides the mechanism for adding in-phase 
photons to returning p, q waves at their (12) shifted ,  wavelengths embedded in (24). 

/0 /0 0q pλ λ= = λ

/p iλ /q jλ
 
RLG Analytical Model 
 

The RLG He-Ne transition process generates new p and q oppositely travelling photons at the 
same phase and frequency as returning photons.  This creates the illusion that each photon is 
repeatedly traversing the wave path.  The result can be analytically represented by (24), a 
combined beam power input to the RLG photo detectors representing the integral of angular 
increments from the time the photons were initially created at lasing ignition.  For an RLG 
waveguide in the shape of a triangle or regular polygon, [1] shows that (24) applies for r in that 
equation equated to the radius of the circle that can be inscribed within the triangle or regular 
polygon (i.e., tangent to each side).  From [9 Eqs. 36 & 63], the inscribed circle radius is given 
by 

 

 

( )

1 ( )( )( )For a triangle:  
2

For a regular polygon:  
2 tan /

inscrb

inscrb

b c a c a b a b cr r
a b c

Sr r
nπ

+ − + − + −= =
+ +

= =
 (25) 
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where a, b, c are the lengths of the triangle sides, S is the length of any side of the regular 
polygon, and n is the number of regular polygon sides.  Eq. (24) with  then describes 
the combined RLG beam power W at point m in the Fig. 2 readout zone, with running time  
representing the time at gyro turn-on, 

inscrbr r=
0τ =

0/pl l 0/qφ φ−  being the difference in phase between the 

Fig. 2 cw and ccw light beams at laser ignition, running time  representing current readout 
time since turn-on, and the integral being over the total time since laser ignition. 

Tτ =

 
A fundamental distinction between an RLG and a FOG (to be described subsequently) is that 

in a FOG, represents a “computer controlled” time instant when an incremental angular 
output increment measurement begins, current time  represents the time the output 
measurement is made, and  also represents the time instant when the next angular 
incremental measurement begins.  Sequential non-overlapping incremental measurements 
follow, each of duration T, the time for a wave front to travel along the fiber optic wave path 
from the input light emitting diode source to the output photo detector. 

0τ =
Tτ =

Tτ =

 
In contrast, for an RLG, represents the time of laser ignition, while  represents 

any time since laser ignition that the laser beams combine continuously in the readout zone.  To 
distinguish this difference, we will equate T to general time interval t since laser ignition so that 
(24) becomes the revised form 

0τ = Tτ =

 

 0 0

41 cos ( , ) ( , ) ( )( )
t

m
rp l q l dW t

τ

τ

πφ φ ω τ τ
λ

=

=

⎡ ⎤
= + − + ∫⎢

⎣ ⎦
⎥  (26) 

 
As explained previously, the effect of (26) is to generate an optical interference pattern (“fringes”) 
across photo diodes in the gyro readout zone (Fig. 2).  This can be analytically represented by first 
defining another point '  located in the readout zone, displaced from m by a small distance  
“ahead” of m in the cw beam direction.  At time t, the phase 

m sΔ
/ '( ) p mtφ  of the clockwise p beam at 

point  '  will equal the phase m /( ) p mtφ  at m plus small distance  from m to  measured in 2π 

wavelengths, i.e.,

sΔ 'm

/ 'p m /
2

( ) p mt t=( )
m

sπφ φ
λ

+ Δ  where is the cw light beam wavelength at point 

m.  Similarly, the phase of the ccw beam (travelling in the opposite direction) will be reduced by 

the same amount: 

mλ

/ 'q m /( )q mt t= 2
( )

m
sπφ φ

λ
− Δ .   Then, incorporating the T  generalization, the 

equivalent to (13), (17) and (18) combined will be for point '  

t≡

m
 

 

/ '
0 0

/ '
0 0

2 2sin ( , ) 1 (( )

2 2sin ( , ) 1 (

)

)( )

t

p m
m

t

q m
m

c rB p l sg t
c

c rB q l sg t
c

d

d

τ

τ

τ

τ

π πφ ω
λλ

π πφ ω
λ λ

τ τ

τ τ

=

=

=

=

⎧ ⎫⎪ ⎪= + Δ + +∫⎨ ⎬
⎪ ⎪⎩

⎡ ⎤
⎢ ⎥⎣ ⎦ ⎭

⎧ ⎫⎪ ⎪= − Δ + −∫⎨ ⎬
⎪

⎡ ⎤
⎢ ⎥

⎩ ⎣ ⎦ ⎪⎭

 (27) 
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where  and '  are the p and q wave functions at space/time point .  

Following the same methodology that led from (18) to (24) then finds for the combined beam 
power at space/time point : 

/ '( ) p mg t /( )q mg t

'(m t

'( )m t

)
 

 
'

0 0

4 41 cos ( , ) ( , ) (( ))
t

m
m

s r
W t dp l q l

τ

τ

π πφ φ ω
λλ

τ τ
=

=

⎡ ⎤Δ= + − + +⎢ ⎥∫
⎢ ⎥⎣ ⎦

 (28) 

 
Eqs. (28) and (26) represent general analytical models for the RLG combined beam power at 

points m and ' .  Note that (28) and (26) are identical except for the  phase shift in 
(28).  At a given time t, (28) shows that normalized beam power  will vary sinusoidally 
across the readout zone, generating a repeating pattern of maximum/minimum values for each 
change in by half a wavelength .  This is an analytical representation of the previously 
described light/dark fringe pattern generated in the Fig. 2 RLG readout zone. 

m 4 / msπ λΔ

'( )mW t

sΔ mλ

 
More importantly, for an RLG, (26) and (28) also show that the fringes will translate across 

the readout zone by the integral of angular rate  as time t progresses into the future, 
repeating itself in time each time the weighted integral generates a specific integrated 

angular rate increment, i.e., when

( )ω τ
( )ω τ

0

2 ( ) dτ τ = 1r ω
λ

2π

t t

t

τ

τ

= +Δ

=
∫ , where  is the time increment when 

the previous equality is true.  Thus, for an optical photodiode pickoff located in the readout zone, 
angular rotation will generate a sinusoidal output, repeating each time the integrated angular rate 
accumulates that specific angular increment (the fundamental measurement “pulse size”). 

tΔ

 
Each output cycle represents a known increment of integrated angular rate along the gyro 

input axis.  An output digitization process is implemented by first converting the analog 
sinusoidal pickoff output signal to an equivalent square wave, each change (minus to plus or plus 
to minus) indicating a gyro angular rotation of half the fundamental pulse size.  The sign (plus or 
minus) of the rotation measurement is determined by adding a second photodiode at point '  in 
the readout zone, displaced from the one at point m by linear distance to generate a of 90 deg 
(π/2) phase shift from the m photodiode input.  The length of is analytically found from (28) 
by specifying which finds . 

m
sΔ

sΔ
4 / /msπ λΔ = / 8ms λΔ =

 
  Generating a square wave from the  diode creates a square wave that is 90 deg phase 

shifted from the m diode created square wave, the '  “states” (plus or minus) overlapping the 
state changes from the m square wave.  Digital logic assigns a plus to the m sensed rotation when 
the m square wave state change finds a plus state on the '  square wave.  Conversely, the 
rotation is negative when the m state change is accompanied by a negative '  state.  Once the m 
and '  square wave measurements are implemented, the capability then exists to generate 
outputs not only for the m square wave state changes, but also for the '  square wave state 
changes.  The method duplicates what was described for the m wave measurements, with the  
wave state change now used to indicate the rotation occurrence.  Thus, 4 rotation occurrence 
outputs would be generated for each cycle of the photodiode outputs, 2 from the m wave, 2 from 

'm
m

m
m

m
m

'm
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the '  wave, all spaced one quarter of a wavelength apart, the equivalent of reducing the output 
“pulse size” by a factor of 4.                

m

 
Eq. (26) or (28) with (25) can also be used to assess the RLG output scale factor for a 

particular waveguide geometry; triangle or regular polygon for the point m or '  photo 
detectors.  For example, for a regular polygon, (26) with (25) shows that the normalized power at 

a point m located photo detector will cyclically repeat each time 

m

( )0 0
( )

tan /

tτ

τ

=

=
∫

S d
n

ω τ τ
πλ

 

changes by 1, corresponding to an output “scale factor” of 
( )0

1 /
tan /

S
nπλ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 radians change in 

integrated angular rate change input  per photo detector output cycle.  For an 

equilateral triangular RLG (i.e., n = 3) with S = 4.2 inches per side (0.35 ft ) and the commonly 
used visible RLG wavelength  of 0.63 micron (2.02 e-6 ft), the photo detector output scale 
factor will be 

0
( )

t
d

τ

τ
ω τ τ

=

=
∫

0λ

( )
0.

6n e0λ
351 / 1 / 5 radians = 2.06 arc sec output cycle

tan / 2.02
S e

π
⎡ ⎤

−⎢ ⎥ − ×⎢ ⎥⎣ ⎦
1.00

1.732
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 per .  

By triggering two output pulses (one at each photo detector output half cycle) from each of the 
two photo detectors (being position phased in “quadrature” - 90 degrees apart as described 
previously), the combined output pulse scale factor would be 2.06 / 4 = 0.515 arc sec per pulse. 
 

A square RLG configuration would have n = 4.  For a scale factor equivalent to the 
previously described 4.2 inch per side triangular RLG, the square RLG would have 

( )0λ
0.202=

2.02 61 / 1 / 1.00 5
t 2.an / 1. 002 6 0

S S e
e

e
n Sπ −

⎡ ⎤ −⎛ ⎞= = = −⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦ ×

 for which 

ft = 2.42 inches = 6.15 centimeters,S corresponding to a perimeter of 24.6 centimeters. 
 
 
FIBER-OPTIC GYROS 
 

A fiber optic gyro (FOG) consists of a circular coil of optical fiber, the ends optically spliced 
together with fiber-optic couplers that route near-monochromatic light from a super-luminescent 
diode (e.g., gallium arsenide) into and out-of the coil [10 pp 186-190; 11; 12].  The concept is 
depicted in Fig. 3. 

 
The light beam from the photo diode light source in Fig. 3 passes through a first coupler, then 

into the fiber-coil through a second coupler where it splits into two beams, one into the p branch, 
the other oppositely directed into the q branch.  After traversing the coil, the beams recombine in 
the second coupler, and are gated through the first coupler to a readout photo detector.  Under 
rotation, the p and q branch beams experience a relative phase shift, generating a change in the 
combined beam power illuminating the photo detector.  Readout electronics convert the photo 
detector output into a measurement of angular rotation that created the phase shift. 
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Fig. 3 - Fiber Optic Gyro (FOG) Concept 
 
Fundamental FOG Analytical Model 
 

As with the RLG, the fundamental operation of a FOG can be represented by (24), describing 
the continuous light wave emitted from the diode light source in Fig. 3.  For the FOG, the r 
radius in (24) can be approximated as the radius of the fiber coil. 

 
For a FOG, each photon traverses the waveguide once from the photo-diode light source to 

the pickoff.  Since the counter-travelling photons enter the waveguide at the same phase, 
( , ) ( , )p l q lφ φ− in (24) is zero.  Thus, for the Fig. 3 FOG configuration, the general (24) 

analytical power model simplifies to 
 

0 0

41 cos ( ) ( ) ( )( )
T

m
r T TW T

τ

τ

π θ θ ω τ
λ

=

=

⎡ ⎤
= + Δ Δ ≡ ∫⎢ ⎥

⎣ ⎦
dτ  (29) 

 
 where T is the time interval for a photon to traverse the fiber coil. 
 

For a fiber length of 1,000 meters, the time for a photon to traverse the fiber coil at the speed 
of light (3 e8 meters/sec) would be T = 1,000 / 3 e8 = 3.33 e-6 sec.  If the fiber coil is 
approximated as a connected set of n parallel overlapping circular segments, radius r in (29) 
would represent the approximate radius of each segment.  If each circular segment has a 3 inch 
diameter (1.5 inch radius) and the light source wavelength  is 0.82 microns (typical for a FOG 
gallium-arsenide photo-diode light source), under an average angular rate of 7 rad/sec 
(approximately 400 deg/sec), the bracketed (29) phase angle induced at the FOG pickoff would 

be

0λ
( )ω τ

0

4 4( , ) 1.5 0.0254 7 3.33 6 13.6=  rad
0.82 6

r t T e
e

π πθ
λ

Δ = × × × × −
−

. 

 
To be useful for computing angular orientation in system applications, it is important that 

FOG output measurements of  in (29) represent successive increments of angular change.  ( )TθΔ
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Then, using simultaneous outputs from three orthogonally mounted FOGs, they can be used 
effectively in an appropriate algorithm for repetitive three-dimensional attitude computation 
updating.  Since each measurement of  in (29) represents an attitude change over T, this 
means that  measurements must be sampled and output at a frequency of 1 / T.  For T = 
3.33 e-6 sec in the previous example, this translates into a  measurement/sampling rate of 
1 / 3.33 e-6 = 0.3 mega-Hz. 

( )TθΔ
( )TθΔ

( )TθΔ

 
 “Closed-Loop” FOG Configuration 
 

A significant difference between the RLG and FOG arises in the complexity of the readout 
implementation.  Most high accuracy mechanical gyros have been implemented in the past using 
narrow angle pickoffs designed to operate over a small angular input range (e.g., 1 milli-rad).  
The purpose is to minimize the effect of pickoff scale factor error on device performance, and is 
typically achieved by controlling the pickoff output in servo feedback fashion to dynamically 
maintain the pickoff output (hence, pickoff input) at zero (null).  This has been achieved by 
either mechanically controlling the base to which the gyro is mounted (i.e., with a mechanical 
gimbaled platform), or by using electrical “closed-loop” rebalance whereby an electrical signal is 
generated from the pickoff output to provide angular rate bias feedback within the gyro to 
maintain pickoff null [13].  A closed-loop gyro output would then be generated within the 
rebalance loop from the biasing signal required to maintain pickoff null, thereby becoming equal 
but opposite to the gyro dynamic angular input. 
 

Eq. (29) illustrates the fundamental difficulty of measuring the scaled angular increment 
 with an “open-loop” FOG; the lack of sensitivity in power for small , the 

inverse cosine function for  becoming indeterminate at zero input rate, and prone to 
significant scale factor error (from pickoff output non-linearity characteristics) at non-zero 
angular increments.  For a closed-loop FOG, the goal is to create closed-loop electrical bias that 
maintains at a known average value with high sensitivity for any value of Δ .  Thus, 
means must be introduced to enable measuring deviations from the specified average   
beam power, providing “closed loop” feedback to maintain at its specified average under 
all dynamic angular rate conditions. 

( )TθΔ ( )W T ( )TθΔ

( )Tθ
(W T

( )TθΔ

( )W T
)

(W T )

 
For a closed–loop FOG, the equivalent to (29) also derives from (24), but having ( , )p lφ  and 

( , )q lφ  include additional bias introduced within the fiber coil to enable closed-loop operation 
and  determination under any input condition.  Thus in (22), (T )θΔ ( , )p lφ would equal pα β+ Δ  

and ( ,q l)φ  would equal qα β+ Δ , where  is the phase of the light beam entering the coil 

(splitting into p and q branches as in Fig. 3), and 

α

pβΔ , qβΔ  represent additional phase biases 

intentionally introduced in the p, q branches within the coil.  The closed-loop equivalent to (29) 
then derives from (24) using the same rationale that led to (29): 
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where is as defined in (29).  Using condensed nomenclature, (30) becomes ( )TθΔ
 

 
( )

0

41 cos ( )SF SFp qW Tk k
πφ φ θβ β

λ
⎡ ⎤= + + − ≡ Δ ≡Δ ΔΔ Δ⎣ ⎦ r  (31) 

 
with r being the average fiber coil radius. 
 

The FOG scale factor  in (31) shows that there will be a SFk
0

4 rπ
λ

radian shift in phase φΔ  

between light waves reaching the readout photo detector per radian of  angular rotation 
during time interval T for a photon to traverse the fiber coil.   For comparison, (24) applied in 

(26) to an RLG with waveguide inscribed circular radius r shows that there would be a 

( )TθΔ

0

4 rπ
λ

 

phase shift  between light waves reaching the readout per radian change in  

integrated angular rate.  Thus, both the FOG and RLG measure angular rotation changes by the 
same scale factor.  

0

tτ

τ

=

=
∫ ( )dω τ τ

 
In modern day FOGs, integrated optics inserts are used to generate the pβΔ  and qβΔ  

applied phase shifts in (31), based on the use of active electro-optic crystals that change the 
index of refraction of light passing through.  With this approach, the integrated optics insert is 
constructed from a crystal of lithium-niobate using titanium strips diffused on the surface to gate 
light waves through the crystal [10 pp 189-190].  Voltage applied across the crystal changes the 
index of refraction of light passing through, changing the speed of light waves propagating 
through the crystal, thereby adding phase shift. 
 

For a given applied voltage, the same phase shift will be added to waves entering from either 
side of the crystal, i.e., from the p or q wave directions in a FOG fiber coil.  Achieving a net 
phase difference in (31) relies on the crystal being inserted at one end of the fiber to take 
advantage of the time interval difference for a p wave (for example) to reach the readout photo 
detector compared to the q wave.  Thus, imagine a crystal inserted at the end of the coil where 
the p wave begins its journey.  Then a voltage  (corresponding to a 1V 1β  phase shift) applied to 
the crystal at current time  will shift the p wave phase by 1t 1pβ β=Δ , but this shift will not 

appear on the photo detector until p completes its passage around the coil at a later time . 2t
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Now consider a q wave that entered the coil with p at time , but travelling in the opposite 
direction from p around the coil, and did not pass through the crystal until time .  If  is 
being applied to the crystal at time  (with corresponding phase shift 

1t
2t 2V

2t 2β ), the q wave will be 
phase shifted by 2qβ β=Δ  when it reaches the photo detector at .   The net result is that at 

time , the p and q waves with phase shifts 
2t

2t pβΔ  and qβΔ

2

 will combine on the photo detector 

to generate a phase shift difference 1p qβ β β β− = −Δ Δ  in the (31) beam power, depending on 

the logic used in setting  and V .  An example of applying this concept is depicted in Fig. 4, a 
closed-loop FOG version of Fig. 3. 

1V 2

 

 
 

Fig. 4 – Closed-Loop FOG Configuration 
 
A general goal in the design of inertial components is to provide symmetry to minimize the 

likelihood of asymmetric anomalous error generation.  For a FOG, a symmetric design approach 
would use two lithium-niobate (L/N) crystals symmetrically placed in the p and q photon light 
paths at equal distances from the fiber coil junction, one located in the p branch, the other in the 
q branch.  The symmetric configuration in Fig. 4 shows how the photo detector output would 
then be applied in feedback fashion through the Closed Loop Control computation block to 
generate ςΔ , ξΔ  phase shifts in the p, q waves through Vς , Vξ  voltages applied to the two  
L/N crystals.  In conjunction with generating the ςΔ , ξΔ  phase shift commands, Closed Loop 
Control in Fig. 4 also computes  angular increment measurements for output.  The associated 
complex detail is provided in [1], the gist of which is summarized next. 

θΔ
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The Closed Loop Control block in Fig. 4 generates the ςΔ , ξΔ  phase shift commands and 
 output based on the biased A/D converted input from the photo detector.  The purpose of the 

bias is to remove the “1” from the (31) power signal, converting the A/D power measurement to 
a cosine wave with plus/minus peak variations around zero.  The 

θΔ

pβΔ , qβΔ  phase biases in 

(31) are then designed to provide φΔ  feedback bias to balance the φΔ  input rotation generated 
phase shift.  Simultaneously, the pβΔ , qβΔ  phases in (31) include π/2 magnitude biases that 

alternate in polarity from one gyro output cycle to the next (each over the time for the p, q waves 
to traverse the fiber coil).  The alternating π/2 bias converts the cosine to a sine function in (31), 
producing a power input W to the Closed Loop Control block of the cyclic form 

 

 ( ) ( )
0

4sin ( , )SF SFW tk k
πφ φ φ φ φ θ

λ
= ± − ≈ ± − ≡ Δ ≡Δ Δ Δ Δ Δ T r  (32) 

 
Thus, unlike the lack of sensitivity of the open-loop power response in (29) under small  
rotation, closed-loop power input (32) has maximum sensitivity under all  input 

rotations when the 

( , )t TθΔ
( , )t TθΔ

φΔ  feedback is accurately balancing φΔ . 
 
By subtracting the previous from the current power measurement in (32), the closed loop 

control error signal φ φ−Δ Δ  is obtained, which is used to update the φΔ  rebalance signal for the 
next measurement cycle, and to provide / SFkθ φΔ = Δ  outputs based on successfully balancing 

φΔ  with φΔ  (i.e., maintaining the φ φ− ΔΔ  control loop error near zero so that φΔ  for output 

equals the average of φΔ ).  Third order corrections are included in [1] when generating 

/ SFkθ φΔ = Δ  to compensate small control loop variations in φ φ−Δ Δ  from the nominal zero.  
Note that that the (32) cycle to cycle power subtraction process also cancels errors in the Fig. 4 
analog bias on the A/D converter input from its nominal “1” value. 

 
To assure that ςΔ , ξΔ

2

 values applied to the lithium-niobate (L/N) crystals in Fig. 4 remain 
positive (greater than a specified offset) and within a specified range for proper operation, 
successive plus or minus  changes are applied to π ςΔ , ξΔ  until they satisfy the specified 
criteria.  This also minimizes the maximum ςΔ , ξΔ  range, hence, scale-factor/linearity error in 
the D/A to L/N crystal response branches.  To minimize the effect of time delay between the ςΔ , 

ξΔ  commands and D/A to L/N crystal response, the ςΔ , ξΔ  commands are issued at the 
midpoint between successive W power measurements.  Ref. [1] shows how to generate the ςΔ , 

ξΔ  signals so that the previously described operations are shared equally by the two ςΔ , ξΔ  
branches.  As a result, potential common bias errors created by thermal heating will be equal 
between the D/A – L/N group in each branch, thereby cancelling in the closed-loop computation 
process.  Ref. [1] also describes how the Fig. 4 control loop can be structured to minimize digital 
round-off error in D/A converter sampling and generating the  digital-to-digital output 
function. 

θΔ
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CONCLUSIONS 
 

Optical gyros generate oppositely directed monochromatic light waves travelling in a closed-
circuit waveguide to measure angular rotation relative to non-rotating inertial space.  Based on 
classical Euclidean kinematics and Relativity theory (under normal operating conditions), the 
wavelength of light waves in the waveguide will change due to angular rotation, increasing for 
waves travelling with rotation, decreasing for waves travelling against rotation.  Due to 
Relativity theory, the velocity of the waves will remain constant (at the speed of light) relative to 
any point on the waveguide.  As a result, relative to the readout device in the waveguide, the 
frequency will decrease for waves travelling with rotation, and increase for waves travelling 
against rotation.  Additionally, relative to any point on the waveguide during rotation, the time 
increment for a wave to traverse a given distance increment will be the same, independent of its 
motion relative to the rotation direction.  A corollary is that relative to the waveguide, the time 
interval for a wave to traverse a given distance will be the same for waves travelling in either 
direction. 

 
Ring laser gyros (RLGs) and fiber optic gyros (FOGs) are integrating angular change sensing 

inertial instruments, both measuring increments of gyro angular rotation relative to non-rotating 
inertial space.  The analytics describing RLG and FOG operations emanate from the same 
fundamental equation.  RLGs and FOGs differ analytically in the method used to extract 
incremental angular data measurements for output.  Application of the fundamental equation for 
each depends on the total travel time for a light wave to traverse the waveguide. 

 
Due to the RLG He-Ne stimulated-emission process, a light wave in an RLG will continue to 

traverse the waveguide from gyro turn-on.  The result is a pair of continuous counter-travelling 
light waves that combine at the readout, generating an optical interference pattern across the 
readout zone.  The interference pattern moves across readout photo detectors at a rate 
proportional to the frequency difference between the counter-travelling light waves.  The 
frequency difference is proportional to angular rate.  The RLG output measures the occurrence of 
each interference pattern traversal, each representing a known increment of angular rotation 
relative to non-rotating inertial space. 

 
In contrast, each light wave in a FOG only traverses the waveguide once from the time it 

leaves the FOG photo diode light source until it arrives at the readout photo detector.  In a FOG, 
rotation generates a phase difference at the readout between the counter-travelling light waves.  
The phase difference is proportional to the increment of angular rotation during the time for a 
wave to traverse the waveguide.  When the counter-travelling waves combine at the readout, the 
phase difference generates a change in the combined wave optical power illuminating the photo 
detector.  Suitable closed-loop electronics convert photo detector optical power measurements 
into angular increments for output, while generating commands to lithium-niobate biasing crystal 
inserts in the gyro wave path for closed-loop control. 
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APPENDIX 
 

DERIVATION OF EQ. (1) BASED ON RELATIVITY THEORY 
 

For the simplified analysis presented here, assume that the observed motion of point p 
relative to points a and i are parallel along the x axis of a designated coordinate frame.  Then the 
equivalent to (1) based on Relativity theory [5 Eq. (12-5); 6 Eq. (10.31) - (10.32)] in its 
equivalent point-to-point differential form [4 Eq. (35)] would be: 

  

( ) // / / / /2 2

1

1 /
p i p ap i p a i a a p i p a

ai
y yd x d x v dt d d d dz z

v c
= − =

−
/=  (A-1) 

 
where , ,  are differential changes in the x, y, z  position location 

components of point p as observed at point a, , ,  are differential position 

changes of p as observed at point i,  is the time interval for p position change that would be 
measured on a point a located clock,  is the velocity of point i relative to point a, and  is 

the magnitude of .  The peculiar 

/p ad x /p ayd

/i av

/p ad z

/p id x /p iyd /p id z

adt
/iv a aiv

2 2/ c1 aiv−  term in (A-1) is a unique contribution from 
Relativity theory [4; 14 Appendix A] that assures that if point p is travelling at the speed of light 
c, the magnitude of p velocity relative to observation points a or i will be the same c constant: 
 
 / // /p a a p i i cd x dt d x dt= =  (A-2) 

 
where  is the time interval for the  differential p motion that would be measured on a 
clock located at point i. 

idt /p id x

 
Eq. (A-1) is also based on  (the velocity of point a observed at point i) being of equal 

magnitude but oppositely directed from  (the velocity of point i observed at point a), a 
fundamental premise of both classical Euclidean kinematics and Relativity theory [3 pp 236-238; 
6 pp 30]: 

/a iv
/i av

 

 / /
/ / / / /

i a a i
i a a i a i i a ai i a a i

a i

d x d xv v v v v v
dt dt

≡ ≡ = − ≡ /v=

c

 (A-3) 

 

For the commonly encountered situations when , the aiv 21 /aiv c− 2  Relativity 
coefficient in (A-1) approximates as unity and (A-1) simplifies to 

 
  (A-4) / / /p i p a i a ad x d x v dt= −
 
Substituting  from (A-3) into (A-4) obtains with rearrangement / /i a i a ad x v dt=
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  (A-5) / /p a p i i add x x d x= + /

/

 
With the differentials in (A-5) approximated as small finite Δ  changes, (A-5) becomes (1) in the 
main text based on classical Euclidean kinematic theory: 
 
 / /p a p i i ax x xΔ Δ Δ= +  (A-6) 
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