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ABSTRACT 
 

Under benign (small horizontal velocity change) flight conditions, second order errors 
in traditional linearized Kalman filters can generate significant heading error in INS 
velocity matching initial alignment applications.  The dominant cause is a second order 
coupling of INS heading error into the Kalman filter input measurement by the product of 
integrated vertical specific force (mostly 1 g upward) with the INS horizontal attitude 
error vector.  Under benign flight conditions, this effect mimics a horizontal velocity 
change coupling of heading error, the primary signal normally allowing fast heading 
estimation under true horizontal maneuvering.  This article describes a simple method for 
eliminating the second order error effect by modifying the form of the Kalman filter input 
measurement and revising the analytical definition of INS navigation coordinates. 

 
 

INTRODUCTION 
 

An inertial navigation system (INS) calculates velocity and position by a double 
integration process on acceleration sensed by INS accelerometers.  The direction of the 
accelerometer measurements is determined by INS gyros whose rotation rate outputs are 
processed through an integration process to continuously calculate accelerometer angular 
orientation (also known as "attitude").  Because the basic navigation operations in an INS 
(attitude, velocity, position) are integrations, proper initialization of the navigation 
integrators is an important part of ensuing navigation integration operations.  Under 
dynamic flight conditions, the initialization process becomes complicated, relying on 
external accurate navigation inputs as a reference.  INS initialization then becomes a 
dynamic process in which particular INS navigation parameters are compared with the 
reference input data, the difference providing a measure of INS initialization error, with 
the error measurement then fed back through appropriate gains to the INS navigation 
integrators so that over time, correct integrator initialization is achieved.  Modern 
initialization processes calculate the feedback gains through a Kalman filter structure [1, 
2, 3 - Chapt. 15]. 

  
Due to the high sensitivity of INS navigation integration operations to angular 

orientation (attitude), the critical area for initialization is reducing attitude errors (initial 
alignment error correction).  A common structure for dynamic INS attitude alignment 
uses external velocity reference data compared with INS velocity as the basic 
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measurement for feedback into the INS integrators until the measurement reaches a stable 
steady state [3 - Sect. 15.2.2.2].  The technique, known as "velocity matching", is based 
on attitude defining the accelerometer output angular orientation when being integrated 
into velocity/position.  Consequently, attitude errors will generate errors in the INS 
computed velocity which, when compared with "correct" reference velocity, will over 
successive measurement/feedbacks, nullify the attitude errors.  Simultaneously, velocity 
and position are updated by Kalman measurement feedback. 

 
Prior to engaging the initialization process (also known as "Fine Alignment"), INS 

attitude data is initialized to approximate values (a process known as "Coarse 
Alignment") based on other methods depending on the application (e.g., from an Attitude 
Heading Reference System - AHRS, with magnetic heading feedback compensation for 
gyro induced heading error growth [4]).  Kalman filter gains during "Fine Alignment" 
then correct for Coarse Alignment errors using linearized dynamic models of INS 
initialization and inertial sensor errors generating navigation errors into the feedback 
error measurement.  The Coarse Alignment approach is selected so that resulting Fine 
Alignment initial attitude errors have negligible second order components in the 
linearized Kalman filter models.  Reference [5], however, shows that second order errors 
in traditionally structured velocity matching Kalman filter measurements, while being 
negligible under maneuvering flight, can induce significant heading initialization error 
under benign flight conditions. 

 
Reference [5] describes a method for mitigating second order errors during velocity 

matching by modeling them as statistical noise effects in the Kalman gain calculations.  
This article presents an alternative to the [5] mitigation approach using a modified form 
of the Fine Alignment error feedback measurement, coupled with a revised analytical 
definition of initial heading error.  The linearized form of the resulting modified 
measurement for Kalman gain design is equivalent to that of the traditional measurement 
approach.  However, noticeably absent in the modified measurement is the second order 
error in the traditional measurement that induces the velocity matching heading 
alignment error. 

 
 

NOTATION 
 

V  =  Vector without specific coordinate frame designation.  A vector is a 
parameter that has length and direction.  Vectors used in the paper are 
classified as “free vectors”, hence, have no preferred location in coordinate 
frames in which they are analytically described. 

 
AV   =  Column matrix with elements equal to the projection of V on coordinate 

frame A axes.  The projection of V on each frame A axis equals the dot 
product of V with a unit vector parallel to that coordinate axis. 
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AV ×( )   =  Skew symmetric (or cross-product) form of AV  represented by the 

square matrix 

0 ZA−V YAV

ZAV 0 XA−V

YA−V XAV 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 in which XAV , YAV , ZAV  are the 

components of AV .  The matrix product of AV ×( )  with another A frame 

vector equals the cross-product of AV  with the vector in the A frame, 

i.e.: AV ×( ) AW = AV × AW . 

 

CA2

A1  =  Direction cosine matrix that transforms a vector from its coordinate frame 

A2 projection form to its coordinate frame A1 projection form, i.e.: 

1AV =
2A
1AC 2AV .  The columns of CA2

A1 are projections on A1 axes of unit 

vectors parallel to A2 axes.  Conversely, the rows of CA2

A1 are projections on 

A2 axes of unit vectors parallel to A1 axes.  An important property of CA2

A1 is 

that it's inverse equals it's transpose. 
 

1A 2Aω   =  Angular rotation rate of coordinate frame A2 relative to coordinate 

frame A1.  Conversely, the angular rotation rate of coordinate frame A1 

relative to coordinate frame A2 is the negative of 
1A 2Aω

, i.e.,: 

2A 1Aω = −
1A 2Aω . 

 
.

( )   =  
d( )
dt

  =  Derivative with respect to time t. 

 

( ) = Computed or measured value of parameter ( ) that, in contrast with the 
idealized error free value ( ), contains errors. 

 
 

TRADITIONAL VELOCITY MATCHING OBSERVATION 
AND MEASUREMENT EQUATIONS 

 
The traditional form of the Observation Equation for a velocity matching type 

Kalman aided alignment process is [3 - Sect. 15.2.2.2]: 
 

 MTrd
N

 = v
N

 - vRef
N

 (1) 

 

where 
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N = INS locally level navigation coordinate frame (with Z axis up) used for 
attitude referencing and velocity/position integration operations. 

 
Trd = Subscript denoting the traditional form of the associated parameter. 
 
v = INS computed velocity vector. 
 
vRef = Velocity vector provided by the velocity reference aiding device.  For the 

traditional measurement approach, vRef is provided to Observation Equation 
(1) in N frame coordinates for comparison with INS N frame computed 
components of velocity v. 

 

Note - For simplicity in this article, (1) does not allow for differences between v
N

 and 

vRef
N

 that would normally be included in an actual system design (e.g., due to physical 

separation between the INS and reference navigation device under vehicle angular 
motion, i.e., so-called "lever arm" effects [3 - Sect. 15.2.2.2]).  For a velocity-matching 
alignment configuration in which Kalman computed gains are applied continuously for 
INS navigation parameter feedback correction, (1) would be the feedback error 
measurement multiplying the gains (with allowances included to account for the 
difference between the measurement time and the time for gain-computation-
completion/feedback-application.) 
 

Kalman filter theory [1, 2] requires that (1) be "unbiased" (i.e., that it is only a 
function of unknown errors) so that the equivalent idealized error free form satisfies: 
 

 
MTrd

N
 = vN - vRef

N
 = 0

 
(2)

 
 

Defining the errors in v
N

 and vRef
N

 as: 

 
δvN =

_ v
N

 - vN          δvRef
N

 =
_ vRef

N
 - vRef

N
 

 
(3)

 
 

or vN = v
N

 - δvN and vRef
N

 = vRef
N

 - δvRef
N

.  Substituting in (2) then finds 

 

 
MTrd

N
 = v

N
 - δvN  - v

N
 - δvRef

N
 = MTrd

N
 - δvN + δvRef

N
 = 0

 
(4)

 
 

From (4), MTrd
N

 in (1) is equivalently the analytical function of errors: 

 

 
MTrd

N
 = δvN - δvRef

N
 

(5)
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The Measurement Equation for the traditionally used velocity matching alignment 
Kalman filter design is the linearized form of Observation Equation (5) which, for this 
simple case, is [3 - Sect. 15.2.2.2] 
 

 
zTrd

N
 = δvLin

N
 - δvRefLin

N
 ≈ δvLin

N
 - δvRef

N

 
(6)

 
 

where 

z = Measurement for Kalman gain design. 
 
Lin = Subscript denoting linearized form of the associated parameter (i.e., 

neglecting second order and higher terms). 
 
 
MODIFIED FINE ALIGNMENT VELOCITY MATCHING OBSERVATION 

AND MEASUREMENT EQUATIONS 
 

The modified form of Observation Equation (1) described in this article is: 
 

 MMod
N

 = v
N

 - CN*
N

 vRef
N*

 
(7)

 
 

where 
 

N* = Locally level navigation coordinate frame (with Z axis up) used to deliver 

velocity reference data vRef
N*

 to the INS being aligned.  The heading angle 
misalignment between the N and N* frames is the means for accounting for 
initial heading error in the INS attitude data at the start of alignment. 

 

Mod = Subscript referring to the modified form of the associated parameter. 

 

Kalman filter theory requires that (7) be an unbiased error measurement so that the 

equivalent error free value of (7) is: 
 

 MMod
N

 = vN - CN*
N

 vRef
N*

 = 0 (8) 

 
Substituting for error definitions between (7) and (8) finds for (8) with (7): 
 

 

MMod
N

 = v
N

 - δvN  - CN*
N

 - δCN*
N

 vRef
N*

 - δvRef
N*

 = 0

= v
N

 - δvN - CN*
N

 vRef
N*

 + CN*
N

 δvRef
N*

 + δCN*
N

 vRef
N*

 - δCN*
N

 δvRef
N*

= MMod
N

 - δvN + CN*
N

 δvRef
N*

 + δCN*
N

 vRef
N*

 - δCN*
N

 δvRef
N*

 

(9)
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with δCN*
N

 and δvRef
N*

, the errors in CN*
N

 and vRef
N*

, defined as 

 

 
δCN*

N
 =
_ CN*

N
 - CN*

N
         δvRef

N*
 =
_ vRef

N*
 - vRef

N*
 

(10)
 

 
Then from (9) with (10), 
 

 

MMod
N

 = δvN - CN*
N

 δvRef
N*

 - δCN*
N

 vRef
N*

 + δCN*
N

 δvRef
N*

≈ δvN - CN*
N

 δvRef
N*

 - δCN*
N

 vRef
N*

 

(11)

 
 

The attitude parameters in (11) are further defined by representing CN*
N

 as a heading 

rotation (about the vertical) from N* to N through a small constant angle β: 

 

 

CN*
N

 = I + β uZ
N

 ×  + 
1
2

 β2
 uZ

N
 ×  uZ

N
 ×  +  

CN*
N

 = I + β uZ
N

 ×  + 
1
2

 β
2
 uZ

N
 ×  uZ

N
 ×  +  

δCN*
N

 =
_ CN*

N
 - CN*

N
 = β - β  uZ

N
 ×  + 

1
2

 β
2
 - β2

 uZ
N

 ×  uZ
N

 ×  +  
 

(12)

 
or 

 
δCN*

N
 = (1 + β) δβ uZ

N
 ×  - 

1
2

 δβ2
 uZ

N
 ×  uZ

N
 ×  +  

 
(13)

 
where 
 

 I = Identity matrix. 

 δβ =
_ β - β      or      β = β - δβ (14) 

 

with, because β is defined to be constant, 
 

 β = 0         β = 0         δβ = 0 (15) 
 
Applying (13) in (11), the Observation Equation for the modified alignment approach 
then becomes in terms of error parameters: 
 

MMod
N

 = δvN - CN*
N

 δvRef
N*

 - (1 + β) δβ uZ
N

 ×  - 
1
2

 δβ2
 uZ

N
 ×  uZ

N
 ×  vRef

N*
 +  

= δvN - CN*
N

 δvRef
N*

 + (1 + β) δβ vRefH
N*

 × uZ
N

 - 
1
2

 δβ2
 vRefH

N*
 + 

 

(16)

 
where 

 H = Subscript indicating the horizontal components of the associated vector. 
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For the modified approach, the measurement zMod
N

 for Kalman filter implementation 

is the linearized version of (16): 
 

 
zMod
N

 = δvLin
N

 - δvRef
N*

 + δβ vRefH
N*

 × uZ
N

 
(17)

 
 

 
VELOCITY ERROR INPUTS TO THE MEASUREMENT EQUATIONS 

 
Eqs. (1) and (6) for the traditional velocity matching alignment approach and (16) and 

(17) for the modified approach contain a δvN velocity error term.  This is obtained by 

integration of the δvN rate equation, which from [5 - Eq. (91)], is given to second order 

accuracy by 
 

 

δv
N

 ≈ CB
N

 δaSF
B

 + aSF
N

 × γN
 + δgP

N

- δωIN
N

 + δωIE
N

 × v
N

- ωIN
N

 + ωIE
N

 × δvN

- 
1
2

 aSF
N

 × γN
 × γN

 - CB
N

 δaSF
B

 × γN
 + δωIN

N
 + δωIE

N
 × δvN

 (18) 

 
with 

 
δωIE

N
 =
_ ωIE

N
 - ωIE

N
         δωIN

N
 =
_ ωIN

N
 - ωIN

N
         δgP

N
 =
_ gP

N
 - gP

N
 

(19)
 

 

and the angular error γ
N

 in CB
N

 is implicitly defined from [5 - Eq. (83)] as 

 

 
δCB

N
 =
_ CB

N
 - CB

N
 = - γN

 ×  + 
1
2

 γN
 ×  γN

 ×  +  CB
N

 
(20)

 
where 
 

B = Coordinate (body) frame aligned with nominal INS inertial sensor input axes. 
 
E = Coordinate (earth) frame aligned with axes fixed to the earth. 
 
I = Inertially non-rotating reference coordinate frame. 
 
aSF = Specific force (non-gravitational) acceleration measured by INS 

accelerometers. 
 

gP
N = Plumb-bob gravity that equals the sum of earth's gravitational mass 

attraction plus earth's rotation centripetal acceleration effect.  Defined as 
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such because gP
N lies along the direction of a plumb-bob under zero velocity 

conditions). 
 

The attitude misalignment angle γN
 in (18) is obtained by integrating the attitude 

error rate equation, which from [5 - Eq. (88)], is given to second order accuracy by 
 

 
γ
N

 ≈ - CB
N

 δωIB
B

 - ωIN
N

 × γN
 + δωIN

N
 + 

1
2

 CB
N

 δωIB
B

 + δωIN
N

 × γN
 (21)

 
with 

 δωIB
N

 =
_ ωIB

N
 - ωIB

N
 

(22)
 

 
The linearized versions of (18) and (21) would be used by the Kalman filter in finding 

δvLin
N

 for the (6) and (17) measurement equations: 

 

 

δvLin
N

 ≈ CB
N

 δaSF
B

 + aSF
N

 × γLin
N

 + δgP
N

- δωIN
N

 + δωIE
N

 × v
N

- ωIN
N

 + ωIE
N

 × δvLin
N

 

(23)

 
 

 γLin
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γLin
N

 + δωIN
N

 
(24)

 
 
 
INTEGRAL FORM OF THE ATTITUDE AND VELOCITY 

ERROR RATE EQUATIONS 
 
In addition to differences between the form of the observation and measurement 

equation discussed previously, the modified velocity matching approach uses a different 

definition for attitude error γ
N

 than the traditional approach.  For the modified approach, 

the initial value of γ
N

 is defined to have a zero heading error component.  Thus, at Fine 
Alignment initialization, the INS initial attitude data for the modified approach is defined 

to only include horizontal components.  The β parameters in Eqs. (16) and (17) are the 
devices used to account for INS initial heading misalignment from a definable nominal 
reference frame (e.g., the N* frame used to provide velocity reference data to the 

alignment process).  In contrast, the traditional alignment approach defines initial γ
N

 as 
containing both horizontal and vertical components.  Mathematically then, the integral of 
(21) for the Observation Equation is given in general for the two approaches by: 
 

 
γTrd

N
 = γ0H

N
 + γ0Z

N
 uZ

N
 + ∫ 0

t
γ

N
 dt

 
(25)
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γMod
N

 = γ0H

N
 +  ∫ 0

t
γ
N

 dt
 

(26)
 

 

where 
 

 0 = Subscript indicating value of associated parameter at start of Fine Alignment. 

 γ0Z

N
 = N frame Z axis component of γ0

N
. 

 

and γ
N

 is given by (21).  The equivalent linearized forms of (25) and (26) for Kalman 
filter design are 
 

 
γTrdLin

N
 = γ0H

N
 + γ0Z

N
 uZ

N
 + ∫ 0

t
γLin
N

 dt
 

(27)
 

 

 
γModLin

N
 = γ0H

N
 + ∫ 0

t
γLin
N

 dt
 

(28)
 

 

with (24) for γLin
N

. 
 
Velocity initialization at the start of Fine Alignment will be the same for the 

traditional and modified alignment approaches, i.e., both using input reference velocity.  
The traditional approach delivers reference velocity in N frame coordinates to the INS so 
that 
 

 
δv0Trd

N
 = v0Trd

N
 - v0Trd

N
 = vRef0

N
 - vRef0

N
 - δvRef0

N
 = δvRef0

N

 
(29)

 
 
With (29), the integral of (18) for the traditional approach then becomes 
 

 
δvTrd

N
 = δv0Trd

N
 + ∫ 0

t
δvTrd

N
 dt = δvRef0

N
 + ∫ 0

t
δvTrd

N
 dt

 
(30)

 
 

Velocity error rate δvTrd
N

 in (30) is provided by (18), but with γ
N

 replaced by γTrd
N

 from 

(25). 
  

For the modified approach, reference velocity is provided to the INS in N* 

coordinates.  Thus, its use for v
N

 initialization will contain an additional error due to the 

initially unknown heading variation between N and N* (i.e., CN*0
N

 = I): 
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v0Mod

N
 = v0Mod

N
 - δv0Mod

N
 = vRef0

N*
 - δv0Mod

N

= CN*0

N
 vRef0

N*
 = CN*0

N
 - δCN*0

N
 vRef0

N*
 - δvRef0

N*

≈ CN*0
N

 vRef0
N*

 - CN*0
N

 δvRef0
N*

 - δCN*0

N
 vRef0

N*

= vRef0
N*

 - δvRef0
N*

 - δCN*0

N
 vRef0

N*

 

(31)

 
Thus, 

 
δv0Mod

N
 = δvRef0

N*
 + δCN*0

N
 vRef0

N*

 
(32)

 
 

Using (13) for δCN*0

N
 in (32) while recognizing that β is unknown at Fine Alignment 

initiation (i.e., β0 = 0), gives 

 

 

δv0Mod

N
 = δvRef0

N*
 + δβ0 uZ

N
 ×  - 

1
2

 δβ0
2
 uZ

N
 ×  uZ

N
 ×  +   vRef0

N*

= δvRef0
N*

 - δβ0 vRefH/0
N*

 × uZ
N

 + 
1
2

 δβ0
2
 vRefH/0

N*
 + 

 

(33)

 
 
With (33), the integral of (18) for the modified approach then becomes 
 

 

δvMod
N

 = δv0Mod

N
 + ∫ 0

t
δvMod

N
 dt

= δvRef0
N*

 - δβ0 vRefH/0
N*

 × uZ
N

 + 
1
2

 δβ0
2
 vRefH/0

N*
 + ∫ 0

t
δvMod

N
 dt + 

 

(34)

 
 

Velocity error rate δvMod
N

 in (34) is provided by (18), but with γ
N

 replaced by γMod
N

 from 

(26). 
 
 
COMPARISON BETWEEN THE TRADITIONAL AND MODIFIED KALMAN 

ALIGNMENT APPROACHES 
 

Eqs.  (25), (26), (30), and (34) substituted in (5), (6), (16), and (17) provide a set of 
traditional and modified observation/measurement equations for second order impact 
performance comparisons. 

 
Traditional Measurement Equation 
 

Consider the (6) traditional Measurement Equation.  During the early phases of Fine 
Alignment, error rate buildup has a short time to develop, thus the errors are dominated 
by their initial values.  With (25) for the traditional approach, attitude error rate (24) 
approximates as 
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γTrdLin

N
 ≈ - ωIN0

N
 × γ0H

N
 + γ0Z

N
 uZ

N
 +  = - ωIN0

N
 × γ0H

N
 - γ0Z

N
 ωIN0

N
 × uZ

N
 + 

 
(35)

 
 
with which (27) becomes 
 

 
γTrdLin

N
 = γ0H

N
 + γ0Z

N
 uZ

N
 - ωIN0

N
 t  × γ0H

N
 - γ0Z

N
 ωINH/0

N
 t  × uZ

N
 + 

 
(36)

 
 
The velocity error for traditional Measurement Equation (6) is then obtained by 
substituting (36) in (23) and integrating.  First, (23) becomes 
 

 
δvTrdLin

N
 = aSF

N
 × γ0H

N
 + γ0Z

N
 uZ

N
 - ωIN0

N
 t  × γ0H

N
 - γ0Z

N
 ωINH/0

N
 t  × uZ

N
 + 

 
(37)

 
 
Expanding finds for the horizontal components: 
 

 

δvTrdLin/H

N
 = aSFH

N
 + aSFZ

N
 uZ

N
 × 

γ0H

N
 + γ0Z

N
 uZ

N
 - ωIN0

N
 t  × γ0H

N

- γ0Z

N
 ωINH/0

N
 t  × uZ

N
H

 + 

= γ0Z

N
 aSFH

N
 × uZ

N
 + aSFZ

N
 × γ0H

N
 - γ0Z

N
 aSFZ

N
 uZ

N
 × ωINH/0

N
 t  × uZ

N
 + 

= γ0Z

N
 aSFH

N
 × uZ

N
 + aSFZ

N
 × γ0H

N
 - γ0Z

N
 aSFZ

N
 t  ωINH/0

N
 + 

 

(38)

 
 
Integrating (38) with (29) for initialization obtains 
 

 

δvTrdLin/H

N
 = δvRefH/0

N
 + ∫ 0

t
aSFZ
N

 dt  × γ0H

N

+ γ0Z

N
 ∫ 0

t
aSFH
N

 dt  × uZ
N

 - γ0Z

N
 ∫ 0

t
aSFZ
N

 t dt  ωINH/0

N
 + 

= δvRefH/0

N
 + ∫ 0

t
aSFZ
N

 dt  × γ0H

N

+ γ0Z

N
 vH

N
 - vH0

N
 × uZ

N
 - γ0Z

N
 ∫ 0

t
aSFZ
N

 t dt  ωINH/0

N
 + 

 

(39)

 
 
Substituting (39) into (6) then finds for the horizontal components of the traditional 
Measurement Equation: 
 

 

zTrdH

N
 = ∫ 0

t
aSFZ

N
 dt  × γ0H

N
 - δvRefH

N
 - δvRefH/0

N

+ γ0Z

N
 vH

N
 - vH0

N
 × uZ

N
 - γ0Z

N
 ∫ 0

t
aSFZ

N
 t dt  ωINH/0

N
 + 

 

(40)
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Modified Measurement Equation 
 

Following the previous methodology but using (26) for the modified approach, (24) 
approximates as 

 

 
γModLin

N
 ≈ - ωIN0

N
 × γ0H

N
 + δωIN0

N
  

 
(41)

 
 
Note that in contrast with (35) for the traditional approach, (41) for the modified 

approach has retained δωIN0

N
 as of significance during early Fine Alignment.  This is 

because ωIN0

N
 is derived from N* velocity and position reference data, provided to the 

INS and initially treated as being along N frame coordinates (i.e., not accounting for the 

initially unknown β misalignment between N and N*).  Thus, β0 = β = β0 - δβ0 = - δβ0, 
and from (12): 
 

 

CN*0

N
 = I + β uZ

N
 ×  +  = I - δβ0 uZ

N
 ×  + 

δωIN0

N
 =
_ ωIN0

N
 - ωIN0

N
 = ωINRef/0

N*
 - CN*0

N
 ωINRef/0

N*

= I - CN*0

N
 ωINRef/0

N*
 = - δβ0 ωINRef/0

N*
 × uZ

N
 + 

 

(42)

 
 

With δωIN0

N
 from (42), Eq. (41) then becomes 

 

 
γModLin

N
 = - ωIN0

N
 × γ0H

N
 - δβ0 ωINH/0

N
 × uZ

N
 + 

 
(43)

 
 
Substituting (43) into (26) yields for the modified approach: 
 

 
γModLin

N
 = γ0H

N
 - ωIN0

N
 t  × γ0H

N
 - δβ0 ωINH/0

N
 t  × uZ

N
 + 

 
(44)

 
 

Comparing (44) with (36) finds that the results are similar except for the addition of 

γ0Z

N
 uZ

N
 in traditional Eq. (36), and for the heading misalignment error δβ0 replacing the 

equivalent γ0Z

N
 in the product with ωINH/0

N
 t .  As will be apparent subsequently, 

elimination of γ0Z

N
 uZ

N
 with the modified approach removes the second order error 

problem exhibited by the traditional approach under benign flight conditions [5]. 
 

The velocity error for modified Measurement Equation (17) is then obtained by 
substituting (44) in (23) and integrating.  First, (23) becomes 
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δvModLin

N
 = aSF

N
 × γ0H

N
 - ωIN0

N
 t  × γ0H

N
 - δβ0 ωINH/0

N
 t  × uZ

N
 + 

 
(45)

 
 
Expanding finds for the horizontal components: 
 

 

δvModLin/H

N
 = aSFH

N
 + aSFZ

N
 uZ

N
 × 

γ0H

N
 - ωIN0

N
 t  × γ0H

N

- δβ0 ωINH/0

N
 t  × uZ

N
H

 + 

= aSFZ
N

 × γ0H

N
 - δβ0 aSFZ

N
 uZ

N
 × ωINH/0

N
 t  × uZ

N
 + 

= aSFZ
N

 × γ0H

N
 - δβ0 aSFZ

N
 t  ωINH/0

N
 + 

 

(46)

 
 
Integrating (46) using the linearized form of (33) for initialization obtains 
 

 

δvModLin/H

N
 = δvRef0

N*
 - δβ0 vRefH/0

N*
 × uZ

N

+ ∫ 0
t

aSFZ
N

 dt  × γ0H

N
 - δβ0 ∫ 0

t
 aSFZ

N
 t dt  ωINH/0

N
 + 

 

(47)

 
 
Then, substituting (47) into (17) finds for the horizontal components of the modified 
measurement equation: 
 

 

zModH

N
 = ∫ 0

t
aSFZ
N

 dt  × γ0H

N
 - δvRef

N*
 - δvRef0

N*

+ δβ0 vRefH
N*

 - vRefH/0
N*

 × uZ
N

 - δβ0 ∫ 0
t
aSFZ
N

 t dt  ωINH/0

N
 + 

 

(48)

 
 

Comparing (48) for the modified measurement with (40) for the traditional 

measurement shows that the two are equivalent with δβ0  and γZ0

N
 both representing 

initial INS heading error.  The difference between the two approaches becomes apparent 
when the second order errors in the measurements are compared (discussed 
subsequently). 
 
 
Second Order Errors In the Measurements 
 

The second order errors introduced by the linearization process that led to traditional 
Measurement Equation (40), can be determined by repeating the process leading to (40), 
but without linearization; then comparing with the (40) linearized form.  The equivalent 
non-linearized version for comparison with (40) would then be the (5) form of the 

traditional observation, with a non-linearized version of δvTrd
N

 substituted for δvN.  First 

note, as in [5], that the aSF
N

 × γN
 × γN

 in (18) expands as 
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aSF
N

 × γN
 × γN

 = γN
 aSF

N
 . γN

 - aSF
N

 γ2

= γH
N

 + γZ
N

 uZ
N

 aSFH
N

 . γH
N

 + aSFZ
N

 γZ
N

 +  = aSFZ
N

 γZ
N

 γH
N

 + 
 

(49)

 
 

so that integrating (18) with initial condition (29) obtains for δvTrd
N

 during the early 

portion of Fine Alignment: 
 

 
δvTrd

N
 = δvTrdLin

N
 - γZ0

N
 
1
2

 ∫ 0
t

aSFZ
N

 dt  γH
N

 + 
 

 (50)

 
 
With (50), the non-linearized observation for comparison with (40) becomes 
 

 

MTrdH
N

 = zTrdH

N
 - γZ0

N
 
1
2

 ∫ 0
t
aSFZ
N

 dt  γH0

N
 + 

= ∫ 0
t
aSFZ
N

 dt  × γ0H

N
 - δvRefH

N
 - δvRefH/0

N

+ γ0Z

N
 vH

N
 - vH0

N
 - 

1
2

 ∫ 0
t
aSFZ
N

 dt  γH0

N
 × uZ

N
 - γ0Z

N
 ∫ 0

t
aSFZ
N

 t dt  ωINH/0

N
 + 

 

(51)

 
 
In (51), only the primary second order term contributing to performance anomalies [5] is 
shown. 
 

As in [5], Eq. (51) shows that the 
1
2

 ∫ 0
t

aSFZ
N

 dt  γH0

N
 coefficient in second order term 

γ0Z

N
 
1
2

 ∫ 0
t
aSFZ
N

 dt  γH0

N
 appears as an addition to the vH

N
 - vH0

N
 maneuver coefficient, both 

multiplying heading error γ0Z

N
.  Under normal maneuvering, the second order term is 

negligible.  However, under benign flight conditions (i.e., when vH
N

 - vH0
N

 is small), the 

second order term becomes significant, being interpreted by the Kalman filter as true 

maneuvering in the Kalman linearized zTrdH

N
 measurement equation.  The result would be 

a mis-estimation of heading error γ0Z

N
.  Reference [5] mitigated the effect by modeling the 

γ0Z

N
 
1
2

 ∫ 0
t
aSFZ
N

 dt  γH0

N

 
second order term as adaptive artificial noise in the zTrdH

N
 

measurement. 
 

For the modified observation/measurement equation approach, because γ0Z

N
 in (49) is 

defined to be zero (being replaced by δβ0), the equivalent to the (51) derivation yields 
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MModH
N

 = zModH

N
 + 

= ∫ 0
t
aSFZ

N
 dt  × γ0H

N
 - δvRef

N*
 - δvRef0

N*

+ δβ0 vRefH
N*

 - vRefH/0
N*

 × uZ
N

 - δβ0 ∫ 0
t
aSFZ

N
 t dt  ωINH/0

N
+ 

 

(52)

 

 

Thus, for the modified approach, the MModH
N

 observation input to the Kalman filter does 

not contain the troublesome γ0Z

N
 
1
2

 ∫ 0
t
aSFZ
N

 dt  γH0

N

 
second order term in (51), and 

measurement zModH

N
 (the linearized form of MModH

N
 used in calculating the Kalman 

gains), accurately models the error in MModH
N

 to second order accuracy. 

 
 
SUMMARY 
 

The equations for implementing the modified velocity matching measurement 
approach are (7), (12), (15), (17), (28) and (33) summarized and renumbered next. 
 
 Observation Equation 

 MMod
N

 = v
N

 - CN*
N

 vRef
N*

 
(53) 

 
CN*

N
 = I + β uZ

N
 ×  + 

1
2

 β
2
 uZ

N
 ×  uZ

N
 ×  +  

 
(54) 

 Kalman Filter Measurement Equation 

 
zMod
N

 = δvLin
N

 - δvRef
N*

 + δβ vRefH
N*

 × uZ
N

 (55) 
 
 Addition To Kalman Filter Error State Dynamic Equations 

 δβ = 0 (56) 
 

 Addition To INS Navigation Equations 

 β = 0 (57) 

 Conditions For Initializing Kalman Filter Covariance Matrix 

 
δv0Lin/Mod

N
 = δvRef0

N*
 - δβ0 vRefH/0

N*
 × uZ

N

 
(58)

 

 
γ0Mod/Lin

N
 = γ0H

N

 (59) 
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