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ABSTRACT 

 
This article is Part 1 of a three part series describing an improved strapdown 

rotation test (SRT) for calibrating the compensation coefficients in a strapdown 
inertial measurement unit (IMU).  The SRT consists of a set of IMU rotations and 
processing routines that enable precision measurements of IMU 
gyro/accelerometer misalignment, gyro/accelerometer scale factor, and 
accelerometer bias calibration errors, all without requiring precision rotation 
fixtures and IMU mounting setup.  The improved SRT is compatible with a broad 
range of IMU types from aircraft accuracy inertial navigation systems (INSs) to 
low cost micro-machined electronic module system (MEMS) varieties.  This Part 
1 article describes the general theory for the improved rotation tests, rotation test 
operations, data collection during test, post-test data processing, rotation test 
fixture requirements, rotation design for sensor error determination, and SRT 
accuracy analysis of sensor error determination accuracy. 

 
 

FOREWORD 
 

This article is the first in a three part series describing improved strapdown rotation test 
(SRT) procedures for calibrating a strapdown inertial measurement unit (IMU) containing an 
orthogonal triad of inertial sensors (gyros and accelerometers), digital processor, associated 
sensor calibration software, and other computational elements.  The improved rotation tests 
consist of a series of rotation sequences, each designed to measure one of the following errors in 
the sensor calibration coefficients: gyro-to-gyro misalignment, accelerometer-to-gyro 
misalignment, gyro/accelerometer scale-factor, and accelerometer bias.  The second and third 
articles in the three-part series cover the following topics: 
 

Part 2: Analytical Derivations - Derives the Part 1 equations for 1) IMU sensor output data 
processing, 2) Determining sensor calibration errors from the processed IMU data, and 3) 
SRT inaccuracies caused by rotation fixture error, IMU mounting misalignment on the 
rotation fixture, approximations in SRT data analysis equations, and residual gyro biases 
during the SRT.   
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Part 3 - Numerical Examples - Provides numerical examples showing how collected SRT 
rotation test data translates sensor errors into data collection measurements, and the 
impact of neglecting gyro bias in the SRT sensor error determination process.  The results 
numerically confirm that rotation sequences designed in Part 1 measure the particular 
sensor error for which they were designed. 

 
 

1.0  INTRODUCTION 
 

One of the lesser known but important developments in the history of strapdown inertial 
navigation system (INS) development, was solving the problem of precision calibrating 
alignments between the strapdown sensors without requiring precision rotation test fixtures.  
Under rotation environments, misalignment between inertial sensors (and gyro scale factor error) 
can generate significant INS error buildup.  Thus, it had been believed that calibrating a 
strapdown INS to the required sensor-to-sensor arc-sec alignment accuracy would require 
rotation test fixtures capable of generating precision arc-sec test rotations, a significant cost 
penalty for projected strapdown systems in production.  The calibration problem was 
exacerbated by the fact that for most arc-sec alignment accuracy applications, the sensor cluster 
is attached to/within the INS chassis by elastomeric isolators of marginal angular stability, 
particularly under thermal changes induced during testing operations. 

 
 The solution to the problem was first disclosed in 1975 [1] based on the fundamental 

concept that a perfectly calibrated and initially self-aligned strapdown INS will have no velocity 
rate output (acceleration) when stationary, even under rotations between stationary test 
measurement orientations.  Thus, non-zero stationary acceleration outputs would provide a direct 
measure of INS sensor calibration error without the need to execute precision INS rotations 
during the test.  The result was a significant reduction in rotation test fixture accuracy 
requirements (and cost).  Based on this principle, the strapdown rotation test (SRT or “S-Cal”) 
was conceived consisting of a set of rotation sequences with test measurements taken when the 
INS was stationary at the end of each sequence.  The ensemble of sequences was designed to 
excite particular sensor error sources, thereby generating distinctive signatures on the stationary 
acceleration measurements.  Processing the measurements at test completion (an analytic 
inversion process) allowed individual sensor errors to be determined.  Results were then used to 
correct sensor calibration coefficients in the INS computer software.  

 
In the original 1975 paper [1], each rotation test sequence was preceded by a standard INS 

inertial self-alignment (for attitude initialization in the INS computer), followed by entry into the 
free-inertial navigation mode.  Each SRT rotation sequence was then executed in the free-inertial 
mode.  At completion of each rotation sequence, the stationary test measurement was taken as 
the INS output average acceleration.  Following the measurement, the INS was rotated to the 
starting orientation of the next rotation sequence where self-alignment/navigation-mode-entry 
was again performed.  (The purpose for the repeated self-alignment was to eliminate attitude 
error build-up caused by gyro error during the previous rotation sequence.) 

 
In 1977, the [1] concept was refined, changing the horizontal measurement to be the 

difference between average accelerations taken before and after rotation sequence execution [2, 
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Sect. 18.4].  The acceleration difference measurement eliminated initial attitude error generated 
by gyro error during the previous rotation sequence, thus, eliminating the need for INS self-
alignment between rotation sequences, and allowing operation in the free inertial mode from 
rotation test initiation (following INS self-alignment at the start of the SRT).  (The before/after 
measurement approach was introduced by Downs [2, Ref. 5] for compatibility with an existing 
Kalman filter used to extract the acceleration measurements.) 

 
An additional refinement in the 1977 SRT concept was to generate the acceleration 

measurements from the output of a strapdown “analytical platform” rather than as INS computed 
velocity rate.  An analytic platform is a fundamental computational element in a strapdown 
inertial system that transforms strapdown accelerometer signals through a direction cosine matrix 
(DCM) into a non-rotating reference coordinate frame (analogous to a mechanically gimbaled 
gyro-stabilized platform on which the accelerometers and gyros are mounted).  For SRT 
application, the analytic platform would reside in the inertial system under test, or as software in 
the SRT test computer.  The latter concept is depicted in Fig. 1, the DCM being calculated in the 
“Attitude Computation” block.  In the Fig. 1 approach, SRT software would also include the 
ability to execute initial self-alignment of the DCM using the identical method employed in an 
INS.  (Note: In Fig. 1 and in this article, Inertial Measurement Unit (IMU) designates a 
strapdown inertial system in general; INS designates a particular type of IMU in which the 
computer software is configured to calculate attitude, velocity, and position.) 

 

 
 

Fig. 1 - Strapdown Rotation Test (SRT) Setup 
 
This article describes an improved version of the 1977 SRT that eliminates the need for 

attitude reference self-alignment at the start of the test, and revises the measurement concept to 
enable design of each SRT rotation sequence for determination of a particular sensor calibration 
error.  This contrasts with the 1977 SRT which generated measurements containing groupings of 
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several sensor error effects, requiring an intuitive “cut-and-try” approach to find a set of rotation 
sequences that were analytically sufficient to determine all sensor calibration errors.  The result 
[2, Sect. 8.4] was a set of 16 rotation sequences to determine the Fig. 1 sensor calibration errors. 
The improved SRT determines the same errors with 14 rotation sequences. 

 
As with the 1977 SRT, acceleration measurements for the improved SRT are taken in a 

locally level coordinate frame (“Reference Frame Accelerations” indicated in Fig. 1).  In the 
1977 version, the DCM was initialized (and locally level frame thereby analytically “erected”) at 
the start of the rotation test using traditional INS self-alignment attitude initialization software 
routines.  The DCM was then maintained throughout the rotation test.  A consequence of this 
method was that during the rotation test, the DCM accumulated error buildup from gyro 
calibration error, making it difficult to apply the SRT concept to IMUs having gyros of lower 
accuracy than used in a typical aircraft INS. 

 
The self-alignment process executed with the 1977 SRT at test start for DCM initialization 

also determined earth rate components used for DCM updating during the test.  With the new 
SRT approach, the initial self-alignment process is eliminated, the DCM is initialized to the 
nominal IMU attitude at the start of each rotation sequence, and known earth rate components at 
the nominal starting attitude are used for DCM updating during the rotation sequence (see Fig. 
1).  This approach induces a small angular tilt-from-vertical error in the initial DCM that is 
subsequently eliminated from the SRT measurement by the Fig. 1 before/after difference 
method.  Similarly, the small earth rate error incurred using nominal rather than measured earth 
rate for DCM updating has negligible impact on SRT accuracy.  More importantly, however, is 
that the time since DCM initialization for gyro and residual earth rate error buildup becomes the 
time to complete each rotation sequence (e.g., 30 seconds).  In contrast, the time for DCM error 
buildup using the 1977 SRT was the total time from DCM initialization at test start until test 
completion.  Thus, residual gyro and earth rate error effects with the new approach have much 
less time to propagate into DCM error.  The result is that accurate sensor calibration can be 
accomplished with the new approach for a broader range of IMU accuracy configurations, not 
only those using aircraft INS accuracy sensors. 

 
This article provides a detailed description of the improved SRT showing how it would be 

implemented using a standard modest accuracy (e.g., 0.1 deg) two-axis rotation test fixture.  
Sections 2.0 and 3.0 define the notation and coordinate frames used in the article analytics.  
Section 4.0 describes a two-axis rotation fixture used to execute SRT rotations, a set of 
recommended rotation sequences for the new SRT, IMU sensor “Compensation Equations” 
depicted in Fig. 1 for generating SRT gyro/accelerometer inputs, data processing to generate the 
SRT acceleration measurements, and computational routines for calculating sensor calibration 
errors from the measurements.  Included in Section 4.0 are descriptions of a digital processing 
iteration approach for enhanced SRT accuracy and methods to mitigate the impact of gyro bias 
residual errors on test results.  Section 5.0 presents an error analysis for the new SRT showing 
how sensor error determination accuracy is impacted by IMU mounting error on the rotation test 
fixture, rotation fixture error in executing SRT rotations, uncertainty in rotation fixture 
orientation relative to local north, east, down coordinates, approximations in the SRT processing 
equations, and IMU sensor calibration errors prior to SRT execution.  Section 6.0 provides a 
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detailed description of the logic used in constructing rotation sequences for the new SRT that 
enable determination of a particular sensor error from each sequence. 

 
 

2.0  NOTATION 
 

The following general notation is used throughout this article. 
 

V  = Vector without specific coordinate frame designation.  A vector is a parameter that 
has length and direction.  Vectors used in the paper are classified as “free vectors”, 
hence, have no preferred location in coordinate frames in which they are 
analytically described. 

 
AV  = Column matrix with elements equal to the projection of V on coordinate frame A 

axes.  The projection of V on each frame A axis equals the dot product of V  with a 
unit vector parallel to that coordinate axis. 

 

( )AV ×  = Skew symmetric (or cross-product) form of AV  represented by the square 

matrix 
0

0
0

ZA YA

XAZA
YA XA

V V
VV

V V

⎡ ⎤−
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 in which XAV , YAV , ZAV  are the components of

AV .  The matrix product of ( )AV ×  with another A frame vector equals the cross-

product of AV  with the vector in the A frame, i.e.: ( )A A A AV W V W× = × . 

 
1
2

A
AC  = Direction cosine matrix that transforms a vector from its coordinate frame 2A

projection form to its coordinate frame 1A  projection form, i.e., 11 2
2

AA A
AV VC= .  

The columns of 1
2

A
AC  are projections on 1A  axes of unit vectors parallel to 2A axes.  

Conversely, the rows of  are projections on 2A axes of unit vectors parallel to 

1A  axes.  An important property of 1
2

A
AC  is that it's inverse equals it's transpose. 

 
I :Aω Angular rotation rate of generalized coordinate frame A relative to inertially 

non-rotating space (I : A subscript). 
 

I :Eω Angular rotation rate of the earth relative to inertially non-rotating space (I : E 
subscript). 

 

CA2
A1

  =  

  =  
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E:Aω Angular rotation rate of generalized coordinate frame A relative to the rotating 
earth (E : A subscript).  Note that I :A I :E E:Aω ω ω= +  and equivalently, 

E:A I:A I:Eω ω ω= − . 
 

( )
.

 = ( )d
dt

Derivative of parameter ( ) with respect to time t. 

 
( )  = Computed or measured value of parameter ( ) that, in contrast with the idealized 

error free value ( ), contain errors. 
 
 

3.0  COORDINATE FRAMES 
 

The primary coordinate frame used in this article is the IMU fixed B frame that is rotated 
relative to the earth (and inertial space) during each SRT rotation sequence.  Other coordinate 
frames related to B are fixed (non-rotating) relative to the earth, most aligned with the B frame at 
the start and end of a rotation sequence, one defined to be aligned with north, east, down 
coordinates at the test site.  Specific definitions for the coordinate frame are as follows: 
 

B  =  IMU sensor frame that is fixed relative to strapdown inertial sensor input axes, but 
that rotates relative to the earth during each rotation sequence of the SRT.  The 
angular orientation of the B frame relative to sensor axes is arbitrary based on user 
or traditional preferences. 

 
MARS  =  Designation for a “mean-angular-rate-sensor” B frame selection, the orthogonal 

frame that best fits around the actual strapdown gyro input axes. 
 

NED  =  Earth fixed coordinate frame with axes aligned to local north, east, down 
directions. 

 
StrtB  = Coordinate frame that is fixed (non-rotating) relative to the earth and aligned 

with the B frame at the start of the rotation sequence.  Nominally, one of the 
StrtB  frame axes would be aligned with the local vertical if the IMU being tested 

is perfectly mounted on an idealized rotation fixture. 
 

EndB   =  Coordinate frame that is fixed (non-rotating) relative to the earth and aligned 
with the B frame at the end of the rotation sequence. 

 
,i StrtB  = Coordinate frame that is fixed (non-rotating) relative to the earth and aligned 

with the B frame at the start of rotation i in a rotation sequence. 
 

,EndiB  = Coordinate frame that is fixed (non-rotating) relative to the earth and aligned 
with the B frame at the end of rotation i in a rotation sequence. 

  =  

  =  
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4.0  STRAPDOWN IMU ROTATION TESTING 
 

4.1  ROTATION TEST FIXTURE DESCRIPTION 
 

The SRT process described in this article is designed for compatibility with IMU testing 
using a moderate accuracy (e.g., 0.1 deg) two-axis rotation fixture with outer axis rotation axis 
horizontal, inner rotation axis perpendicular to the outer axis, and the test article mounting 
platform plane perpendicular to the inner rotation axis.  (The horizontal outer axis is sometimes 
denoted as the “trunion” axis.)  For a computer controlled rotation fixture, electric torque motors 
are commanded to drive the inner and outer rotation angles at prescribed angular rates (or 
angular settings) specified by the test computer.  For this article, we will assume that the IMU 
being tested is installed on the fixture test mount with one of its axes aligned with the rotation 
fixture inner rotation axis. 

 
Fig. 2 illustrates the arrangement of a manual two-axis rotation fixture used at Honeywell 

during the 1975 - 1977 time period to calibrate engineering developmental INS configurations.  
The fixture had 90 deg spaced detents for each rotation axis, simplifying manual generation of 90 
deg multiple rotations. 
 

 

Fig. 2 - Manual Two-Axis Rotation Test Fixture 
(1976 Photo - Minneapolis RLG INS Team, Yours Truly On The Right) 
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4.2  IMPROVED SRT ROTATION SEQUENCES 
 

The SRT consists of a set of rotation sequences during which IMU data is processed and 
recorded for post-test determination of IMU calibration errors.  Table 1 provides a set of 14 
recommended rotation sequences based on the new SRT formulation using traditional mutually 
orthogonal x, y, z nomenclature to identify particular IMU axes during the test. 
   

 

*Note - rotation sequences 1a - 3a are not needed when gyros have no scale factor asymmetry. 
 

Table 1 - Improved Strapdown Rotation Test Sequences 
 

Table 1 is based on the IMU mounted on the rotation fixture with z axis (of a mutually 
orthogonal x, y, z set) aligned with the inner rotation axis and downward when the outer axis 
rotation angle is zero.  The IMU x, y axes mounting are defined as having the y axis aligned with 

 Initial IMU Axis Directions Initial Rotation 
Sequence Along Outer  Fixture Angles Sequential IMU Axis Rotations 
 Number Down Rotation Axis Inner Outer 
 

1 Z Y 0 0 +360 Y 

2 Z X +90 0 +360 X 

3 X Y 0 -90 +360 Z 

1a Z Y 0 0 -360 Y 

2a Z X +90 0 -360 X 

3a X Y 0 -90 -360 Z 

4 Z Y 0 0 +180 Y, +180 Z , +180 Y, +180 Z

5 Z X +90 0 +180 X, +180 Z , +180 X, +180 Z

6 X Y 0 -90 +180 Y, +90 Z, +180 X, +90 Z, 
+180 Y, +90 Z, +180 X, +90 Z 

7 Y X +90 +90 +180 X 

8 Z X +90 0 +180 X 

9 X Y 0 -90 +180 Z 

10 Y X +90 +90 +180 Z 

11 Z Y 0 0 +180 Y 

12 X Y 0 -90 +180 Y 

13 Z Y 0 0 +180 Z, +180 Y 

14 Z X +90 0 +180 Z, +180 X 
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the outer rotation fixture axis when the inner axis rotation angle is zero.  A detailed discussion on 
Table 1 rotation sequence selection is presented in Section 6.0. 
 
 
4.3  SENSOR COMPENSATION 
 

Compensation equations are contained in IMU (or SRT) software to correct modelable errors 
in the strapdown gyros and accelerometer outputs.  Prior to SRT engagement, the compensation 
coefficients would be pre-calibrated for previously measured, approximated, or known error 
characteristics. The SRT operates on the compensated IMU sensor signals to determine error 
residuals remaining in the pre-calibrated coefficients.  The coefficient error residuals are then 
used to update the compensation coefficients.  In general, compensation coefficient pre-
calibration only includes sensor alignment corrections measured on an individual sensor basis (if 
at all), prior to sensor installation in the IMU.  The primary purpose for the SRT is to accurately 
measure and correct the sensor-to-sensor alignment coefficient errors, effects that can only be 
accurately measured after sensor installation in the IMU.  The SRT also updates the calibration 
coefficients for gyro scale factor and accelerometer bias error residuals that may not have been 
accurately set in the pre-calibrated coefficients (or may not be representative of sensor changes 
since original calibration).  

 
 
4.3.1  Sensor Compensation Equations 

 
A two-stage approach is commonly used for sensor compensation operations.  The first stage 

corrects errors due to IMU/sensor design configuration and individual sensor errors measured 
prior to installation in the IMU.  The second stage corrects errors remaining in the first routine 
outputs.  Calibration is the process of setting the error coefficients in the sensor compensation 
routines.  The sensor compensation equations described in this article are based on the inverse of 
the sensor output models in Part 2 [3, Appendices A & B] with random noise terms deleted; Part 
2 [3, Eqs. (A-4) & (B-4)] for the first stage compensation routines, Part 2 [3, Eqs. (A-7) with (A-
17) & (B-7) with (B-17)] for the second stage compensation correction routines.  The purpose for 
the SRT is to determine error residuals remaining in the second stage compensation routine 
coefficients.  The first and second stage compensation routines are as follows: 

 

 

( ) ( )
( )

( )

1 1

1

1

'

'

' '

Raw

Scal Raw Bias QuantAlgn

ScalSF SF

SF Bias Size Aniso QuantAlgnSF

I K K

Ia aL

a a a a aa L

ωω ω ω ω ω− −

−

−

= + = − −

= +

= − − − −

 (1) 

 
 

 
( ) ( )

( ) ( )

1

1

BMis LinScal Asym Sign Bias

Mis LinScal Asym SFSign SFSF Bias

I

I aa A

ω ωκ κ κ κ

λλ λ λ

−

−

+ += + −Ω

+ += + −
 (2) 
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where 
 

Rawω  =  Gyro triad uncompensated (raw) output vector. 
 

'ω =  Gyro triad output vector compensated for scale factor error. 
 
ω  =  First stage compensated gyro triad output vector. 
 
ω =  Second stage compensated gyro triad output vector.  Shown with a  to indicate 

that the compensated angular rate may still contain residual errors to be measured 
and corrected by the SRT process. 

 
 I  =  Identity matrix. 
 

ScalK   =  Gyro triad scale factor correction matrix, a diagonal matrix in which each 
element adjusts the output scaling to correspond to the actual scaling for the 
particular sensor output.  Nominally, the ScalK  matrix is zero.  The ScalK  matrix 
may include non-linear scale factor effects and temperature dependency. 

 
AlgnK   =  Gyro triad alignment correction matrix.  Nominally, the AlgnK  matrix is 

identity.  The AlgnF  matrix may include temperature dependency. 
 

Biasω   =  Gyro triad bias correction vector.  Each element corrects the output from a 
particular gyro to zero under zero input inertial angular rate conditions.  In some 
gyros, Biasω  may have temperature and specific force acceleration sensitivities. 

 
Quantω   = Gyro triad pulse quantization correction vector for gyro outputs only being 

provided when the cumulative input equals the pulse weight per axis.  Includes 
pulse output logic dead-band effect under turn-around conditions (See [2, Sect. 
8.1.3.2)]. 

 
Misκ   =  Gyro triad misalignment compensation residual matrix having zero diagonal 

elements. 
 

LinScalκ   =  Gyro triad linear scale factor compensation residual diagonal matrix. 
 

Asymκ   =  Gyro triad asymmetric scale factor compensation residual 
  diagonal matrix. 

 

B
SignΩ   =  Diagonal matrix with elements equal to unity magnitude with the sign (plus or 

minus) of the  ω  elements. 
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Biasκ   =  Gyro triad bias compensation residual vector. 
 

RawSFa   =  Accelerometer triad uncompensated (raw) specific force acceleration output 

vector. 
 

'SFa  =  Accelerometer triad output vector compensated for scale factor error. 
 

SFa  =  First stage compensated accelerometer triad output vector. 
 

SFa  =  Second stage compensated accelerometer triad output vector.  Shown with a  to 
indicate that the compensated specific force acceleration may still contain residual 
errors to be measured and corrected by the SRT process. 

 
ScalL   =  Accelerometer triad scale factor correction matrix, a diagonal matrix in which 

each element adjusts the output scaling to correspond to the actual scaling for the 
particular sensor output.  Nominally, the ScalL  matrix is zero.  The ScalL  matrix 
may include non-linear scale factor effects and temperature dependency. 

 
AlgnL   =  Accelerometer triad alignment correction matrix.  Nominally, the AlgnL  matrix 

is identity.  The AlgnL  matrix may include temperature dependency. 
 

Biasa   =  Accelerometer triad bias correction vector.  Each element corrects the output 
from a particular accelerometer to zero under zero input specific force 
acceleration conditions.  In some accelerometers, Biasa  may have temperature 
and angular rate sensitivities. 

 
Sizea   =  Accelerometer triad size effect correction vector that compensates the error 

created by accelerometers in the triad not being collocated, hence, not measuring 
components of identically the same acceleration vector (See [2, Sect. 8.1.4.1]). 

 
Anisoa   =  Accelerometer triad anisoinertia correction vector that compensates for an 

error effect (in pendulous accelerometers) from mismatch in the moments of 
inertia around the input and pendulum axes (See [2, Sect. 8.1.4.2]). 

 
Quanta   =  Accelerometer triad pulse quantization correction vector for accelerometer 

outputs only being provided when the cumulative input equals the pulse weight 
per axis.  Includes pulse output logic dead-band effect under turn-around 
conditions (See [2, Sect. 8.1.3.2]). 

 
Misλ   =  Accelerometer triad misalignment compensation residual matrix having zero 

diagonal elements. 
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LinScalλ   =  Accelerometer triad linear scale factor compensation residual diagonal 
matrix. 

 

Asymλ   =  Accelerometer triad asymmetric scale factor compensation residual 
  diagonal matrix. 

 

SFSignA   =  Diagonal matrix with elements equal to unity magnitude with the sign (plus 

or minus) of the  SFa  elements. 
 

Biasλ   =  Accelerometer triad bias compensation residual vector. 
 

Note 1:  The κ  and λ  coefficient terms in (2) are shown with a  to indicate that they may 
still contain residual errors to be measured and corrected by the SRT process. 
 
Note 2:  The Sizea  and Anisoa  accelerometer compensation terms in (1) are functions of 
angular rate.  Since SRT acceleration measurements are taken under stationary conditions, they 
will have no impact on SRT results and are only shown in (1) for completeness.    

 
 

4.3.2  Compensation Coefficient Initialization For The SRT 
 
The purpose for the SRT is to measure residual errors in the LinScalλ , Misλ ,  Asymλ , Biasλ , 

LinScalκ , Misκ , and Asymκ  elements (coefficients) of second stage compensation Eqs. (2).  
Prior to SRT execution, the IMU error coefficients imbedded in first stage compensation Eqs. (1) 
(i.e., ScalK , AlgnK , Biasω , ScalL , AlgnL , Biasa ) would have been calibrated for previously 
measured sensor error effects (e.g., individual sensor temperature sensitivities, scale factor non-
linearities).  The coefficients imbedded within the Eqs. (1) Quantω , Sizea , Anisoa , and Quanta  

terms would be set to known sensor type and IMU configuration design characteristics (e.g., [2, 
Sects. 8.1.1.1 & 8.1.1.2]).  The LinScalλ , Misλ ,  Asymλ , Biasλ , LinScalκ , Misκ , and Asymκ  
coefficients in second stage compensation Eqs. (2) would be set to zero (unless the rotation test 
is to be an update following a previous SRT in which case the (1) coefficients would be set to 
their calibrated value following the previous test - To be discussed subsequently).  The Biasκ
error vector in (2) would be set to zero or to a value measured separately since determination of 
the first stage compensation Eqs. (1) coefficients. 

 
 

4.4  STRAPDOWN ROTATION TEST DATA COLLECTION 
 
For each SRT rotation sequence, the following operations from Part 2 [3, Eqs. (15)] would be 

performed prior to and after completion of sequence rotations to obtain the “Reference Frame 
Accelerations” in Fig. 1: 
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( ) ( )
( )

[ ]0 0 1

.

Strt Strt

Strt Strt
Strt End

Strt

Strt Strt

Strt StrtStrt Strt
Down DownStrt

BB B
BSF SF

B B B BStrt Strt
SF SFSF SFStrtAvg EndAvg

B B BStrt Strt
H SF SFEnd Strt H

TB NED NEDB
Dwn DwnNEDDwn

B BB B
Strt Dwn End DSF

a aC

a a a a

a a a

u uu C

gu aa a

=

≡ ≡

Δ = −

= =

= + = ( ).Strt Strt
End

B B
wn SF

gu a +

 (3) 

where 
StrtB

BC   =  Direction cosine matrix that transforms vectors from the B frame to the StrtB  
frame. 

 

StrtB
NEDC   =  Direction cosine matrix that transforms vectors from the NED frame to the 

StrtB  frame. 
 

B
SFa   =  Specific force acceleration vector relative to the earth (in B frame coordinates), 

from the IMU accelerometer triad output. 
 

StrtB
Dwnu   =  Unit vector downward (along plumb-bob gravity) in BStrt frame coordinates. 

 
NED
Dwnu   =  Unit vector downward (along plumb-bob gravity) in NED frame coordinates, 

e.g., for local down along the NED third (e.g., z) axis, [ ]0 0 1 TNED
Dwnu = . 

 
Strt

Strt
B
SFa , ( )BStrt

SF StrtAvg
a , Strt

End
B
SFa , ( )BStrt

SF EndAvg
a  = Average values of StrtB

SFa  at the start 

and end of the SRT rotation sequence (when the IMU is stationary). 
 
H  =  Subscript indicating the horizontal component of a vector. 
 

StrtB
HaΔ   =  Horizontal component of the difference between stationary acceleration 

measurements at the end and start of the rotation sequence.  
 
 g  = Plumb-bob gravity magnitude at the test site. 
 

Strt
Down

B
Strta , Strt

Down
B
Enda  =  Downward components of stationary acceleration measurements 

at the start and end of the rotation sequence. 
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The components of StrtB
SFa  in (3) represent the “Reference Frame Accelerations” in Fig. 1, the 

reference frame being the B frame at the start of the sequence (i.e., StrtB ).  The ( )BStrt
SF StrtAvg

a  , 

( )BStrt
SF EndAvg

a  components in (3) represent outputs from the “Average Acceleration Algorithm” 

block in Fig. 1 calculated from the average value of StrtB
SFa  over a designated time period at the 

start and end of the rotation sequence.  The average acceleration measurements typically last for 

10 seconds each using a simple averaging or average-of-averages type algorithm.  The StrtB
NEDC  

matrix in (3) is the orientation of the IMU B frame relative to local NED (north, east, down) 
coordinates at the start of the rotation sequence, approximately known from the rotation fixture 
north orientation in the test facility and the IMU mounting orientation on the text fixture.  The 

StrtB
BC  matrix in (3) is the output of the Fig. 1 “Attitude Computation” block, calculated from 

Part 2, [3, Eqs. (16)], as an integration process from the start of each rotation sequence: 
 

 

( ) ( )
[ ]cos 0 sin

.

.

StrtStrt Strt Strt

Strt Strt

Strt Strt
SeqStrt

B BB B B
B B BI:B I:E

TB NED NEDB
e eI :E I :ENEDI:E

t BB
B Bt

C C C

l lC

I dtC C

ω ω

ω ω ω ωω

= × − ×

= = −

= + ∫

 (4)  

 
where coordinate frames are defined in Section 3.0 and 
 
 I  =  Identity matrix. 
 

B
I :Bω   =  Angular rate vector of the B frame relative to non-rotating inertial space (I : B 

subscript) measured in B frame coordinates (B superscript), i.e., the angular rate 
vector measured by the IMU strapdown gyro triad. 

 
StrtB

I :Eω   =  Angular rate vector of the earth relative to non-rotating inertial space (I : E 

subscript) in BStrt frame coordinates (superscript). 
 

NED
I:Eω  =  Angular rate vector of the earth relative to non-rotating inertial space (I : E 

subscript) in NED frame coordinates (superscript). 
 

eω   =  Magnitude of earth’s rotation rate relative to non-rotating inertial space. 
 

l  =  Latitude of the test site. 



15 
 

SeqStrtt  =  Time at the start of the first stationary acceleration measurement averaging 
process for the rotation sequence. 

 
Note in (4) that the StrtB

BC  matrix is initialized at identity, thus designating the B fame at the 
start of the sequence as the reference frame in Fig. 1 for making rotation sequence “Reference 
Frame Acceleration” measurements. 
 

 
4.5  DETERMINING IMU SENSOR COMPENSATION COEFFICIENT ERRORS 
 

Approximate error models are derived in Part 2 [3, Sect. 7.2] defining the Δ StrtB
Ha , StrtB

Downa , 

and EndB
Downa   measurements in (3) as a function of individual gyro and accelerometer 

compensation coefficient errors for each rotation sequence in the SRT.  Equating the (3) 
measurements to the equivalent error model for each rotation sequence provides a simultaneous 
set of linear equations that can be inverted to determine the (2) compensation coefficient errors.  
Assuming the λ  and κ  compensation terms in (2) are unknown for the SRT (i.e., set to zero), 
Part 2 [3, Sect. 7.2] derives approximate measurement error models for (2) as summarized in Part 
2 [3, Eqs. (70) - (75)]: 

 

 

( )
( )

,

, , ,

1, 1, , 1,

Sign

sin 1 cos

Do  1 To  :

.
i Strt

Strt Strt
i Strt i Strt i Strt

Strt Strt Strt
Strt i Strt i Strt i Strt

B
LinScal Asym ii i

B B
BEnd B Bi Misi i i i

B B B
B B B

u
C

I u u

I i n  C C C

β θκ κ
φ

θ θ κ

+ +

⎧ ⎫⎡ ⎤+⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪≈ ∑ ⎨ ⎬⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪+ + − ×⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

= = =

( )

,

, ,
1,

1,

2
,sin 1 cos

i Strt

i Strt i Strt
i Strt

Strt
n Strt

B
B

BB B i Strt
i ii iB

B BStrt
B BEnd

C

I u uC

C C

θ θ+

+

⎛ ⎞⎛ ⎞= + × + − ×⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

=

 (5) 

 

 
( )
( )

Strt Strt Strt
Strt

End End End
End

B B B
LinScal Mis Asym Dwn BiasSFSignSF

B B B
LinScal Mis Asym Dwn BiasSFSignSF

g uAa

g uAa

λλ λ λδ

λλ λ λδ

≈ − + + +

≈ − + + +
 (6) 

 

 

( )

( )
. .

Strt Strt Strt

Strt EndStrt Strt End End
Down DownStrt End

End Strt

BB B BB B Strt End Strt
Dwn End BH End SF SFEnd Strt H

B BB B B B
Dwn DwnStrt EndSF SF

TBB BStrt
Dwn DwnBEnd

g u Ca a a

u ua aa a

u uC

φ δ δ

δδ

≈ × + −Δ

≈ ≈

=

 (7) 
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where coordinate frames are defined in Section 3.0 and 
 

LinScalκ , Misκ , Asymκ  = Gyro triad residual linear scale factor error, misalignment, and 
asymmetrical scale-factor error matrices. 

 
LinScalλ , Misλ , Asymλ  = Accelerometer triad residual linear scale factor, misalignment, 

and asymmetrical scale-factor error matrices. 
 

Biasλ   =  Accelerometer triad bias error vector.  
 
 i   =  Subscript designating the rotation number in the particular SRT rotation sequence. 
 

n  =  Subscript designating rotation number i for the last rotation in a particular SRT 
sequence. 

 
,i StrtB

iu =  Unit vector along the rotation axis for rotation i in the rotation sequence, also 
defined for the SRT to be a along a particular IMU B frame axis; e.g., 

[ ] [ ] [ ], , , or1 0 0 0 1 0 0 0 1i Strt T T TB
iu = for rotation i around B frame axis 

x, y, or z. 
 

iθ   =  Total angle traversed by rotation i in the rotation sequence. 
 

,
Strt
i Strt

B
BC =  Direction cosine matrix that transforms vectors from ,i StrtB  to StrtB  frame 

coordinates. 
 

BStrt
BEndC   =  Direction cosine matrix that transforms vectors from EndB  to StrtB  frame 

coordinates.  
 

StrtB
Endφ   =  Rotation angle error vector imbedded within the (4) measurement of StrtB

BC  at 
the end of the rotation sequence. 

 
StrtB

Dwnu , EndB
Dwnu   =  Unit vectors downward in the StrtB  and EndB  frames. 

 
Strt

Strt
B
SFaδ , End

End
B
SFaδ  = Errors in the (3) measurements of BStrt

SF Strt
a and BStrt

SF End
a . 

      
An important characteristic of the approximate (5) - (7) equations is that Δ StrtB

Ha  has no 

dependency on the misalignment of actual IMU BStrt  and EndB  frames from their nominal 
orientations (Section 5.0 justifies (5) - (7) for sensor error determination by analytically 
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demonstrating these misalignments to have negligible impact on SRT test results).  This is a 
direct result of defining Δ StrtB

Ha  as the difference between ending and starting acceleration 
measurements.  Only angular errors incurred during the rotation sequence (characterized by 

BStrt
Endφ ) impact the Δ StrtB

Ha reading.  This considerably simplifies the SRT setup because it 
allows each rotation sequence to begin from an approximate initial IMU attitude, thereby 
eliminating the requirement for precise IMU mounting on the rotation test fixture and orientation 
of the test fixture (and its rotation axes) relative to the local NED frame. 
  

Elements within the (5) - (6) error parameters are defined as 
 

00 0 0 0
0 0 0 0 0

0 0 0 0 0

xy xzxx xxx

LinScal yy Mis yx yz Asym yyy

zz zx zy zzz

κ κκ κ
κ κ κ κ κ κ κ

κ κ κ κ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

  (8) 

 

 

00 0
0 0 0

0 0 0

0 0
0 0

0 0

xy xzxx

LinScal yy Mis yx yz

zz zx zy

xxx x

Asym yyy yBias

zzz z

λ λλ
λ λ λ λ λ

λ λ λ

λ λ
λλ λ λ

λ λ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (9) 

 
where 
 

i iκ   =  Gyro i linear scale factor error (component of LinScalκ ). 
 

i i iκ   =  Gyro i asymmetric scale factor error (component of Asymκ ). 
 

i jκ   =  Gyro i misalignment error coupling angular rate from axis j into the gyro i  input 
axis (component of Misκ ). 

 
iλ   =  Accelerometer i bias error (component of Biasλ ). 

 
i iλ   =  Accelerometer i linear scale factor error (component of LinScalλ ). 

 
i i iλ   =  Accelerometer i asymmetric scale factor error (component of Asymλ ). 
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i jλ   =  Accelerometer i misalignment error coupling acceleration from axis j into the 
accelerometer i  input axis (component of Misλ ). 

 
The gyro misalignments in (8) are relative to an arbitrary selected coordinate frame B  

representing IMU inertial sensor axes.  To minimize second order error effects, it is expeditious 
to select the B frame to correspond with MARS (mean angular rate sensor) axes, the orthogonal 
frame that best fits around the actual gyro input axes.  Fig. 3 illustrates the concept. 
 

 
 

Fig. 3 - MARS Coordinates 
 

In Fig. 3, kγ  is the angle between MARS and general B frame axes i and j.  From Fig. 3, 
defining the B frame to be a MARS type is equivalent to setting 0kγ =  for which  

 
 i j jiκ κ=  (10) 
 
When adopting the MARS frame for B, it is also expedient to redefine i jκ  in terms of the 
angular orthogonality error between i and j, i.e., the angle between i and j gyro axes compared 
with the nominal orthogonal MARS axes equivalent of π/2.  From Fig. 3, the conversion formula 
is 
 
 i j jii jυ κ κ= +  (11) 
 
or with (10), 
 

 1
2i j ji i jυκ κ= =  (12) 
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where 
 
 i jυ  = Orthogonality error between gyro axes i and j. 
 

For a MARS defined B frame, the 6 accelerometer i jλ  misalignments in (9) will then 
automatically become MARS reference specialized.  To identify MARS specialization and 
compatibility with MARS referenced gyro misalignments in (12), we will adopt the 
accelerometer misalignment definition formula 

 
 i j i jμλ =  (13) 
 

where 
 

 i jμ  = Misalignment of accelerometer i relative to MARS B frame axis j. 

 
Substituting the (12) and (13) conversion formulas in (8) and (9) then obtains the MARS B frame 
referenced equivalents: 
 

00 0 0 0
10 0 0 0 0
2

0 0 0 00

xy zxxx xxx

LinScal yy Mis Asym yyyxy yz

zz zzzzx yz

υ υκ κ
υ υκ κ κ κ κ

κ υ υ κ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (14) 

 

 

00 0
0 0 0

0 0 0

0 0
0 0

0 0

xy xzxx

LinScal yy Mis yx yz

zz zx zy

xxx x

Asym yyy yBias

zzz z

μ μλ
μ μλ λ λ

λ μ μ

λ λ
λλ λ λ

λ λ

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (15) 

 
 
4.5.1  SRT Measurements In Terms Of Sensor Compensation Coefficient Errors 
 

Eqs.  (5) - (7) with (8) - (9) or (14) - (15) are linearized approximations to the (4) and (3) 
measurements for each rotation sequence in the SRT.  Section 6.0 presents a generic approach 
for SRT rotation sequence design, deriving formulas for generating a particular compensation 

coefficient error signature in one of the , ,Strt Strt End
Down Down

B B B
H Strt Enda a aΔ components of (7).  The 

Section 6.0 process designed the Table 1 rotation sequences and the following analytical 
equivalents to (7) for the Table 1 measurements: 
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( ) ( )

( )

( ) ( )

( )

1 2

3

1 2

3

54 6

2 2

2

2 2

2

4 4 4

Strt Strt

Strt

Strt Strt

Strt

Strt Strt Strt

B B
yy yyy xx xxxx y

B
zz zzzy

B B
yy yyy xx xxxx a y a

B
zz zzzy a

B B B
yz zx xyxy y

g ga a

ga

g ga a

ga

g g ga a a

π πκ κ κ κ

π κ κ

π πκ κ κ κ

π κ κ

υ υ υ

Δ = − + Δ = +

Δ = − +

Δ = − Δ = − −

Δ = −

Δ = Δ = Δ =

 

 ( ) ( )( )7 72 2 / 2/ 2Strt StrtB B
xx xxxzxyxyx z gga a πμ λ κ κυ + +⎡ ⎤Δ = + Δ = − ⎣ ⎦  (16) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

7 7

8 9

8 8

9 9

10

2 2/ 2 / 2

Strt End

Strt Strt

Strt End

Strt End

Strt

B B
yy yyy y yy yyy yDown Down

B B
zx zxxz zxx z

B B
zz zzz z zz zzz zDown Down

B B
xx xxx x xx xxx xDown Down

B
z

g ga a

g ga a

g ga a

g ga a

a

λ λ λ λ λ λ

μ μυ υ

λ λ λ λ λ λ

λ λ λ λ λ λ

= − − + = − + −

Δ = + Δ = +

= − − + = − + −

= − − − = − + +

Δ = ( ) ( )
( ) ( ) ( )

11

12 13 14

2 2/ 2 / 2

2 2 2/ 2

Strt

Strt Strt Strt

B
yz yzzy yzy

B B B
xy y yz x zxyxy y x

g ga

g g ga a a

μ μυ υ

μ υ λ υ λ υ

+ Δ = +

Δ = + Δ = − + Δ = − +

 

 
where  
 

StrtB
j kaΔ   =  Analytical model approximation for the component j (x, y, or z) of the actual 

StrtBaΔ  measurement in (3) for rotation sequence k. 
 

StrtB
Down ka , EndB

Down ka   =  Analytical model approximations for the actual StrtB
Downa , EndB

Downa  

measurements in (3) for rotation sequence k. 
 
For confirmation of the Eqs. (16) general derivation approach in Section 6.0, Part 3 [4, Eqs. (18), 
(28), (43), (54) – (55) & (63)] derives the equivalent directly from (5) – (7), specifically for 
Table 1 Sequences 3, 5, 6, 7, and 13.  Results are identical to (16). 
 
   
4.5.2  Sensor Compensation Coefficient Errors In Terms Of SRT Measurements   

 
SRT determination of errors in the Eqs. (2) compensation coefficients is based on the inverse 

of (16) with the actual Eq. (3) measurements substituted for , ,Strt Strt EndB B B
j k Down k Down ka a aΔ .  Because 

Section 6.0 designed each of the Table 1 rotation sequences to excite a particular compensation 
error, the inversion process is trivial, yielding 
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( ) ( )
( )

( ) ( )
( )

1 1 2 2

3 3

1 1 2 2
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B B
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υ
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( ) ( )8 9

1 1
2 2

Strt StrtB B
zx zxxz zxx zg ga ag g

μ μυ υ= − = −Δ Δ  (17) 
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10 11

12

13 14
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B B B B
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λ λ
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where 
 

StrtB
j kaΔ   =  Component j (x, y, or z) of the actual StrtBaΔ  measurement in (3) for rotation 

sequence k. 
 

StrtB
Down ka , EndB

Down ka   =  Actual StrtB
Downa , EndB

Downa  measurements in (3) for rotation sequence k. 

 
If the gyros have no scale factor asymmetry (i.e., xxxκ , yyyκ , zzzκ = 0), rotations sequences 1a - 3a 
would not be used, and the gyro linear scale factor terms in (17) would be computed as 
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 1 2 3
1 1 1

2 2 2
Strt Strt StrtB B B

yy xx zzx y ya a ag g g
κ κ κπ π π

= − = = −Δ Δ Δ  (18) 

 
Note that accelerometer misalignment ( i jμ ) and x, y bias ( ,x yλ λ ) equations in (17) include 

1
2 xyυ , 1

2 yzυ , 1
2 zxυ  gyro-to-gyro orthogonality error offsets.  Orrthogonality errors are directly 

available from the rotation sequence 4 - 6 measurements in (16), whence, they can be removed from 
the i jμ  and ,x yλ λ equations.  Similarly, z accelerometer bias ( zλ ) in (17) includes a 

( )1
2 xx xxxgπ κ κ+  gyro scale factor error offset that is directly available for (17) removal from 

2
StrtB

yaΔ  in (16).  Finally, the xxxλ , yyyλ , zzzλ  accelerometer scale factor asymmetry equations in 

(17) include 1 1 1, ,
2 2 2x y zλ λ λ  accelerometer bias offsets.  After accelerometer biases are computed, 

they can be removed from the xxxλ , yyyλ , zzzλ  equations. 
 
   
4.6  SENSOR COMPENSATION COEFFICIENT ERROR CORRECTION   
 

Equations (17) represent the template for routines implemented in the SRT for evaluating error 
residuals in the Eqs. (2) κ  and λ  compensation coefficients.  At SRT completion, the compensation 
coefficients would be corrected (re-calibrated) for the SRT determined error residuals - See Part 2 [3, 
Sects. A.5 & B.5] for rationale.  When the (2) coefficient values are unknown (set to zero), the (17) 
template outputs represent updated values to be subsequently used in (2) for κ  and λ .  When the 
(2) coefficients have non-zero values (i.e., from a previous calibration), the outputs from the (17) 
template represent the negative of errors in the (2) coefficients (to be used for (2) coefficient 
updating).  In both cases, the updating operation consists of adding the (17) template outputs to the 
(2) coefficient values used during the SRT: 

  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
LinScal LinScal LinScal Mis Mis Mis

Asym Asym Asym Bias Bias Bias

λ λ λ λ λ λ
λ λ λλ λ λ

+ = − + + = − +Δ Δ
+ = − + + = − +Δ Δ

 

  (19) 

 
( ) ( ) ( ) ( )

( ) ( )
LinScal LinScal LinScal Mis Mis Mis

Asym Asym Asym

κ κ κ κ κ κ
κ κ κ

+ = − + + = − +Δ Δ
+ = − + Δ

 

 
where 
 

(-), (+) = Designation for compensation coefficients in (2) before (-) SRT execution, and 
after (+) coefficient error determination/correction.  The (-) coefficients are 
applied in (2) during the SRT. 
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κΔ , λΔ  = SRT determined corrections to the (2) coefficients, calculated using (17) as a 
template. 

 
 

4.7  ITERATING THE SRT FOR ACCURACY ENHANCEMENT  
 

The error analysis in Section 5.0 shows that the SRT is capable of determining sensor 
compensation errors to a few micro-radians accuracy (assuming pre-calibrating sensor scale 
factors to 1000 ppm accuracy, 1 milli-radian accuracy in executing the rotation sequences, and 
aligning the sensors within the IMU and the IMU on the rotation fixture to 1 milli-radian 
accuracy).  If the mounting, rotation execution, and pre-calibration errors are larger, micro-radian 
accuracy can still be achieved by repeating the SRT following application of (19) to the results 
from the first SRT.  Modern computer/memory technology makes this a trivial operation if the 
SRT computational process is structured as a batch-type post-data-collection operation on raw 
sensor data ( Rawω and 

RawSFa ) recorded during the Table 1 SRT rotation-

sequence/measurement process.  SRT measurements would then be generated following data 
collection by “playing back” the recorded data in “simulated” past time through Eqs. (1) - (4).  
With this type of structure, an equivalent SRT is easily repeated by playing-back the originally 
recorded data through (1) - (4), without having to repeat the IMU data collection operation. 

 
 

4.8  MITIGATING THE EFFECT OF RESIDUAL GYRO BIAS ON SRT ACCURACY 
 

As with the original SRT, the improved SRT ignores the effect of residual gyro bias 
compensation error on SRT accuracy.  Section 5.2.6 shows that for gyros having no g-sensitivity, 
improved SRT sensor error determination inaccuracy induced by 0.1 deg/hr residual gyro bias is 
approximately 1 micro-radian for gyro/accelerometer misalignment and 2 micro-gs for 
accelerometer bias.  For gyros having larger bias error residuals (e.g., 1 to 50 deg/hr), a simple 
procedure can be included in the SRT for recalibrating gyro bias as part of SRT data collection 
operations.  The method is to measure/recalibrate gyro biases at the start of the SRT as the 
average of the gyro output minus earth rate input (based on the approximately known orientation 
of the IMU on the rotation fixture relative to north, east, vertical).  Errors incurred in the 
recalibration operation are due to uncertainty in earth rate input to the gyros and gyro random 
walk output noise during the averaging process. 

 
For a large IMU/fixture alignment uncertainty of 10 milli-radians, the associated earth rate 

estimate would be 0.1 deg/hr, generating a bias recalibration error of 0.1 deg/hr, hence, 1 micro-
radian SRT inaccuracy (as discussed previously).  Recalibration error from gyro random walk 
output noise equals 60 / AvgRndmWalk Tσ×  deg/hr where  RndmWalkσ  is the gyro random walk 

coefficient in degrees per square-root of hour and AvgT  is the averaging time in seconds for bias 
measurement.  Thus, for RndmWalkσ = 0.002 deg/rt-hr (representative of ring laser gyros utilized 
in a standard accuracy military aircraft INS) and AvgT = 10 seconds, the gyro bias recalibration 
error would be 0.038 deg/hr.  The corresponding impact on SRT sensor error determination 
inaccuracy would be 0.038/0.1 = 0.38 micro-radians (or micro-gs), generally negligible for a 
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standard accuracy INS.  In contrast, for RndmWalkσ = 0.125 deg/rt-hr (representative of a MEMS 
gyro) and AvgT = 10 second, the calibration error would be 2.37 deg/hr, for a corresponding SRT 
inaccuracy of 2.37/0.1 = 24 micro-radians = 0.024 milli-radians (or 0.024 milli-gs), generally 
acceptable for typical MEMS applications.  These results can be reduced using a longer 
averaging time (e.g., by a factor of 3.2 for AvgT = 100 seconds). 
 

The method of implementing the gyro bias correction operation depends on whether or not 
the gyros have g-sensitivity, and whether the iteration process of the previous section is being 
applied.  For gyros with no g-sensitivity, gyro biases can be measured during a single IMU static 
measurement period for which the 3 orthogonal IMU gyro biases are measured simultaneously.  
For gyros having g-sensitivity, 6 IMU static measurement periods would be required, each 
having the 3 orthogonal IMU gyro biases measured simultaneously, 3 of the 6 with each of the 
IMU axes up, the other 3 of the 6 with each of the IMU axes down.  By summing and 
differencing the 6 measurements for each gyro, the g-sensitive and g-insensitive bias coefficients 
would then be determined.  The bias errors so determined would then be used to update the 

Biasκ coefficients in (2) prior to executing the SRT.  (Note: As defined in (8) and (14), Biasκ  
only includes g-insensitive coefficients.  G-sensitive coefficients would be added, 3 for each 
gyro corresponding to specific force along the gyro input and cross-axes multiplying the 
corresponding coefficient.) 
 

If the SRT is applied once without iteration, gyro bias measurements would be performed 
during a separate time period preceding the first measurement in the SRT sequence.  If an SRT 
iteration process is employed (as in Section 4.7), gyro biases can be measured during the first 
pass through the SRT, then applied during the subsequent pass, requiring no additional time 
period for gyro bias measurement.  Note also that for the Table 1 sequences, g-sensitive gyro 
bias measurements could be made as part of the normal SRT measurement process during the 
time periods used for accelerometer scale factor calibration (e.g., from Eqs. (17), during the start 
and end measurement periods for Sequences 7 - 9). 

 
 

4.9  CALIBRATING MISALIGNMENTS BETWEEN THE IMU AND IMU MOUNT 
 

For an IMU operated as an INS, unaided (free-inertial) velocity/position output accuracy is 
determined by inertial sensor error residuals and initial misalignment of the INS attitude 
reference B frame relative to earth referenced north/east/down coordinates.  INS error 
contributions include the relative misalignments between the inertial sensors, but not B frame 
misalignment relative to its mount within the navigating vehicle.  INS misalignment to the 
vehicle mount impacts the ability for attitude outputs to accurately represent vehicle angular 
orientation (roll, pitch, heading), an important secondary function of an INS.  To mitigate 
mounting misalignment error, attitude outputs are compensated by correction coefficients 
determined by measurement/calibration test.  The method to accurately calibrate INS to vehicle 
mount misalignment depends on the application.  Many are based on the principal that while 
stationary and nominally horizontal, a non-zero output from a perfectly calibrated accelerometer 
will directly measure the accelerometer misalignment relative to the horizontal. 
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As an example, consider a test setup in which an IMU is mounted to a level test fixture with z 
axis down in the same manner as in the application vehicle.  For the IMU having ,x yJ J  
misalignments relative to the mounting surface, the outputs from the nominally horizontal x and 
y accelerometers (divided by g) would respectively be yJ  and minus xJ .  The remaining zJ
misalignment relative to a nominal mounting surface can be measured by repositioning the IMU 
to have x axis down, placing the y, z axes nominally horizontal.  The output from the y 
accelerometer divided by g would then be zJ .  If the rotation fixture has a pitch down capability 
about a horizontal axis, the IMU repositioning operation could be executed without remounting 
the IMU from its initial ,x yJ J  measurement setup.  The initial IMU mounting for this method 
would position the nominal IMU x axis perpendicular to the rotation fixture pitch down axis.   

 
Once the , ,x y zJ J J  misalignment components are determined, attitude outputs generated 

from the INS would be compensated as in [2, Eqs.( 8.3-1) - (8.3-2)] using 

( ) ( )N N
B BOut

I JC C= + ×⎡ ⎤⎣ ⎦  where N is the INS reference navigation frame (e.g., azimuth 

wander), N
BC  is the INS attitude matrix generated by integration from compensated gyro inputs, 

J  is the IMU B frame-to-mount misalignment vector (i.e., formed from , ,x y zJ J J ), and 

( )N
B OutC is the misalignment compensated N

BC matrix used to generate roll, pitch, heading 

outputs, e.g., as in [2, Sect. 4.1.2]. 
 
The accelerometer output measurements for the previous procedure would be generated 

using an averaging filter similar to the type used in the SRT for acceleration measurements.  
Note also that this procedure could also be imbedded within the SRT test itself as part of Section 
4.7 batch-type iteration operations.  Following the first sensor coefficient error 
measurement/correction cycle, the average of the Eqs. (2) compensated acceleration outputs 
would be used for J  misalignment component determination. 

 
 

5.0  IMPROVED STRAPDOWN ROTATION TEST ERROR ANALYSIS 
 

Eqs.  (5) - (7) for sensor error determination are linearized approximations based on 
neglecting second order terms (products of sensor errors), rotation fixture imperfections in 
executing rotations, IMU mounting anomalies on the test fixture (to vertical and relative to 
north), gyro bias variations from initial calibration, and sensor noise effects.  This section 
analytically defines the error induced by these approximations in determining sensor errors with 
the improved SRT.  Of particular interest is the impact of initial IMU uncertainty relative to 
north/vertical and errors induced by rotation fixture imperfections, both ultimately affecting 
production cost. 
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The key sensor error parameters determined with the SRT are derived from the StrtB
HaΔ  

horizontal acceleration measurement.  The analysis in this section will be restricted to errors 
incurred using StrtB

HaΔ . 
 
 

5.1  NOMINAL COORDINATE FRAMES FOR SECOND ORDER ERROR ANALYSIS 
 

In addition to the coordinate frames described in Section 3.0, this section introduces the 
concept of “nominal” B frame coordinates to describe angular motion of an IMU under test 
having an idealized (error free) mounting on an idealized rotation-fixture that can execute 
prescribed rotations without error.  Analogous to the Section 3.0 B frame, the nominal B frame 
(BNom ) rotates relative to the earth (and inertial space) during rotation segments of each rotation 
sequence.  All other nominal coordinate frames are fixed (non-rotating) relative to the earth, 
most defined to be aligned with  BNom  at the start and end of a rotation sequence, one defined to 
be aligned with north, east, down coordinates at the test site.  Specific definitions for the nominal 
coordinate frame are as follows: 
 

BNom  =  Nominal B frame defined as a hypothetical B frame that is nominally mounted 
on a nominal idealized rotation fixture that executes rotations exactly as 
prescribed, and which was installed in the test facility exactly as prescribed 
relative to local NED coordinates (i.e., so that the  orientation of the BNom frame is 
known without error at any commanded rotation fixture gimbal angles). 

 
Nom
StrtB  =  Coordinate frame that is fixed (non-rotating) relative to the earth and aligned 

with the BNom frame at the start of the rotation sequence.  Nominally, one of the 
Nom
StrtB  frame axes (x, y, or z) would be aligned with the local vertical if the 

inertial measurement unit (IMU being rotation tested is perfectly mounted on an 
idealized rotation fixture. 

 
Nom
EndB  =  Coordinate frame that is fixed (non-rotating) relative to the earth and aligned 

with the BNom frame at the end of the rotation sequence. 
 

,
Nom
i StrtB   =  Coordinate frame that is fixed (non-rotating) relative to the earth and aligned 

with the BNom frame at the start of rotation i  in a rotation sequence. 
 

,
Nom
i EndB   =  Coordinate frame that is fixed (non-rotating) relative to the earth and aligned 

with the BNom frame at the end of rotation i  in a rotation sequence. 
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5.2  IMPROVED SRT ERROR ANALYSIS 
 
The error analysis begins by first defining the actual SRT measurement as the sum of the 

approximate version used in (7) plus terms neglected in the (7) derivation, Part 2 [3, Eq. (99)]: 
 
 ( )0 0

Strt Strt StrtB B Bea a a= +Δ Δ Δ  (20) 

 
where 
 

 StrtBaΔ  = Actual SRT measurement taken with (3) - (4) containing all error effects. 
 

0
StrtBaΔ  =  Approximate value of StrtBaΔ , the horizontal component for the (7) 

measurement model. 
 

 ( )0
StrtBe aΔ  =  Approximation error in 0

StrtBaΔ . 

 
0  =  Subscript indicating approximate parameters used in the (5) - (7) error models. 

 
From Part 2 [3, Eqs. (95)] we define the other error terms in (5) - (7) similarly: 
 

( )
0 0 0 0

0 0

Strt Strt Strt End End End
Strt EndStrt Strt End End

Strt Strt Strt
End End

B B B B B B
SF SF SF SF SF SF

B B B
End

e ea a a a a a

e

δ δ δ δδ δ

φ φ φ

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= +
 (21) 

 
where 
 

 
0 0 0, ,Strt End Strt

EndStrt End

B B B
SF SFa a φδ δ   = Approximate error models in (5) - (7). 

 
 , ,Strt End Strt

Strt End
B B B

EndSF SFa a φδ δ  =  Actual error vectors containing terms neglecting in (5) - (7). 

 

( )
0 0 0, ,Strt End Strt

EndStrt End

B B B
SF SF

e e ea a φδ δ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 = Errors in the 
0 0 0, ,Strt End Strt

EndStrt End

B B B
SF SFa a φδ δ  

approximate (5) - (7) error models. 
 

Using the “0” parameter notation, the approximate 0
StrtBaΔ measurement in (20) is from the 

linearized form of Part 2 [3, Eq. (45)], the basis for (7): 
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0 00 0

Nom Nom
Strt End StrtStrt StrtStrt

NomEnd End StrtEnd

B BB B BB
Dwn SF SFB

g u Ca a aφ δ δ≡ × + −Δ  (22) 

 
Note that (22) uses the nominal NomB frame in contrast with (7) that approximates NomB as B.  

The (22) form is consistent with Part 2 which first derives the full (unapproximated) StrtBaΔ  
model in the NomB frame, then in Part 2 [3, Eqs. (70) - (72)], approximates NomB as B for (5) - 
(7). 
 

The accelerometer error terms in (22) are from (6): 
 

 
( )
( )

0

0

Nom
Strt Strt Strt

Strt
Nom

End End End
End

BB B
LinScal Mis Asym BiasDwnSFSignSF

BB B
LinScal Mis Asym BiasDwnSFSignSF

g uAa

g uAa

λλ λ λδ

λλ λ λδ

≡ − + + +

≡ − + + +
 (23) 

 
The 0

Strt
End

Bφ  term in (22) can be defined similarly from (7) or alternatively, from Part 2 [3, Eq. 

(76)] from which (7) was derived in Part 2 [3, Sect. 6.1]:  
 

 ( )
0 0

0

00 @

.

.

Strt Strt
Strt

Nom NomStrtStrt
Nom Nom

Strt Strt
End

tB B
t

B BB B
LinScal Mis Asym EBSign E:BB

B B
End

dt

C

t t

φ φ

ωφ κ κ κ

φ φ

= ∫

≡ + + Ω

= =

 (24) 

 
The analytical form of ( )0

StrtBe aΔ in (20) is derived in Part 2 as [3, Eq. (100) with Eqs. (101) 

- (102)] for the ( )
0 0 0, ,Strt End Strt

EndStrt End

B B B
SF SF

e e ea a φδ δ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 inputs: 

 

( ) ( )

0 0

0 0 0 0

0

1
2

Nom Nom
Strt Strt Strt StrtStrt Strt

End End End

Nom Nom Nom N
End Strt StrtStrt Strt Strt Strt

Nom NomEndEnd StrtEnd End

B BB B B B
Dwn Strt

B B BB B B
StrtEndSF SFB B

e g eua

e eC a a

φ φ φα

φ α αδ δ

⎡ ⎤⎛ ⎞= × + − ×Δ ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞+ − + + − ×⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 0

om
End

End

B B
SFC aδ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (25) 
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( )

( )
0

0

Nom Nom
Strt Strt Strt Strt

StrtStrtStrt

Nom Nom
End End End End

EnEndEnd

B BB B
LinScal Mis Asym DwnSFSign Strt Quant RndmSF

B BB B
LinScal Mis Asym DwnSFSign QuantEndSF

e g uAa

e g uAa

α λ λλ λ λδ

α λλ λ λδ

⎛ ⎞⎛ ⎞ = + + × + +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ = + + × + +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ dRndmλ

 

(26) 

 
( ) ( )

( ) ( )

( )

0 0

0

.

.

Strt Strt
Strt

Nom NomStrtStrt
Nom

Nom Nom Nom NomStrt Strt Strt
Nom Nom

Nom
Strt
Nom

tB B
t

B BB B
LinScal Mis Asym I :EEBSignB

B B B B B
LinScal Mis AsymStrt EBSign E:BB

B
LinScal MisB

e e dt

e C

C

C

φ φ

ωφ κ κ κ

α α ωκ κ κ

κ κ

= ∫

= + + Ω

⎡ ⎤⎛ ⎞
+ − × + + Ω⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

+ +( )

( )
( ) ( )

0

00 @

. Nom Nom Nom
Nom

Nom Nom
Strt Strt StrtStrt
Nom

Strt Strt
End

BB B B
Asym EBSign E:B

B B BB
Bias Quant Rand I :EStrtB

B B
End

C

e e t t

α α ωκ

φδω δω α ωκ

φ φ

⎡ ⎤⎛ ⎞
+ − ×Ω⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞

+ + + + − ×⎜ ⎟
⎝ ⎠

= =

 (27) 

 
The rotation sequences in Section 4.0 were designed so that one of the horizontal 

components of StrtBaΔ  only responded to a particular sensor error.  Thus, each component of 
(20) used for sensor error determination can be expressed by the scalar relationship 
 

 ( )0 0
Strt Strt

k j k
B B

kj k exHa a= ± +Δ Δ  (28) 

 
where 
 
 StrtB

j kaΔ  = Horizontal component of StrtBaΔ  from rotation sequence k along IMU axis j. 

 

( )0
Strt
j k

Be aΔ  =  Horizontal component of ( )0
StrtBe aΔ  along IMU axis j used for the 

StrtBaΔ measurement for rotation sequence k . 
 

0kx   =  Particular sensor component(s) measured by StrtB
j kaΔ within the total error group 

determined by the SRT from (16). 
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kH   =  Measurement sensitivity of StrtB
j kaΔ  to 0kx .  From (16), kH  for each 0kx  is 

defined in Table 2. 
 

0kx kH  

( )yy yyyκ κ+ , ( )xx xxxκ κ+ , ( )zz zzzκ κ+  

( )yy yyyκ κ− , ( )xx xxxκ κ− , ( )zz zzzκ κ−  
2 π g

yzυ , zxυ , xyυ  4 g 

( )/ 2xyxyμ υ+ , ( )/ 2zxxzμ υ+ , ( )/ 2zxzxμ υ+ , 

( )/ 2yzzyμ υ+ , ( )/ 2yzyzμ υ+ , ( )/ 2xyyxμ υ+ , 

( )/y yzgλ υ+ , ( )/x zxgλ υ+ , ( ) ( )/ / 2 xx xxxz g πλ κ κ+ +⎡ ⎤⎣ ⎦  

2 g 

 
 Table 2 - Measurement Sensitivity To Sensor Errors 
 

Sensor error determination for the improved SRT is based on (28) by neglecting ( )0
Strt
j k

Be aΔ : 

 0
Strt

k
B

kj k Ha x= ±Δ  (29) 
 
where 
 
 0kx   =  Value for 0kx  determined by SRT data processing. 

 
Equating (28) and (29) finds: 
 

 ( ) ( )0 00 00 0
1Strt Strt

k kk kj k j k
B B

k k
k

e ex xH H a ax x
H

± = ± + → = ±Δ Δ  (30) 

 
Thus 
 

 ( )00 0 0
1 Strt

kk k j k
B

k
ex ax x H

δ ≡ − = ± Δ  (31) 

 

where 
 

 0kxδ   =  Error in the SRT determined 0kx  due to neglecting ( )0
Strt
j k

Be aΔ  in (29). 

 
Equation (31) with Table 2 is in a convenient form for assessing the impact of particular 

elements of ( )0
Strt
j k

Be aΔ  in on 0kx  determination accuracy. 
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5.2.1  Impact Of IMU Rotation And Mounting Error On SRT Accuracy 
 

One of the principle advantages of the SRT concept is reduction in accuracy demands on 
rotation test fixtures and associated IMU mounting.  These effects can be assessed by analyzing 

kxδ   equation (31) for the impact of general IMU misalignment parameter α; from ( )0
StrtBe aΔ  

directly, and from the 
0

End

End

B
SF

e aδ
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
0

Strt

Strt

B
SF

e aδ
⎛ ⎞
⎜ ⎟
⎝ ⎠

, ( )0
Strt
End

Be φ  inputs to ( )0
StrtBe aΔ . 

 
5.2.1.1 Direct Effect Of α In ( )0

StrtBe aΔ On 0kxδ  

From (25), α impacts ( )0
StrtBe aΔ  directly through the 

0

Nom Nom Nom
EndStrt Strt Strt

Nom
EndEnd

B B B B
StrtEnd SFB

C aα α δ
⎛ ⎞⎛ ⎞

− × ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and 
0

Nom Nom
StrtStrt Strt
End

B B B
Dwn Strtg u φα⎛ ⎞× ×⎜ ⎟

⎝ ⎠
 terms. 

 

From (23), the 
0

End

End

B
SFaδ magnitude equals the uncertainty in accelerometer scale factor and 

bias errors.  For 
Nom Nom
Strt StrtB B

StrtEndα α
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 and 
0

End

End

B
SFaδ  of 1 milli-rad and 1 milli-g magnitude, the 

magnitude of 
0

Nom Nom Nom
EndStrt Strt Strt

Nom
EndEnd

B B B B
StrtEnd SFB

C aα α δ
⎛ ⎞⎛ ⎞

− × ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

will be 1 micro-g.  From (31) and Table 

2 for kH  , this translates into gyro scale-factor, misalignment errors of 0.16 ppm, 0.25 micro-
rads , and accelerometer misalignment, bias errors of 0.5 micro-rads, 0.5 micro-gs. 

 
From (24), the 0

Strt
End

Bφ  magnitude equals the uncertainty in gyro scale-factor and 

misalignment error.  For 0
Strt
End

Bφ  and 
Nom
StrtB

Strtα  magnitudes of 1000 ppm and 1 milli-rad, the 

magnitude of ( )0

Nom
Strt Strt

End
B B
Dwng eu φ×  will be 1 micro-g.  From (31) and Table 2 for kH  , this 

translates into gyro scale-factor, misalignment errors of 0.16 ppm, 0.25 micro-rads , and 
accelerometer misalignment, bias errors of 0.5 micro-rads, 0.5 micro-gs. 

 

5.2.1.2 Effect Of α In
0

Strt

Strt

B
SF

e aδ
⎛ ⎞
⎜ ⎟
⎝ ⎠

And 
0

End

End

B
SF

e aδ
⎛ ⎞
⎜ ⎟
⎝ ⎠

On 0kxδ  

From (26), α impacts 
0

Strt

Strt

B
SF

e aδ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 
0

End

End

B
SF

e aδ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 through the 

( ) Nom Nom
End Strt StrtB BB

LinScals Mis Asym DwnSFSign Strtg uA αλ λ λ
⎛ ⎞+ + ×⎜ ⎟
⎝ ⎠

 and 
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( ) Nom Nom
End End EndB BB

LinScals Mis Asym DwnSFSign Endg uA αλ λ λ
⎛ ⎞

+ + ×⎜ ⎟
⎝ ⎠  terms.  For α and accelerometer scale 

factor uncertainties of 1 milli-rad and 1000 ppm, the magnitude of these terms will be 1 micro-g.  
The impact on ( )0

StrtBe aΔ  in (25) will also be on the order of  1 micro-g through the 

0 0

Nom
End StrtStrt

Nom
End StrtEnd

B B B
SF SFB

e eC a aδ δ
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

term.  From (31) and Table 2 for kH  , this translates into 

gyro scale-factor, misalignment errors of 0.16 ppm, 0.25 micro-rads , and accelerometer 
misalignment, bias errors of 0.5 micro-rads, 0.5 micro-gs. 

 
5.2.1.3  Impact Of α In ( )0

Strt
End

Be φ On 0kxδ  

From (27), α impacts ( )0
Strt
End

Be φ through the integrated effect of 

( )Nom Nom Nom NomStrt Strt Strt
Nom Nom

B B B B B
LinScal Mis AsymStrt EBSign E:BB

Cα α ωκ κ κ
⎡ ⎤⎛ ⎞

− × + + Ω⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

, 

( ) . NomNom Nom NomStrt
Nom Nom

BB B B B
LinScal Mis Asym EBSign E:BB

C α α ωκ κ κ
⎡ ⎤⎛ ⎞

+ + − ×Ω⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

, and 

Nom
Strt StrtB B

I :EStrtα ω×  in the (27) ( )0

.
StrtBe φ  equation. 

 
From (29) and (17), for the rotation sequences in Table 1, the integrated effect of 

( )Nom
Strt
Nom

B B
LinScal Mis Asym EBSignB

C κ κ κ+ + Ω  products with 
Nom

Nom
B
E:B

ω  over a rotation sequence 

will be on the order of the kH  value in Table 2 divided by g.  Hence, the maximum integrated 

effect in ( )0
Strt
End

Be φ of terms multiplying 
Nom

Nom
B
E:B

ω  will be on the order of α × gyro scale-

factor/misalignment error × kH / g.  For α and gyro scale-factor/misalignment errors on the order 

of 1 milli-rad, this translates into a maximum ( )0
Strt
End

Be φ  error of kH  / g micro-rads.  The impact 

on ( )0
StrtBe aΔ  in (25) through ( )0

Nom
Strt Strt

End
B B
Dwng eu φ×  will then be kH  micro-gs.  Thus, from (31), 

the impact on 0kxδ  will be 1 micro-rads. 

 

The integral of  
. NomBα  over a rotation sequence is 

Nom Nom
Strt StrtB B

StrtEndα α
⎛ ⎞

−⎜ ⎟
⎝ ⎠

.  Thus the maximum 

integral value into ( )0
Strt
End

Be φ of terms multiplying 
. NomBα  will be on the order of α × gyro scale-

factor/misalignment error.  For α and gyro scale-factor/misalignment errors on the order of 1000 



33 
 

ppm and 1 milli-rad, this translates into a maximum ( )0
Strt
End

Be φ  error of 1 micro-rad, impacting 

( )0
StrtBe aΔ  in (25) by 1 micro-g.  From (31) and Table 2 for kH  , this translates into gyro scale-

factor, misalignment errors of 0.16 ppm, 0.25 micro-rads , and accelerometer misalignment, bias 
errors of 0.5 micro-rads, 0.5 micro-gs. 

 
An important new advantage of the improved SRT is elimination of the requirement for 

inertial self-alignment of the IMU prior to rotation sequence execution, a problem area for IMUs 
with lesser accuracy gyros.  This requires a reasonably accurate initial physical alignment of the 

IMU on the test fixture relative to north (e.g., 1 milli-radian).  The 
Nom
Strt StrtB B

I :EStrtα ω×  term in (27) 

becomes the error introduced in ( )0

.
StrtBe φ  with this approach.  The impact on sensor error 

determination accuracy depends on the total time over a rotation sequence for the error to 
integrate into ( )0

Strt
End

Be φ .  If we assume that 10 seconds each will be used for acceleration 

measurement before and after rotation sequence execution, and 20 seconds for rotation sequence 
execution, the total time for a rotation sequence will be 40 seconds.  Then the integral of the 

Nom
Strt StrtB B

I :EStrtα ω×  over the rotation sequence will be α × earth rate × 40.  For α of 1 milli-rad and 

earth rate = 15 deg/hr (0.000073 rad/sec), this translates into an ( )0
Strt
End

Be φ  value of  0.001 × 

0.000073 × 40 = 2.9E-6 rad = 2.9 micro-rads, thereby impacting ( )0
StrtBe aΔ  in (25) by 2.9 

micro-gs.  From (31) and Table 2 for kH  , this translates into gyro scale-factor, misalignment 
errors of 0.46 ppm, 0.73 micro-rads , and accelerometer misalignment, bias errors of 1.5 micro-
rads, 1.5 micro-gs. 

 
5.2.1.4  Summary Of Rotation Fixture And IMU Mounting Error Effects On SRT Sensor Error 

Determination Accuracy 
 
Sections 5.2.1.1 - 5.2.1.3 show that for 1 milli-rad IMU mounting and rotation fixture errors, 

the impact on SRT sensor error determination accuracy will be on the order of 1 micro-rad.  It is 
important to recognize, however, that except for the earth rate coupling effect discussed at the 
end of Section 5.2.1.3, each of the micro-rad errors is proportional to sensor errors being 
determined by the SRT.  Hence, a repeated SRT using updated sensor calibration coefficients 
(updated from the previous SRT result), will eliminate these sources of sensor error 
determination in-accuracy (See Section 4.7 for further discussion).  The only remaining error 

would be the 1.5 micro-rads earth rate coupling error induced by the integral of 
Nom
Strt StrtB B

I :EStrtα ω×   

in the ( )0

.
StrtBe φ equation. 
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5.2.2  Impact Of Gyro Output Noise On SRT Accuracy 
 

The impact of gyro output noise on SRT accuracy can be assessed by analyzing how  

Randδω  random noise and Quantδω  quantization noise in (27) propagate into ( )0
Strt
End

Be φ , then  

into ( )0
StrtBe aΔ  equation (25). 

 
On a root-mean-square (rms) average basis, integrated Randδω  random noise propagates as 

the square root of the integration time.  For a 40 second rotation sequence time interval and 
0.002 deg/ hr gyro random noise, the rms build-up in ( )0

Strt
End

Be φ  will be [0.002 / (57.3 × 3600

)] × 40  = 3.7 micro-rads.  The effect on ( )0
StrtBe aΔ in (25) will then be 3.7 micro-gs.  From 

(31) and Table 2 for kH  , this translates into gyro scale-factor, misalignment errors of 0.59 ppm, 
0.93 micro-rads , and accelerometer misalignment, bias errors of 1.8 micro-rads, 1.8 micro-gs. 

 
The integral of Quantδω  quantization noise over any time interval is the rms (root-mean-

square) difference between integrated gyro output pulse quantization error at the start and end of 
the time interval.  For ε output pulse size, this translates into an rms quantization error of

( )2 0.41/ 12 2 εε =× .  For a 0.5 arc-sec pulse size, the rms impact on ( )0
Strt
End

Be φ  would be 0.41 

× [(0.5 / 3600) / 57.3] =  9.9 E-7 rads = 0.99 micro-rads. The rms effect on ( )0
StrtBe aΔ in (25) 

would then be 0.99 micro-gs.  From (31) and Table 2 for kH  , this translates into gyro scale-
factor, misalignment errors of 0.16 ppm, 0.25 micro-rads , and accelerometer misalignment, bias 
errors of 0.50 micro-rads, 0.50 micro-gs. 

 
 
5.2.3  Impact Of Output Accelerometer Noise On SRT Accuracy 
 

The impact of accelerometer output noise on SRT accuracy can be assessed by analyzing 
how  

StrtQuantλ , 
StrtRndmλ at the start of a rotation sequence and 

EndQuantλ , 
EndRndmλ at the 

end of the rotation sequence impact 
0

Strt

Strt

B
SF

e aδ
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
0

End

End

B
SF

e aδ
⎛ ⎞
⎜ ⎟
⎝ ⎠

in (26), hence, ( )0
StrtBe aΔ  in 

(25).  The start and end effects are analyzed separately, each using an approach similar to that 
taken in 5.2.2 for gyro output noise impact analysis.  The difference is that the integration time 
interval would be the averaging time to measure BStrt

SF Strta and BStrt
SF Enda  in (3) using an appropriate 

noise reduction algorithm.  Propagation of 
StrtRndmλ and 

EndRndmλ  over the averaging time is 

unaffected by the averaging algorithm, generating the same rms error as a simple integration 
process (i.e., to the random noise coefficient in fps/square-root-sec multiplied by the square-root 
of the integration time).  Some averaging algorithms are designed to reduce the Quantλ  errors 
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from what they would have been using an integration process for averaging (e.g., an average-of-
averages algorithm - [2, Sect. 18.4.7.3]).   
 
 
5.2.4  Impact Of Second Order Sensor Error Effects On SRT Accuracy 
 

The impact of second order error effects (i.e., products of sensor error) on SRT accuracy are 

generated by the
002

Nom
Strt Strt Strt

End
B B B
Dwn End

g
u φ φ⎛ ⎞

× ×⎜ ⎟
⎝ ⎠

 and 
00

Nom
EndStrtStrt

NomEnd EndEnd

B BB
SFB

C aφ δ
⎛ ⎞

× ⎜ ⎟
⎝ ⎠

 terms in the (25) 

( )0
StrtBe aΔ  equation.  From (24), 0

Strt
End

Bφ  is proportional to gyro scale-factor and misalignment 

errors.  From (23), 
0

End
End

B
SFaδ  is proportional to accelerometer scale-factor, misalignment, and 

bias errors.  Thus, for scale-factor, misalignment, and accelerometer bias errors on the order of 1 

milli-rad and milli-g, 
002

Nom
Strt Strt Strt

End
B B B
Dwn End

g
u φ φ⎛ ⎞

× ×⎜ ⎟
⎝ ⎠

 and 
00

Nom
EndStrtStrt

NomEnd EndEnd

B BB
SFB

C aφ δ
⎛ ⎞

× ⎜ ⎟
⎝ ⎠

will be on 

the order of 1 micro-g, thus impacting 0kxδ  sensor error determination accuracy in (31) by 1 

micro-rad. 
 

It is also to be noted that the basic derivation of (25) for ( )0
StrtBe aΔ  was based on complete 

(not linearized) sensor error models in the Part 2 appendices [3, Eqs. (A-15) & (B-15)].  Thus, 
there are no second order error effects within the sensor error models. 

 
 

5.2.5  Impact Of 0
StrtStrt BB

I :Eφ ω×  In ( )0

.
StrtBe φ  On SRT Accuracy 

 

The 0
StrtStrt BB

I :Eφ ω×  term in the (27) ( )0

.
StrtBe φ  equation builds into ( )0

StrtBe φ  and then into 

( )0
StrtBe aΔ  through (23).  From (24), 0

Strt
End

Bφ  is proportional to gyro scale-factor and 

misalignment errors.  For a 40 second rotation sequence time interval, gyro scale-
factor/misalignment errors of 1-milli-rad/1000-ppm, and StrtB

I :Eω earth rate = 15 deg/hr (0.000073 

rad/sec), this translates into an ( )0
Strt
End

Be φ  value of  0.001 × 0.000073 × 40 = 2.9E-6 rads = 2.9 

micro-rads, impacting ( )0
StrtBe aΔ  in (25) by 2.9 micro-gs.  From (31) and Table 2 for kH  , this 

translates into gyro scale-factor, misalignment errors of 0.46 ppm, 0.73 micro-rads , and 
accelerometer misalignment, bias errors of 1.5 micro-rads, 1.50 micro-gs.  Similar to the second 
order error source discussion in the previous section, this particular error can be eliminated using 
a second SRT after sensor calibration coefficient updating with error determinations from the 
first SRT (See Section 4.7 for further discussion). 
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5.2.6  Impact Of Gyro Bias Calibration Error Residual On SRT Accuracy 
 

The original and improved SRT were based on calibrating gyro bias to reasonable accuracy 
before the test so that it could be safely neglected in the Part 2 design of sensor error 
determination equations.  Thus, residual gyro bias errors following calibration will impact SRT 
sensor error determination accuracy. The impact of gyro bias Biasκ  on SRT accuracy can be 

assessed by analyzing how the 
Nom
Strt
Nom

B
BiasB

C κ term in (27) propagates into ( )0
StrtBe φ , then into 

( )0
StrtBe aΔ  equation (25).  For the analysis it is important to recognize that the sequences in 

Table 1 generate a changing 
Nom
Strt
Nom

B
BiasB

C κ  in the SRT measurement due to rotation induced 

Nom
Strt
Nom

B
B

C  changes.  Additionally, the analysis should include the gyro bias cancellation effect in 

forming the StrtBaΔ measurement as the difference between acceleration measurements made 
before and after rotation sequence execution.  For gyros having no g-sensitive bias error, the 
remainder of this section addresses these considerations, providing a rigorous analytical 
assessment of gyro bias impact on ( )0

StrtBe aΔ .  The results demonstrate that uncompensated 0.1 

deg/hr gyro biases induce SRT sensor determination errors on the order of 1 micro-radians and 1 
micro-gs, generally negligible for most applications.  Section 4.8 shows how gyro bias induced 
SRT errors can be mitigated (if necessary) for fixed and g-sensitive gyro bias errors. 
 
      The contribution to measurement modeling error ( )StrtBe aΔ  caused by neglecting constant 

gyro bias in the 0
StrtBaΔ  derivation is derived as StrtB

GyroBiasaΔ  in Part 2 [3, Eq. (126) with Eqs. 

(131) & (120)].  Identifying 
2

Strt
Meas

B
BC in [3, Eq. (126)] as 

Nom
Strt
Nom
End

B
B

C  obtains 

 

( )0

Nom
Strt StrtStrt

NomRot End

BB BBStrt Meas Meas BiasDwn GyroBias BGyroBias
g I Iu CT Fe a φ κ

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= × Δ + + −⎨ ⎬⎢ ⎥⎜ ⎟Δ
⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (32) 

 

( ) ,

,

2
,1 cos sin1 .

Nom Nom
StrtStrt i Strt
Nom
i Strt

NomB Bi BB i ii Strt
Biasi iGyroBiasRot

i B i i i

I u uC
θ θ θφ κ

θ θ β

⎡ ⎤⎛ ⎞⎛ ⎞− ⎛ ⎞⎢ ⎥⎜ ⎟Δ = + × + − ×∑ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (33) 

 

 ( ) ( )1 ,Meas End
EndMeas Strt

t
Meas MeasStrtMeast

Meas
t dtt t tF

T
ς≡ −∫  (34) 

 
where 
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Biasκ  =  Gyro bias error vector residual which is assumed constant over the rotation 
sequence time period (and without “g-sensitive” variations dependent on gyro 
orientation relative to the local vertical). 

 

MeasT  = Time interval for making each of the StrtBa  SRT measurements at the start and 
end of the rotation sequence. 

  

( )0
BStrt

GyroBias
e aΔ  = Component ( )0

StrtBe aΔ  caused by neglecting the effect of gyro 

bias in the Part 2 derivation of StrtB
HaΔ  for (7). 

 
 iθ  = Signed magnitude of total angular traversal around rotation axis i. 

 .
iβ  = Angular rate of rotation i. 

 

 StrtMeast , EndMeast  = Time at the start and end of the StrtBa  measurement time. 
 

( ), EndMeast tς  = Measurement averaging algorithm weighting function: The algorithm 

response at EndMeast  from a unit impulse input to the averaging algorithm at time 
t during the measurement period.  Typical averaging algorithms are a simple 
linear average or an average of successive overlapping averages (“average-of-
averages”) [2, Sect. 18.4.7.3]. 

 
Part 3 [4] evaluates (32) - (34) showing the impact on the Eq. (16) results [4, Eqs. (20), (34), 

(48), (57), & (65)] to be: 
 

( ) ( )

( ) ( )

( ) ( )

3

5

6

7

2 1 / / 2 Similarly For Seqs. 1, 2, and 1a - 3a

4 / / 4 Similarly For Seq. 4

4 / / 4

.

.

.

BStrt Meas zy GyroBias

BStrt x z Meas yx GyroBias

BStrt x y Meas zy GyroBias

Str
x GyroBias

g Te a

g Te a

g Te a

e

π π κβ

κ κ κβ

κ κ κβ

⎡ ⎤= − +Δ ⎣ ⎦

⎡ ⎤= + −Δ ⎣ ⎦

⎡ ⎤= + −Δ ⎣ ⎦

Δ( ) ( )

( ) ( )
( ) ( )

7

13

2 / 1 2 / 2 Similarly For Seqs. 8 - 12

1 / /

2 / / 2 Similarly For Seq. 14

.

.

.

B t y Meas Meas z

BStrt Meas xz GyroBias

BStrt z y Meas xy GyroBias

g T Fa

g Te a

g Te a

κ κβ

π π κβ

κκ κ β

⎡ ⎤= + −⎣ ⎦

= − +Δ

⎡ ⎤= − + −Δ ⎣ ⎦

 (35) 

 



38 
 

where 
 

( )BStrt
j k GyroBias

e aΔ   =  Component j (x, y, or z) of the ( )0
BStrt

GyroBias
e aΔ  error in the

0
BStrtaΔ  measurement approximation for rotation sequence k produced by fixed 

gyro bias. 
 

iκ  = Gyro bias component i (x, y, or z) in Biasκ  - as in (8) or (14). 
 

To assess the impact of (35) on SRT sensor error determination accuracy we write, analogous 
to (31):  

 

 ( )0
1 BStrt

j kj k GyroBiasGyroBias k
ex aH

δ⎛ ⎞ = ± Δ⎜ ⎟
⎝ ⎠

 (36) 

 
where 
 

( )BStrt
j k GyroBias

e aΔ =  Horizontal component of ( )0
StrtBe aΔ  along IMU axis j used for the 

StrtBaΔ measurement for rotation sequence k - caused by neglecting gyro bias in 
(29). 

 

0 j k GyroBias
xδ⎛ ⎞

⎜ ⎟
⎝ ⎠

  =  Error in the SRT rotation k determined sensor error 0 j kxδ along 

IMU axis j , caused by neglecting gyro bias in (29). 
 

The (36) kH s for the ( )BStrt
j k GyroBias

e aΔ  errors in (35) are, from (16), the same as in Table 2:  

2 gπ  for ( )3
BStrt
y GyroBias

e aΔ ; 4g  for ( )5
BStrt
x GyroBias

e aΔ and ( )6
BStrt
y GyroBias

e aΔ ; and 2g  for 

( )7
BStrt
x GyroBias

e aΔ , ( )7
BStrt
z GyroBias

e aΔ , and ( )13
BStrt
y GyroBias

e aΔ .  Substitution in (36) then 

finds for the sensor determination errors in (17) generated by the (35) gyro bias induced errors in 
(16): 
 



39 
 

( ) ( )

( ) ( )

( ) ( )
( ) ( )

1 / / 2 Similarly For Seqs. 1, 2, and 1a - 3a

/ / 4 Similarly For Seq. 4

/ / 4

/ 1 2 / 2 S/2

.

.

.

.

zz zzz Meas zGyroBias

x z Meas yzx GyroBias

x y Meas zxy GyroBias

y Meas Meas zxyxy GyroBias

Te

Te

Te

T Fe

πκ κ κβ

κ κ κβυ

κ κ κβυ

κ κμ βυ

⎡ ⎤− = − +⎣ ⎦

= + −

= + −

= + −+

( )( ) ( )( )
( ) ( )

imilarly For Seqs. 8 - 12

/ 2 1 / //2

/ / 2 Similarly For Seq. 14

.

.
xx xxxz Meas xGyroBias

z y Meas xy yz GyroBias

e g g T

g Te g

π π πλ κ κ κβ

κ κ κβλ υ

+ +⎡ ⎤ = − +⎣ ⎦

⎡ ⎤= − + −+ ⎣ ⎦  

(37) 

 
Part 2 [3, Sect. 8.4] shows that MeasF  in (34) is 1/2, both for a simple averaging algorithm 

and for an average-of-averages algorithm.  Using MeasF = 1/2 and representative values for
.

β
and MeasT , (37) enables evaluation of the effect of neglecting the , ,x y zκ κ κ  gyro bias 

calibration errors.  For example, for 
.

β = 1 rad/sec, MeasT = 10 sec, x yκ κ+ = 0.1 deg/hr = 

4.85e-7 rad/sec, and zκ  = - 0.1 deg/hr = - 4.85e-7 rad/sec, the ( )xy GyroBiase υ gyro orthogonality 

error determination error in (37) would be 1.70 micro-rads.  As another example, for 
.

β = 1 
rad/sec, MeasT = 10 sec, z yκ κ+ = - 4.85e-7 rad/sec, xκ  = 4.85e-7 rad/sec, and g = 32.2 ft/sec2, 

the ( )y yz GyroBiase gλ υ+ accelerometer bias determination error in (37) would be 9.37e-5 

ft/sec2 = 2.91 micro-gs.  Finally, for 
.

β = 1 rad/sec and yκ  = 4.85e-7 rad/sec, the 

( )/2xyxy GyroBias
e μ υ+ accelerometer misalignment error in (37) would be 0.49 micro-rads.  The 

induced errors in these examples are acceptable for most applications.   
 
For larger than 0.1 deg/hr gyro bias calibration errors, the effect may not be negligible, 

requiring the Section 4.8 mitigation process for reduction. 
 
 

6.0  DESIGNING THE IMPROVED SRT ROTATION SEQUENCES 
 
 As with the original SRT, rotation sequences for the improved SRT are designed to achieve 
the following objectives: 
 

1) The rotation sequences should excite all sensor calibration errors so they are made visible 
within transformed acceleration measurements. 

 
2) A sufficient number and type of rotation sequences should be executed so that the accel-

eration measurements taken between rotations have distinctive responses such that the 
instrument errors can be ascertained by measurement data analysis. 
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3) The rotations and measurements should be executed fairly rapidly (e.g., 50 deg/sec 
rotation rates) to assure that sensor outputs are stable over the test period, and to limit 
attitude error buildup (from gyro bias and heading uncertainty) from producing 
significant acceleration measurement errors. 

 
4)  Accelerometer bias calibration errors should be determined from measurements taken 

with the accelerometer being measured in a horizontal attitude.  This eliminates the 
possibility of accelerometer scale factor modeling uncertainties coupling vertical specific 
force into the acceleration measurement, potentially corrupting bias determination 
accuracy. 

 
5) The rotation sequences should be designed so that the fewest number of error sources are 

excited for each rotation sequence (between measurements).  Ideally, each sequence 
should excite only one particular error source. 

  
Because of the improved SRT analytical format, objective 5) is readily achieved by 

designing each rotation sequence to determine a particular sensor compensation error (i.e., gyro-
to-gyro misalignment, gyro scale-factor-error, accelerometer-to-gyro misalignment, 
accelerometer bias error, and accelerometer scale-factor-error).  The following subsections 
describe the rotation sequence design process based on the approximation that gyro bias 
calibration errors are negligible.  Section 5.2.6 analytically demonstrates the impact of 
neglecting gyro bias calibration error on SRT results.  If problematic, Section 4.8 shows how the 
gyro bias error effect can be mitigated with an easily executed measurement/correction 
operation. 

 
The following classical vector product identities [2, Eqs. (3.1.1-16) & (3.1.1-35)] will be 

useful in the rotation sequence design process: 
 
 ( ) ( ) ( )1 2 3 2 1 3 3 1 2. .V V V V V V V V V× × = −  (38) 
 
 ( ) ( ) ( )1 2 3 2 3 1 3 1 2. . .V V V V V V V V V× = × = ×  (39) 
 
where 
 
 1V , 2V , 3V  = Arbitrary vectors. 
 
The following general IMU axis and unit vector definitions will also prove useful: 
 
 , ,B B B

B B Bu u uν ξ σ  = Unit vectors along IMU general B frame axes , ,ν ξ σ . 

 
From the previous definition, it follows that for a particular iB  type of B frame, 
 
 , , , ,i i i

i ii
B B BB B B

B B BBB Bu u u u u uν ξ σξν σ =   (40) 
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6.1  GYRO ERROR SIGNATURES ON THE SRT MEASUREMENT 
 

To achieve the previous Item 5) goal in the SRT rotation sequence design process, this 
introductory subsection is included to provide an understanding of how rotation induced gyro 
errors impact the measurement. 

 
Eqs. (5) - (7) show that SRT horizontal acceleration measurements are functions of 

accelerometer errors and BStrt
Endφ  attitude errors, the latter induced by gyro misalignment/scale-

factor error during each of the sequence rotations.  From Part 2 [3, Eqs. (58) & (77)], BStrt
Endφ  can 

be defined by 
 

 iEnd StrtStrt Strt Strt
iStrt i

Bt BB B B
BEnd i i t Gyroi

dtCφ φ φ δω= Δ Δ =∑ ∫  (41) 
 

where 
 
 iStrtt , iEndt  = Time at the start and end of rotation i in a rotation sequence. 
 

 
i

B
Gyroδω   =  IMU gyro error vector in B frame coordinates during rotation i. 

 

StrtB
BC  = Direction cosine matrix that transforms vectors from the instantaneous IMU B 

frame axes into StrtB  coordinates. 
 

Eq. (41) shows that gyro B frame errors generate error buildup during rotation segment i as 
StrtB

iφΔ , the integral of  
i

B
Gyroδω projections on StrtB frame axes (through the StrtB

BC matrix).  

The StrtB
iφΔ  errors then sum into the total StrtB

Endφ for the sequence.  This basic concept is used 
extensively in this section in designing rotation sequences to meet the previous stated goals. 
 

The angular rate B
iω  during rotation i is around a particular axis so that neglecting gyro bias 

errors, 
  

 ( )
/ /

/ /0 0

.

.
i

i Strt i StrtStrt

B B B
Scal Mis Scal Misi i iGyro

B BB BB
Scal Mis Scal Misi ii iB Bi

u

dt du uC Cθ θ

βωκ κδω

φ β βκ κ

= =

Δ = =∫ ∫
 (42) 

 
 

in which 
 

 
( )/

/

with   
.

Scal Mis Scal Mis Scal LinScal Asym i

B B B
Scal Mis Scal Misi i i

Sign

u u u

βκ κ κ κ κ κ

κ κ κ

= + ≡ +

= +
 (43) 
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where 
 

 B
iu   =  Unit vector in B frame coordinates along the rotation axis for rotation i. 

 
 

.
iβ  = Signed magnitude of angular rate B

iω . 
 
 iθ  = Total angular traversal of rotation i around B

iu . 
 
Recognizing that Strt Strt iStrt

iStrt
B B B
B BBC C C= , (42) for StrtB

iφΔ  is equivalently: 

 

 
( )

( )
/0

/0in which 

Strt i iStrt StrtStrt iStrt
iStrt iStrt

i iStrtiStrt

BB B BB B
Scal Mis iiBi iB B

BBB
Scal Mis iiBi

d uC C C

d uC

θ

θ

φ φβ κ

φ β κ

Δ = = Δ∫

Δ ≡ ∫
 (44) 

 
where 
 
 iStrtB  = IMU B frame attitude at the start of rotation i. 
 

As in the original SRT, each B
iu  rotation axis is around one of the IMU axes.  Thus, in (43) 

from (8) and (14), B
Scal iuκ will be along B

iu , B
Mis iuκ will be perpendicular to B

iu , hence, 

/
B

Scal Mis iuκ can be written in the alternate form: 
 

 / i i i
B B B B

Scal Mis i Scalu u u uμ ςμ ημμ ς ηΒΒ Βκ κ κ κ= + +  (45) 

 
where 
 

μ =  IMU axis along B
iu . 

 
ς , η  = IMU axes perpendicular to axis μ. 
 

i
BuμΒ , 

i
BuςΒ , 

i
BuηΒ  =  Mutually orthogonal unit vectors along IMU B Frame axes μ, ς , 

η  during rotation i. 
 

Scal μκ  = Eqs. (8) or (14) diagonal element in ( ).
LinScal Asym iSign βκ κ+  corresponding 

to IMU axis μ.   
 

ςμκ , ημκ  = Eqs. (8) or (14) Misκ  elements in column μ and rows ς , η . 
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With (45), (44) becomes 
 

 
( ) ( )0

i iStrtiStrt
i i i

StrtStrt iStrt
iStrt

B B BBB
i ScalBi

BB B
i iB

d u u uC

C

μ
θ

ςμ ημμ ς ηΒΒ Β
φ β κ κ κ

φ φ

Δ ≡ + +∫

Δ = Δ
 (46) 

 
The iStrtB

BC  matrix in (46) is from Part 2 [3, Eq. (84)]: 
 

 ( ) ( ) ( )2
sin 1 cosiStrt

i
B BB

i iB i
I u uC μ μΒ Ββ β= + × + − ×  (47) 

 
from which ( )0

i iStrtB
iB dCθ β∫  in (46) becomes 

 

( ) ( ) ( ) ( )2 2
0 1 cos sini iStrt

i
B B BB

i i iiB i i
d I u u uCθ

μ μ μΒ Β Ββ θ θ θ
⎡ ⎤

= + × + − × − ×∫ ⎢ ⎥
⎣ ⎦

 (48) 

 
Note from (38) and the definitions of 

i
BuμΒ , 

i
BuςΒ , 

i
BuηΒ  being mutually orthogonal unit vectors 

that 
 

( ) ( ) ( )2 2 2
0

i i i i i
B B B B B B B B

i i i
u u u u u u u uμ μ μ ς ς μ η ηΒ ΒΒ Β Β Β Β Β× = × = − × = −  (49) 

 
With (48) and (49) iStrtB

iφΔ  in (46) then becomes 
 

( ) ( )
( )

1 cos

sin

iStrt
i i i i i

i i

B B B B BB
i iScali

B B
i

u u u u u

u u

μ ςμ ημμ μ ς μ ηΒΒ Β Β Β

ςμ ημς ηΒΒ

φ θ θκ κ κ

θ κ κ

Δ = + − × + ×

+ +
 (50) 

 
Because by definition, 

i
BuμΒ , 

i
BuςΒ , 

i
BuηΒ  are constant throughout rotation i, we can also write 

as in (40) for more specificity at the start of the rotation: 
 
 iStrt iStrt iStrt

i i iiStrt iStrt iStrt
B B BB B B

B B
u u u u u uμ ς ημ ς ηΒΒ Β Β

= = =  (51) 
 

where 
 

iStrt
iStrt

B
B

uμ , iStrt
iStrt

B
B

u ς , iStrt
iStrt

BuηΒ
 = Unit vectors 

i
BuμΒ , 

i
BuςΒ , 

i
BuηΒ  at the start of rotation i as 

projected on IMU iStrtB  frame axes. 
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Substituting (51) in (50) gives 
 

( ) ( )
( )

1 cos

sin

iStrt iStrt iStrt iStrt iStrtiStrt
iStrt iStrt iStrt iStrt iStrt

iStrt iStrt
iStrt iStrt

B B B B BB
i iScali B B B B

B B
i B

u u u u u

u u

μ ςμ ημμ μ ς μ ηΒ

ςμ ημς ηΒ

φ θ θκ κ κ

θ κ κ

Δ = + − × + ×

+ +
 (52) 

 
Lastly, (52) is transformed through Strt

iStrt
B
BC  in (46), and the result summed in (41) to obtain 

StrtB
Endφ : 

( ) ( )
( )

1 cos

sin

StrtStrt iStrt
iStrt

Strt Strt Strt Strt Strt
iStrt iStrt iStrt iStrt iStrt

Strt Strt
iStrt iStrt

Strt Strt

BB B
i iB

B B B B B
i iScal B B B B

B B
i B

B B
End i

i

C

u u u u u

u u

μ ςμ ημμ μ ς μ ηΒ

ςμ ημς ηΒ

φ φ

θ θκ κ κ

θ κ κ

φ φ

Δ = Δ

= + − × + ×

+ +

= Δ∑

 (53) 

where 
 

Strt
iStrt

B
B

uμ , Strt
iStrt

B
B

u ς , Strt
iStrt

BuηΒ
 = Unit vectors 

i
B

Buμ , 
i

BuςΒ , 
i

BuηΒ  at the start of rotation i as 

projected on StrtB  frame axes. 
 

For each rotation i, Eqs. (53) show how rotation angle iθ  and IMU Strt
iStrt

B
B

uμ , Strt
iStrt

B
B

u ς , 

Strt
iStrt

BuηΒ
 axis orientations at the start of rotation i impact how Scal μκ  scale-factor error and ςμκ , 

ημκ  misalignments register in StrtB
Endφ .  The result then translates into the StrtB

HaΔ .measurement 

through the ( )Strt StrtB B
Dwn Endg u φ× term in (7). 

 
Based on (53), the design goal for each rotation sequence in the SRT is to define a set of i 

rotations that will generate a particular gyro scale-factor-error or misalignment term onto the 
measurement while rejecting others.  Included must be the selection of a starting and ending 
orientation for the IMU that will generate a particular Eqs. (6) accelerometer error component on 
the (7) measurement.  Both objectives must also be compatible with rotation limitations 
associated with a two-axis rotation fixture. 

 
To help visualize attitude orientations during rotation sequence design, the Fig. 4 cutout 

design tool has proven to be a useful design aid. 
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Fig. 4 - Rotation Sequence Cutout Design Tool 
 

 
6.2  ROTATION SEQUENCES FOR GYRO CALIBRATION ERROR DETERMINATION 
 

Based on the StrtB
HaΔ  expression in (7), the accelerometer error contribution can be 

eliminated from StrtB
HaΔ  by designing the rotation sequence for B frame attitude at sequence end 

to be the same as at the beginning.  Then BStrt
B EndC  in (7) will be identity, EndB

Dwnu  will equal 

StrtB
Dwnu ,  End

End
B
SFaδ  in (6) will equal Strt

Strt
B
SFaδ , and StrtB

HaΔ  in (7) will simplify to 

 
 Strt Strt StrtB B B

Dwn EndH g ua φ= ×Δ  (54) 
 

Thus, rotation sequence design for gyro calibration error determination can focus on (54), using 
BStrt
Endφ  from (53) to assess how gyro errors impact the StrtB

HaΔ  SRT measurement. 
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6.2.1  Sequences To Determine Gyro Scale-Factor Calibration Errors 
 

Eq. (53) shows that only gyro scale factor errors will be generated in BStrt
Endφ  for a single 360 

degree IMU iθ  rotation, while returning the IMU to its initial attitude for (54) compatibility.  
Then with (43) for Scalκ  definition and (8) or (14) for scale-factor error components, (53) using 

2i πθ =  reduces to 
 

( )1 111 2 2
.

Strt StrtStrt Strt
Strt Strt

B BB B
ScalEnd B B

u uSignμ μμ μμμμ μφ φ π π βκ κ κ⎡ ⎤= Δ = = +⎢ ⎥⎣ ⎦
 (55) 

 
With (55), StrtB

HaΔ  in (54) becomes: 
 

( ) ( ) 112
.

Strt Strt Strt StrtStrt
Strt

B B B BB
Dwn DwnEndH B

g gu u uSigna μμ μμμ μφ π βκ κ⎡ ⎤= × = + ×Δ ⎢ ⎥⎣ ⎦
 (56) 

     
Rotation sequences 1 - 3 and 1a - 3a in Table 1 are based on (56) for Scalκ  error determination. 
 

As an example of (56) applied to gyro scale-factor error determination, consider rotation 
sequence 3 in Table 1 for which 1

StrtB
Strtu  is along the IMU z axis, the rotation is positive, and the 

starting IMU x axis orientation is down.  Then 
1

Strt Strt Strt Strt Strt
StrtStrtStrt Strt

B B B B B
Dwn yBxB zBB

u u u u uμ× = × = −

and (56) becomes ( )2Strt Strt
Strt

B B
yy yyy yBH g ua π κ κ= − +Δ , corresponding to 

( )3 2StrtB
zz zzzy ga π κ κΔ = − +  in (16) for Sequence 3 in Table 1.  For assurance, the identical 

result for Sequence 3 was generated directly from (7) with (6) in Part 3 [4, Eq. (18)]. 
 

Section 4.2 defines the IMU/rotation-fixture axis convention as having the IMU mounted 
with z axis along the fixture inner rotation axis (and IMU x and y axes perpendicular to the inner 
rotation axis), with gimbal angles at zero when the IMU z axis is down and the IMU y axis is 
along the fixture outer rotation axis.  Based on this convention, to generate IMU z axis rotation 
around a horizontal 1

StrtB
Strtu rotation axis, the inner gimbal angle would be set to zero (placing 

IMU axis y along the fixture horizontal outer axis), the fixture outer rotation angle would be set 
to minus 90 degrees (placing IMU axis z horizontal and axis x down as in Table 1 for Sequence 
3), and the single +360 degree rotation for the sequence executed around the fixture inner 
rotation axis. (Note - Use of the Fig. 4 cutout design tool makes rotation setup/execution 
operations more easily visually). 
 
 
6.2.2  Sequences To Determine Gyro Orthogonality Calibration Errors 
 

One of the principle benefits of the SRT procedure is the ability to directly determine sensor-
to-sensor misalignments.  For the IMU gyros, misalignment between two gyro axes is the 
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orthogonality error shown in (11) as the sum of the gyro misalignment calibration coefficient 
errors (e.g., 

 i j jiκ κ+  for the i and j axis gyros).  Structuring a rotation sequence to measure the 
orthogonality error between two gyros entails positioning the IMU so that 

 i jκ  and jiκ  

misalignments both register on one of the StrtB
Endφ  components, thereby assuring presence in the 

(7) sequence measurement: Strt Strt StrtB B B
Dwn EndH g ua φ= ×Δ .  To this end, a four-rotation sequence 

can be structured using a two-axis rotation fixture, enabling direct measurement of orthogonality 
error between gyros having input axes perpendicular to the inner rotation fixture axis.  (As will 
be explained subsequently, limitations of a two-axis fixture require an alternative eight-rotation 
sequence to measure orthogonality between gyro axes perpendicular to the inner rotation axis.) 

 
To aid in the analytics, parameters , ,ν ξ σ  will be used to represent IMU axes in general, 

and chosen to correspond with axes , ,μ ς η  during a particular rotation i.  (Note: , ,ν ξ σ  IMU 
axes will also be utilized later to distinguish , ,μ ς η  from IMU parameters used to characterize 
accelerometer errors). 
 
6.2.2.1  Four-Rotation Sequences For Gyro Orthogonality Error Determination 

 
The four-rotation sequence design process is simplified by structuring the sequence as a 

series of 180 degree rotations (plus or minus) for which (53) becomes for StrtB
Endφ : 

 

( )2

StrtStrt iStrt
iStrt

Strt Strt Strt Strt Strt
iStrt iStrt iStrt iStrt iStrt

Strt Strt

BB B
i iB

B B B B B
Scal B B B

B B
End i

i

C

u u u u uμ ςμ ημμ μ ς μ ηΒ Β

φ φ

π κ κ κ

φ φ

Δ = Δ

= ± + × + ×

= Δ∑

 (57) 

 
Now consider rotations required to register orthogonality error ξσυ  between the IMU ξ  and σ  

axis gyros into StrtB
Endφ .  From (11), ξσ σξξσυ κ κ= + , thus to generate ξσυ requires a rotation 

around axis σ to excite σξκ  and a rotation around ξ to excite σξκ .  To assure that only ξσκ
and σξκ  are excited, no other rotations in the sequence should be around axis ν , the third in the 

, ,ν ξ σ  IMU 3-axis set.  So that the StrtB
HaΔ  measurement for the sequence does not include 

accelerometer errors, we also specify that the IMU orientation at sequence end matches the 
orientation at sequence start, assuring that accelerometer-error-free (54) applies for StrtB

HaΔ . 
 
Based on the previous discussion, consider a sequence of 180 degree rotations, the first 

(rotation 1) around axisξ , the second (rotation 2) about axis ν .  For rotation 1 around ξ , we set 
rotation axis μ  in (57) to μ ξ= , and arbitrarily assign ,ς η  in (57) to, respectively, ,σ ν .   For 
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rotation 2 around ν , we set μ  in (57) to μ ν=  , and arbitrarily assign ,ς η  in (57) to, 
respectively, ,ξ σ .  Thus, for rotations 1 and 2, 

 

1 11 1 1 1

2 22 2 2 2

, , , , , ,

, , , , , ,

Strt Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt Strt

Strt Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt Strt

B B B B B B
B B B BB B

B B B B B B
B B B BB B

u u u u u u

u u u u u u

μ ξ ς ησ ν

μ ς ξ ην σ

μ ξ ς σ η ν

μ ν ς ξ η σ

= = =

= = =
 (58) 

 
Then (57) obtains for 1

StrtBφΔ  and 2
StrtBφΔ : 

 

( )
( )

1 11 1 1

2 2 2 22

1

2

2

2

Strt Strt Strt Strt StrtStrt
Strt StrtStrt Strt Strt

Strt Strt Strt Strt StrtStrt
Strt Strt Strt StrtStrt

B B B B BB
Scal B B BB B

B B B B BB
Scal BB B B B

u u u u u

u u u u u

ξ

ν

σξ νξξ ξ ξσ ν

ξν σνξν ν ν σ

φ π κ κ κ

φ π κ κ κ

= ± + × + ×

Δ = ± + × + ×
 

(59) 

 
The first rotation is 180 degrees around axis ξ , reversing the direction of the ,σ ν  axes so 

that following rotation 1, 
 

 1 2 1 1 2 1

1 2 1

Strt Strt Strt Strt Strt Strt
End Strt Strt End Strt Strt

Strt Strt Strt
End Strt Strt

B B B B B B
B B BB B B

B B B
B B B

u u u u u u

u u u

ξ ξ ξν ν ν

σ σ σ

= = − = =

= = −
 (60) 

 
Hence, 
 

2 1 2 2 1 12 1
Strt Strt Strt Strt Strt Strt Strt Strt

Strt Strt Strt Strt Strt StrtStrt Strt
B B B B B B B B

B BB B B B B Bu u u u u u u uξ ξν ν ν σ ν σ× = − × × = ×  (61) 

 
Substituting (61) and 

2
Strt

Strt
B

Buν  from (60) into (59) and summing for StrtB
Endφ  in (57) obtains 

 

( )
( )

11

1 1 1 11 1

1 2

2 2 2

Strt StrtStrt Strt
StrtStrt

Strt Strt Strt Strt Strt Strt
Strt Strt Strt StrtStrt Strt

B BB B
Scal ScalB B

B B B B B B
B BB B B B

u u

u u u u u u

ξ νξ ν

νξ ξν σξ σνξ ξν σ ν σ

φ φ π πκ κ

κ κ κ κ

Δ + Δ = ± − ±

+ + × + × + ×
(62) 

 
As discussed earlier, to avoid generating accelerometer errors on the measurement, the 

remaining rotations in the sequence must return the IMU to it starting orientation (the basis for 
the simplified (54) version of StrtB

HaΔ  in (7) for gyro scale-factor/misalignment error 
determination).  This is easily achieved by performing two additional rotations (rotations 3 and 
4) as a repeat of the 180 degree ξ  followed by ν  rotations executed for rotations 1 and 2.  The 
result will be the same form as (62) but with 1, 2 replaced by 3, 4: 
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( )
( )

33

3 3 3 33 3

3 4

2 2 2

Strt StrtStrt Strt
StrtStrt

Strt Strt Strt Strt Strt Strt
Strt Strt Strt StrtStrt Strt

B BB B
Scal ScalB B

B B B B B B
B BB B B B

u u

u u u u u u

ξ νξ ν

νξ ξν σξ σνξ ξν σ ν σ

φ φ π πκ κ

κ κ κ κ

Δ + Δ = ± − ±

+ + × + × + ×
 (63) 

 
But by definition, 

3 3 2 23 2
, , , ,Strt Strt Strt Strt Strt Strt

Strt Strt End EndStrt End
B B B B B B

B BB B B Bu u u u u uξ ξν σ ν σ= .  Additionally, 

rotation 2 was around IMU axis ν , reversing the direction of the IMU ,σ ξ  axes, so that 
following rotation 1, 
  

 2 2 1 2 2 1

2 2 1

Strt Strt Strt Strt Strt Strt
End Strt End End Strt End

Strt Strt Strt
End Strt End

B B B B B B
B B BB B B

B B B
B B B

u u u u u u

u u u

ξ ξ ξν ν ν

σ σ σ

= = = − = −

= − = −
 (64) 

 
Thus, 
 

 3 2 1 3 2 1

3 2 1

Strt Strt Strt Strt Strt Strt
Strt End End Strt End End

Strt Strt Strt
Strt End End

B B B B B B
B B BB B B

B B B
B B B

u u u u u u

u u u

ξ ξ ξν ν ν

σ σ σ

= = = = −

= = −
 (65) 

 
or with (60): 
 

 3 2 1 3 2 1

3 2 1

Strt Strt Strt Strt Strt Strt
Strt End Strt Strt End Strt

Strt Strt Strt
Strt End Strt

B B B B B B
B B BB B B

B B B
B B B

u u u u u u

u u u

ξ ξ ξν ν ν

σ σ σ

= = − = = −

= =
 

(66) 

 
Hence, 
 

3 1 3 13 1 3 1

3 3 1 1

Strt Strt Strt Strt Strt Strt Strt Strt
Strt Strt Strt StrtStrt Strt Strt Strt

Strt Strt Strt Strt
Strt Strt Strt Strt

B B B B B B B B
B B B BB B B B

B B B B
B B B B

u u u u u u u u

u u u u

ξ ξ ξ ξν ν σ σ

ν σ ν σ

× = × × = − ×

× = − ×
 

(67) 

 
Substituting (67) and 

33
,Strt Strt

StrtStrt
B B

B Bu uξ ν from (66) into (63) yields 

 

( ) ( )
( )

11

1 1 1 11 1

3 4

2 2 2

Strt StrtStrt Strt
StrtStrt

Strt Strt Strt Strt Strt Strt
Strt Strt Strt StrtStrt Strt

B BB B
Scal ScalB B

B B B B B B
B BB B B B

u u

u u u u u u

ξ νξ ν

νξ ξν σξ σνξ ξν σ ν σ

φ φ π πκ κ

κ κ κ κ

Δ + Δ = − ± + ±

+ + × − × − ×
(68) 

 
Lastly, recognizing by definition that 

1 1
, ,Strt Strt Strt Strt

Strt StrtStrt Strt
B B B B

B BB Bu u u uξ ξν ν= , we combine (68) 

with (62) in (57) to obtain for StrtB
Endφ : 
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( ) ( )
( ) ( ) ( )

1 3

1 3
4

StrtStrt Strt
Strt

Strt Strt Strt
Strt StrtStrt

BB B
Scal ScalEnd i B

i

B B B
Scal Scal BB B

u

u u u

ξ ξ

ν ν

ξ

νξ ξν ξν ν

φ φ π πκ κ

π πκ κ κ κ

⎡ ⎤= Δ = ± − ±∑ ⎢ ⎥⎣ ⎦

⎡ ⎤− ± − ± + + ×⎢ ⎥⎣ ⎦

 (69) 

 
where 
 

1Scalξκ , 
1Scalνκ , 

3Scalξκ , 
3Scalνκ  = Scalξκ , Scalνκ  respectively for rotations 1 - 2 

and 3 - 4, the distinction attributable to potentially different angular rate 
directions (plus or minus) for each of the 1 - 4 rotations.  If all rotations are in the 
same direction, 

1Scalξκ = 
3Scalξκ = 

1Scalνκ , 
3Scalνκ = 

1Scalνκ , and the scale 

factor effects in (69) would cancel. 
 

To translate StrtB
Endφ  into the StrtB

HaΔ  measurement in (54), we select Strt
Strt

B
Buν to be vertical 

which sets ( ).Strt Strt Strt Strt
Strt Strt

B B B B
Dwn DwnB Bu u u uν ν= .  Then (54) with (69) becomes 

 

 

( )

( ) ( ) ( )
( )

1 3

.

.
4

Nom
Strt Strt Strt Strt StrtStrt Strt

Strt Strt

Strt
StrtStrt Strt Strt

Strt Strt
Strt Strt

StrtStrt

BB B B BB B
Dwn DwnEnd EndB BH

B
Scal Scal BB B B

DwnB B B B
B B

g gu u u ua

u
g u u u

u u

ξ ξ

ν ν

ξ
ν ν

νξ ξν ξ ν

φ φ

π πκ κ

κ κ

= × = ×Δ

⎧ ⎫⎡ ⎤± − ±⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦= × ⎨ ⎬
⎪ ⎪+ + ×⎪ ⎪⎩ ⎭

( ) ( ) ( )
( )

1 3
.

4

Strt Strt Strt Strt
Strt Strt Strt

Strt
Strt

B B B B
Scal ScalDwn BB B

B
B

g u u u u

u

ξ ξ ξν ν

νξ ξν ξ

π πκ κ

κ κ

⎡ ⎤= ± − ± ×⎢ ⎥⎣ ⎦

+ +

  (70) 

 
or with gyro orthogonality error Eq. (11), 
 

( ) ( ) ( )1 3
.

4

Strt Strt Strt Strt Strt
Strt Strt Strt

Strt
Strt

B B B B B
Scal ScalDwn BB BH

B
B

g u u u ua

u

ξ ξ ξν ν

νξ ξ

π πκ κ

υ

⎡ ⎤= ± − ± ×Δ ⎢ ⎥⎣ ⎦

+
 (71) 

 
Eq. (71) shows that to determine νξυ , the differential acceleration measurement for the sequence 

should be the B
Buξ  component of StrtB

HaΔ : 

 
 ( ). 4 .Strt Strt Strt

Strt
BB B B

B DwnBH gu u ua νξξ ν υ=Δ  (72) 
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Eq. (72) was used for Table 1 for rotation sequences 4 and 5 in which the initial IMU ν  axis 
is downward along z (along Strt Strt StrtB B B

DwnBStrt zBStrtu u uν = = ) .  For Sequence 4, the IMU ξ rotation 

axis is y ( Strt StrtB B
BStrt yBStrtu uξ = ); for Sequence 5, the IMU ξ rotation axis is x ( Strt StrtB B

BStrt xBStrtu uξ = ).  

The (72) measurement formula for these sequences is shown in Eqs. (16) as 4 4StrtB
yzy ga υΔ =

and 5 4StrtB
zxx ga υΔ = .  For assurance, the identical result for Sequence 5 was generated directly 

from (7) with (6) in Part 3 [4, Eq. (28)]. 
 

The four-rotation , , ,ξ ν ξ ν  sequence is executable with a two-axis rotation fixture having 
the IMU mounted with ν  axis along the fixture inner gimbal axis, the outer gimbal angle 
initialized to have IMU axis ν  vertical, and the inner gimbal angle initialized to have IMU axis 
ξ  along the outer (horizontal) gimbal axis.  The rotation sequence would be executed using four 
sequential 180 degree rotations, the first two around the outer, then inner gimbal axes, the second  
two a repeat of the first two. 
 
6.2.2.2  Eight-Rotation Sequence For Gyro Orthogonality Error Determination 

 
In principle, a four-rotation sequence analogous to , , ,ξ ν ξ ν  in Section 6.2.2.1 could also be 

structured to measure the ξσυ  gyro ξ , σ axis orthogonality error; i.e., a , , ,ξ σ ξ σ  sequence of 
180 degree rotations starting with σ  axis vertical.  However, for an IMU mounted with ν  along 
a two-axis fixture inner gimbal axis (as in Section 6.2.2.1), this is not possible.  The reason is 
that the IMU mounting places both the ξ  and σ  axes perpendicular to the inner gimbal axis, 
restricting rotations about ξ  or σ  to be generated around only the outer gimbal axis.  If the 
inner gimbal angle is initialized to have IMU ξ  axis along the outer gimbal axis (enabling the 
first rotation in the sequence to be around ξ ), rotation 2 could not be executed around σ  
because after  rotation 1 completion, the IMU σ  axis will not be aligned with the outer gimbal 
axis.  To enable IMU σ  axis rotation following a ξ  rotation, the inner gimbal angle would have 
to be changed by 90 degrees (around IMU axis ν ) to bring the σ  axis into alignment with the 
outer gimbal axis.  Similarly, to enable another ξ  rotation, a 90 degree ν  rotation would be 
required to align ξ  with the outer gimbal axis, etc. to bring the IMU back to the starting attitude.  
Thus, to generate a ξσυ signature on the measurement using an IMU mounting for ξνυ  
determination, an eight-rotation sequence is required; 180ξ , +90ν , 180σ , +90ν  followed by a 
repeated 180ξ , +90ν , 180σ , +90ν .  (The + designation for the ν  rotations is important as will 
be discussed subsequently).  It remains to be found whether the added ν  rotations excite other 

unwanted gyro error signatures onto the StrtB
HaΔ  measurement used for ξσυ  determination. 

 
Rotations 1, 3, 5, and 7 are 180 degrees for which (57) applies.  For rotation 1 around the 

IMU ξ  axis, we set rotation axis μ in (57) to μ ξ= , and arbitrarily assign ,ς η  in (57) to, 
respectively, ,σ ν .   For rotation 3 around the IMU σ  axis, we set rotation axis μ  in (57) to 
μ σ= , and arbitrarily assign ,ς η  in (57) to, respectively, ,ξ ν .  Thus, for rotations 1 and 3, 
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1 11 1 1 1

3 33 3 3 3

, , , , , ,

, , , , , ,

Strt Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt Strt

Strt Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt Strt

B B B B B B
B B B BB B

B B B B B B
B B B BB B

u u u u u u

u u u u u u

μ ξ ς ησ ν

μ ς ξ ησ ν

μ ξ ς σ η ν

μ σ ς ξ η ν

= = =

= = =
 (73) 

 
and (57) obtains for 1

StrtBφΔ  and 3
StrtBφΔ : 

 

( )
( )

1 11 1 1

3 3 3 33

1

3

2

2

Strt Strt Strt Strt StrtStrt
Strt StrtStrt Strt Strt

Strt Strt Strt Strt StrtStrt
Strt Strt Strt StrtStrt

B B B B BB
Scal B BB

B B B B BB
Scal BB B

u u u u u

u u u u u

ξ

σ

σξ νξξ ξ ξσ νΒ

ξσ νσξσΒ σ σ νΒ

φ π κ κ κ

φ π κ κ κ

Δ = ± + × + ×

Δ = ± + × + ×
 

(74) 

 
We now find expressions for 

3 33
, ,Strt Strt Strt

Strt StrtStrt
B B B

B Bu u uξνΒ σ in (74) as a function of 

, ,Strt Strt Strt
Strt StrtStrt

B B B
B Bu u uξνΒ σ  by successive transformation backwards from frame 3StrtB  to StrtB

through the first two rotations, 180ξ , +90ν .  Since the ξ  rotation is 180 degrees and the ν  
rotation is 90 degrees, (47) with (51) shows that 
 

 
( ) ( ) ( ) ( )

( ) ( )
2 2
3 2

1
2

2 2
2

2
2 2

1
1

2 2

Strt Strt Strt
Strt Strt Strt

Strt
Strt

B BB B BStrt Strt
B B B B BStrt Strt

B BB Strt Strt
B B BStrt Strt

I Iu u u uC

I Iu uC

ν ν ν ν

ξ ξ

= + × + × = + × + ×

= + × = + ×
 (75) 

 

Then: 
 

 ( ) ( )
( )

2 2 3 2
3 33 3

2
23 3

2

2
2

Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt

Strt Strt Strt
Strt Strt Strt

Strt Strt Strt
StrtStrt Strt Strt

B B B B B
B B

BB B BStrt
B BStrt

BB B B Strt
B BStrt

u u uC C

I u u u u

Iu u uC

νΒ νΒ νΒ

ν ν νΒ νΒ

ξνΒ νΒ

= =

⎡ ⎤
= + × + × =⎢ ⎥
⎣ ⎦

⎡ ⎤
= = + ×⎢ ⎥

⎢ ⎥⎣ ⎦
Strt Strt

Strt
B Bu uνΒ νΒ= −

 

(76) 

 

( ) ( )
2 2 3 2

3 33 3

2
23 3

2

2
2

Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt

Strt Strt Strt Strt
Strt StrtStrt Strt

Strt Strt Strt
StrtStrt Strt

B B B B B
B B

BB B B BStrt
B B BStrt

BB B B Strt
B BStrt

u u uC C

I u u u u u

Iu u uC

ξΒ ξΒ ξΒ

ξΒ ξΒν ν ν

ξΒ ξΒ ξ

= =

⎡ ⎤
= + × + × = ×⎢ ⎥
⎣ ⎦

= = + ( ) ( )Strt Strt Strt Strt
Strt StrtStrt Strt

B B B B
B Bu u u uξΒ ξΒν ν

⎡ ⎤
× × = − ×⎢ ⎥

⎢ ⎥⎣ ⎦

(77) 
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( ) ( )
2 2 3 2

3 33 3

2
23 3

2

2
2

Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt

Strt Strt Strt Strt
Strt Strt Strt Strt

Strt Strt Strt
StrtStrt Strt

B B B B B
B B

BB B B BStrt
B B BStrt

BB B B Strt
B BStrt

u u uC C

I u u u u u

Iu u uC

σΒ σΒ σΒ

ν ν σΒ ν σΒ

ξσΒ σΒ

= =

⎡ ⎤
= + × + × = ×⎢ ⎥
⎣ ⎦

= = + ( ) ( )Strt Strt Strt Strt
Strt Strt Strt Strt

B B B B
B Bu u u uν σΒ ν σΒ

⎡ ⎤
× × = ×⎢ ⎥

⎢ ⎥⎣ ⎦

(78) 

 
or in summary 
 

3 33
Strt Strt Strt Strt Strt Strt Strt Strt

Strt Strt Strt Strt Strt StrtStrt Strt
B B B B B B B B

B Bu u u u u u u uξΒ ξΒνΒ νΒ ν σΒ ν σΒ= − = − × = ×  (79) 

 
With (79), the 

3 3
Strt Strt

Strt Strt
B B

BBu uξσ ×  and 
3 3

Strt Strt
Strt Strt

B B
Bu uσ νΒ×  terms in (74) become 

 
 ( )3 3

Strt Strt Strt Strt Strt Strt
Strt Strt Strt Strt Strt Strt

B B B B B B
B Bu u u u u uσ νΒ ν σΒ νΒ σΒ× = − × × = −  

 

( ) ( )
( ) ( )

3 3

. .

Strt Strt Strt Strt Strt Strt
Strt Strt Strt StrtStrt Strt

Strt Strt Strt Strt Strt Strt Strt Strt
Strt Strt Strt Strt Strt StrtStrt Strt

B B B B B B
BB B B

B B B B B B B B
B B B B

u u u u u u

u u u u u u u u

ξ ξΒσ ν σΒ ν

ξΒ ξΒν ν σΒ ν σΒ ν

× = − × × ×

⎡ ⎤ ⎡ ⎤= − × + ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (80) 

( ) ( ). .Strt Strt Strt Strt Strt Strt Strt Strt
Strt Strt Strt Strt Strt StrtStrt Strt

Strt Strt
StrtStrt

B B B B B B B B
B B B B

B B

u u u u u u u u

u u

ξΒ ξΒν ν σΒ ν σΒ ν

ξΒ σΒ

⎡ ⎤⎡ ⎤= − × = ×⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

= ×
 

 
The last equality in (80) stems from the general identity that for any vector V :

( ) ( ) ( ). . .Strt Strt Strt Strt Strt Strt
Strt Strt Strt StrtStrt Strt

B B B B B B
B BB B B BV V V Vu u u u u uξ ξν ν σ σ= + + .  Thus, for 

Strt Strt
StrtStrt

B B
B BV u uξ σ= × , it follows that 

 

 

( )
( ) ( )

.

. .

Strt Strt Strt Strt Strt Strt
Strt Strt Strt StrtStrt Strt

Strt Strt Strt Strt Strt Strt Strt Strt
Strt Strt Strt StrtStrt Strt Strt Strt

Str

B B B B B B
B BB B B B

B B B B B B B B
B B B BB B B B

u u u u u u

u u u u u u u u

ξ ξσ σ ν ν

ξ ξ ξ ξσ σ σ σ

⎡ ⎤× = ×⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤+ × + ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= ( ) .Strt Strt Strt Strt
Strt Strt Strtt

B B B B
B B B Bu u u uξ σ ν ν

⎡ ⎤×⎢ ⎥⎣ ⎦

 (81) 

 
Substituting (80) in (74) with (51), obtains 
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( )
( )

1

3

2

2

Strt Strt Strt Strt StrtStrt
Strt StrtStrt Strt Strt

Strt Strt Strt Strt StrtStrt
Strt Strt Strt StrtStrt

B B B B BB
Scal B BB

B B B B BB
Scal

u u u u u

u u u u u

ξ

σ

σξ νξξ ξ ξσ νΒ

ξσ νσξΒνΒ σΒ σΒ σΒ

φ π κ κ κ

φ π κ κ κ

Δ = ± + × + ×

Δ = ± × + × −
 

(82) 

 
Combining 1

StrtBφΔ  and 3
StrtBφΔ  from (82) then yields for StrtB

Endφ  in (53): 
 

 
( )

1 3

2 2 2

Strt Strt StrtStrt Strt
Strt StrtStrt

Strt Strt Strt Strt Strt
Strt Strt StrtStrt Strt

B B BB B
Scal Scal

B B B B B
B BB B

u u u

u u u u u

ξ σξ νΒ σΒ

σξ ξσ νξ νσξ ξσ νΒ σ

φ φ π πκ κ

κ κ κ κ

Δ + Δ = ± ± ×

+ + × + × −
 (83) 

 
Note that because , ,Strt Strt Strt

Strt StrtStrt
B B B

Bu u uξνΒ σ  are mutually perpendicular, 

( )2 Strt Strt
StrtStrt

B B
B Bu uσξ ξσ ξ σκ κ+ ×  is the only term in (83) parallel to Strt

Strt
BuνΒ .  This will ultimately 

be the component used through ( )Strt Strt StrtB B B
Dwn EndH g ua φ= ×Δ in (54) that determines the relative 

misalignment ( )σξ ξσκ κ+  between the IMU σ  and ξ  axis gyros. 
 

Given that rotation sequences 5 - 8 are identical to rotation sequences 1 - 4, the same 
methodology used to find finding expressions for 1 3

Strt StrtB Bφ φΔ + Δ  in (83) can be used to find 

5 7
Strt StrtB Bφ φΔ + Δ  by substituting the IMU unit vectors at the start of rotation 5 (i.e., 

5 55
, ,Strt Strt Strt

Strt StrtStrt
B B B

B Bu u uξνΒ σ ) for IMU unit vectors at the start of rotation 1 (i.e., 

, ,Strt Strt Strt
Strt StrtStrt

B B B
B Bu u uξνΒ σ ).  Thus, we can immediately write from (83): 

 

 
( ) ( )

( )
5 55

5 5 55 5

5 7

2 2 2

Strt Strt StrtStrt Strt
Strt StrtStrt

Strt Strt Strt Strt Strt
Strt Strt StrtStrt Strt

B B BB B
Scal Scal B B

B B B B B
B BB B

u u u

u u u u u

ξ σξ ν σ

σξ ξσ νξ νσξ ξσ νΒ σ

φ φ π πκ κ

κ κ κ κ

Δ + Δ = ± + ± ×

+ + × + × −
(84) 

 
To complete the 5 7

Strt StrtB Bφ φΔ + Δ  derivation, we must now find expressions for 

5 55
, ,Strt Strt Strt

Strt StrtStrt
B B B

B Bu u uξνΒ σ in (84) as a function of , ,Strt Strt Strt
Strt StrtStrt

B B B
B Bu u uξνΒ σ .  Following the same 

methodology that led to (80), since ,ξ σ  rotations are 180 degrees and the ν  rotations are 90 
degrees, (47) shows that 
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( ) ( )

( ) ( )
2 4
3 5

3
2 4

2

2 2
2 2

Strt Strt Strt
Strt Strt Strt

Strt Strt
Strt Strt

BB B B Strt
B B B BStrt

B BB BStrt Strt
B B B BStrtStrt

I u uC C

I Iu uC C

ν ν

ξ σ

= = + × + ×

= + × = + ×
 (85) 

 
Then: 
 

( ) ( )
( )

4 4 5 4
5 55 5

3 3 4
45 5

2

2
2

Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt

Strt Strt Strt
Strt Strt Strt

Strt Strt Strt
StrtStrt Strt Strt

B B B B B
B B

BB B BStrt
B BStrt

BB B B Strt
B BStrt

u u uC C

I u u u u

Iu u uC

νΒ νΒ νΒ

ν ν νΒ νΒ

νΒ νΒ σ

= =

⎡ ⎤
= + × + × =⎢ ⎥
⎣ ⎦

⎡ ⎤
= = + ×⎢ ⎥

⎣ ⎦

( ) ( ) ( )
( )

2 2 3
35 5

2
25 5

2

2
2

Strt Strt
Strt

Strt Strt Strt Strt Strt Strt
StrtStrt Strt Strt Strt Strt

Strt Strt Strt
StrtStrt Strt Strt

B B

BB B B B B BStrt
B B BStrt

BB B B Strt
B BStrt

u u

Iu u u u u uC

Iu u uC

νΒ νΒ

νΒ νΒ ν ν νΒ νΒ

ξνΒ νΒ ν

= −

⎡ ⎤
= = + × + × − = −⎢ ⎥

⎣ ⎦
⎡ ⎤

= = + × −⎢ ⎥
⎢ ⎥⎣ ⎦

( )Strt Strt
Strt

B Bu uΒ νΒ=

(86) 

 

( ) ( )
4 4 5 4

5 55 5

3 3 4
45 5

2

2
2

Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt

Strt Strt Strt Strt
Strt StrtStrt Strt

Strt Strt Strt
StrtStrt Strt

B B B B B
B B

BB B B BStrt
B BStrt

B B B Strt
B BStrt

u u uC C

I u u u u u

Iu uC

ξΒ ξΒ ξΒ

ξΒ ξΒν ν νΒ

ξΒ ξΒ σ

= =

⎡ ⎤
= + × + × = ×⎢ ⎥
⎣ ⎦

= = + ( ) ( )
( ) ( ) ( )2 2 3

35 5

2

Strt Strt Strt Strt
Strt StrtStrt Strt

Strt Strt Strt Strt Strt Strt
Strt Strt StrtStrt Strt Strt

Strt Strt Str
Strt Strt Strt

B B B B B

BB B B B B BStrt
B B BStrt

B B
B

u u u u u

Iu u u u u uC

u u

ξΒ ξΒνΒ νΒ

ξΒ ξΒ ξΒν ν νΒ

ξΒν νΒ

⎡ ⎤
× × = ×⎢ ⎥

⎣ ⎦
⎡ ⎤

= = + × + × ×⎢ ⎥
⎣ ⎦

= × ×( )
( ) ( )2

25 5

2
2

t Strt
Strt

Strt Strt Strt Strt Strt
StrtStrt Strt Strt Strt

B B

BB B B B BStrt
B BStrt

u u

Iu u u u uC

ξΒ

ξΒ ξΒ ξ ξΒ ξΒ

= −

⎡ ⎤
= = + × − = −⎢ ⎥

⎢ ⎥⎣ ⎦

 (87) 
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( ) ( )
4 4 5 4

5 55 5

3 3 4
45 5

2

2
2

Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt

Strt Strt Strt Strt
Strt Strt Strt Strt

Strt Strt Strt
StrtStrt Strt

B B B B B
B B

BB B B BStrt
B BStrt

B B B Strt
B BStrt

u u uC C

I u u u u u

Iu uC

σΒ σΒ σΒ

ν ν σΒ νΒ σΒ

σΒ σΒ σ

= =

⎡ ⎤
= + × + × = ×⎢ ⎥
⎣ ⎦

= = + ( ) ( )
( ) ( ) ( )2 2 3

35 5

2

Strt Strt Strt Strt
Strt Strt Strt Strt

Strt Strt Strt Strt Strt Strt
StrtStrt Strt Strt Strt Strt

Strt Strt
Strt Strt Strt

B B B B B

BB B B B B BStrt
B B BStrt

B B
B

u u u u u

Iu u u u u uC

u u

νΒ σΒ νΒ σΒ

σΒ σΒ ν ν νΒ σΒ

ν νΒ σΒ

⎡ ⎤
× × = − ×⎢ ⎥

⎣ ⎦
⎡ ⎤

= = + × + × − ×⎢ ⎥
⎣ ⎦

= × − ×( )
( )2

25 5

2
2

Strt Strt
Strt

Strt Strt Strt Strt Strt
Strt Strt StrtStrt Strt

B B

BB B B B BStrt
B BStrt

u u

Iu u u u uC

σΒ

ξΒ ξΒ ξ σΒ σΒ

=

⎡ ⎤
= = + × = −⎢ ⎥

⎢ ⎥⎣ ⎦

 (88) 

 
or in summary: 
 
 

5 55
Strt Strt Strt Strt Strt Strt

Strt Strt Strt StrtStrt Strt
B B B B B Bu u u u u uξΒ ξΒνΒ νΒ σΒ σΒ= = − = −  (89) 

 
Eqs. (89) show that at rotation 4 completion, BuνΒ  will be at its starting orientation and 

,B Bu uσΒξΒ  will be reversed from their starting orientations.  (Note: It follows then that since 

rotations 5 - 8 are a repeat of rotations 1 - 4, at rotation 8 completion, BuνΒ  will be at its rotation 

4 completion orientation and ,B Bu uσΒξΒ  will be reversed from their rotation 4 completion 

orientations.  Thus, at completion of rotation 8, BuνΒ  and ,B Bu uσΒξΒ  will have returned to their 

starting orientations.  (This confirms our original premise that the selected 180ξ , +90ν , 180σ , 
+90ν , 180ξ , +90ν , 180σ , +90ν  rotation sequence returns the IMU to its starting orientation.)  

Substituting (89) in (84) yields for 5 7
Strt StrtB Bφ φΔ + Δ : 

 

 

( ) ( ) ( )
( )

5 7

2 2 2

Strt Strt StrtStrt Strt
Strt StrtStrt

Strt Strt Strt Strt Strt
Strt Strt StrtStrt Strt

B B BB B
Scal Scal B B

B B B B B
B BB B

u u u

u u u u u

ξ σξ ν σ

σξ ξσ νξ νσξ ξσ νΒ σ

φ φ π πκ κ

κ κ κ κ

Δ + Δ = − ± − ± ×

+ + × − × +
   (90) 

 
Finally, we combine (90) with (83) to obtain for StrtB

Endφ  in (53):  
 

 
( )1 3 5 7 4 Strt StrtStrt Strt Strt Strt

StrtStrt
B BB B B B

B Bu uσξ ξσ ξ σφ φ φ φ κ κΔ + Δ + Δ + Δ = + ×    (91) 
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or with (11) for ξ  gyro to σ  gyro orthogonality error definition 
 
 1 3 5 7 4 Strt StrtStrt Strt Strt Strt

StrtStrt
B BB B B B

B Bu uξσ ξ σφ φ φ φ υ+ Δ + Δ + Δ = ×  (92) 

 
Equation (92) shows that orthogonality error ξσυ  only appears along Strt Strt

StrtStrt
B B

B Bu uξ σ× , and 

since axes , ,ν ξ σ  are mutually perpendicular, along an axis parallel to Strt
Strt

B
Buν .   To obtain the 

total StrtB
Endφ  for (53), 2 4 6 8

Strt Strt Strt StrtB B B Bφ φ φ φΔ + Δ + Δ + Δ  generated by 90 degree ν  rotations 

must be added to 1 3 5 7
Strt Strt Strt StrtB B B Bφ φ φ φΔ + Δ + Δ + Δ  in (90).  It remains to determine whether 

the added ν  rotations excite other unwanted gyro error signatures onto StrtB
Endφ  , hence, onto the 

StrtB
HaΔ  measurement in (53) for ξσυ  determination. 
 
Because rotation 1 is 180 degrees around ξ , BuνΒ  at rotation 2 start will be oppositely 

directed from BuνΒ  at rotation sequence start (
2

Strt Strt
Strt Strt

B Bu uνΒ νΒ= − ).  Rotation 2 is around ν , 

leaving BuνΒ  unaffected (
3 2

Strt Strt Strt
Strt Strt Strt

B B Bu u uνΒ νΒ νΒ= = − ).  Rotation 3 is around σ , again 

reversing the direction of BuνΒ  (
4 3

Strt Strt Strt
Strt Strt Strt

B B Bu u uνΒ νΒ νΒ= − = ).  Rotation 4 is around ν , leaving 

BuνΒ  unaffected (
5 4

Strt Strt Strt
Strt Strt Strt

B B Bu u uνΒ νΒ νΒ= = ).  Thus, over the rotation 1 - 4 sequence, the first 

axis for ν  rotation (rotation 2) is around Strt
Strt

BuνΒ−  with the second (rotation 4) around Strt
Strt

BuνΒ .  

The  ν  rotation axis direction pattern repeats for the remainder of the eight rotation sequence, 
i.e., around Strt

Strt
BuνΒ−  for rotation 6 and around Strt

Strt
BuνΒ .  The impact on 

2 4 6 8
Strt Strt Strt StrtB B B Bφ φ φ φΔ + Δ + Δ + Δ   can be deduced from (53). 

 
Equation (53) shows that only gyro scale factor errors appear along the rotation axis.  Since 

rotations 2 and 4 are +90 degrees around oppositely directed ν  axes, the scale factor composite 

2 4
Strt StrtB Bφ φΔ + Δ  effect along Strt

Strt
BuνΒ  will cancel (and similarly for 6 8

Strt StrtB Bφ φΔ + Δ ).  

Because the ,ξ σ  axes are oppositely directed at rotation 5 start compared to rotation 1 start, and 
the ν  axis at rotation 5 start is the same as at rotation 1, the misalignment coupling effect of ν  
axis rotation on 6 8

Strt StrtB Bφ φΔ + Δ  components perpendicular to Strt
Strt

BuνΒ will be opposite from 

those for the 2 4
Strt StrtB Bφ φΔ + Δ  components.  The overall result is that the composite effect of ν  

axis rotations on 2 4 6 8
Strt Strt Strt StrtB B B Bφ φ φ φΔ + Δ + Δ + Δ  will be zero, hence, StrtB

Endφ  for (53) will 
be from (92): 

 



58 
 

 4 Strt StrtStrt Strt
StrtStrt

B BB B
End i B B

i
u uξσ ξ σφ φ υ= Δ = ×∑  (93) 

 
It is important to recognize that Eq. (93) is based on rotations 2, 4, 6, and 8 being in the same 
direction (+90 degrees).  As a result, ν  axis gyro scale factor asymmetry errors are excited 
identically around the rotation axes, enabling them to cancel in the final (93) result.  

 
With Strt

Strt
B

Buσ selected to be vertical, ( ).Strt Strt Strt Strt
Strt Strt

B B B B
Dwn Dwn B Bu u u uσ σ= .  Applying StrtB

Endφ  

from (93), the StrtB
HaΔ  measurement in (54) then becomes for the eight rotation sequence: 

 

( ) ( )
( )

4 .

4 .

Strt Strt Strt Strt Strt Strt StrtStrt
Strt Strt StrtStrt

Strt Strt Strt
Strt Strt

B B B B B B BB
Dwn DwnEnd BB B BH

B B B
Dwn BB

g gu u u u u ua

g u u u

ξσ ξσ σ σ

ξσ ξσ

φ υ

υ

= × = × ×Δ

=
 (94) 

 
The (94) measurement formula was used with Strt Strt

Strt
B B

DwnBu uσ =  for the Sequence 6 measurement 

in Table 1, with vertical axis σ  corresponding to IMU axis x, and horizontal axis ξ
corresponding to IMU y.  With ξσ σξυ υ=  from (10), the result in (16) for rotation 6 in Table 1 

is 6 4StrtB
xyy ga υΔ = .  For assurance, the identical result for Sequence 6 was generated directly 

from (7) with (6) in Part 3, [4, Eq. (43)]. 
 
 

6.3  ROTATION SEQUENCES FOR ACCELEROMETER CALIBRATION ERROR 
DETERMINATION  

 
SRT determination of accelerometer misalignment and bias errors are based on the StrtB

HaΔ
differential type measurement in (7).  Accelerometer scale factor error determination uses the 

Strt
Down

B
Strta  and Strt

Down
B
Enda  measurements in (7). 

 
 
6.3.1  Determining Accelerometer Misalignment And Bias Calibration Errors 
 

SRT sequence design for accelerometer misalignment and bias determination is easily 
accomplished based on 180 degree rotations for which StrtB

HaΔ in (7) with (53) and (6) become 
 

 Strt Strt Strt
SF

B B B
H H Ha a aφ

= +Δ Δ Δ    (95) 
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( )2

Nom
Strt Strt Strt Strt Strt

StrtStrt iStrt
iStrt

Strt Strt Strt Strt Strt
iStrt iStrt iStrt iStrt iStrt

BB B B B
Dwn End End iH i

BB B
i iB

B B B B B
Scal B B B B

g ua

C

u u u u u

φ

μ ςμ ημμ μ ς μ ηΒ

φ φ φ

φ φ

π κ κ κ

= × = Δ∑Δ

Δ = Δ

= ± + × + ×

(96) 

 

( )
/ /

Strt
SF

Strt EndStrt End
Strt End

BB B BStrt End Strt
B End SF SFH End Strt H

B BB B
Scal Mis Scal MisBias BiasDwn DwnSF SF

Ca a a

g gu ua a

δ δ

λ λλ λδ δ

= −Δ

= − + = − +
(97) 

 
in which 
 

 

/

/

/

with  

Strt Strt Strt

End End End

B
Scal Mis Scal Mis Scal LinScal Asym SFSign

B B B
Scal Mis Scal MisDwn Dwn Dwn

B B B
Scal Mis Scal MisDwn Dwn Dwn

A

u u u

u u u

λ λ λ λ λ λ

λ λ λ

λ λ λ

= + ≡ +

= +

= +

 (98) 

 and where 
 

 StrtB
Ha φΔ  = Component of StrtB

HaΔ  generated by gyro error. 
 

 Strt
SF

B
HaΔ  = Component of StrtB

HaΔ  generated by accelerometer error. 
 

B
SFSignA  = Diagonal matrix with unity magnitude elements having the sign of the 

specific force acceleration component along the corresponding IMU axes. 
 

As in the original SRT, one of the IMU axes will be vertical at the start and end of the 
rotation sequence.  Thus, in (98) from (9) and (15), StrtB

Scal Dwnuλ , EndB
Scal Dwnuλ  will be  vertical 

and  StrtB
Mis Dwnuλ , EndB

Mis Dwnuλ will be horizontal. Thus, /
EndB

Scal Mis Dwnuλ , /
EndB

Scal Mis Dwnuλ can 
be written in the alternate form: 

 

( )
( )

/

/

.

.

Strt Strt Strt Strt Strt Strt

End End End End End End

B B B B B B
Scal Mis ScalDwn Dwn BStrt BStrt BStrt BStrt

B B B B B B
Scal Mis ScalDwn Dwn BEnd BEnd BEnd BEnd

u u u u u u

u u u u u u

ν

ν

ξν σνν ν ξ σ

ξν σνν ν ξ σ

λ λ λ λ

λ λ λ λ

= + +

= + +
 (99) 

 
where 
 

ν  =  Vertical IMU axis. 



60 
 

ξ ,σ  = Horizontal IMU axes (perpendicular to axis ν ). 
 

StrtB
BStrtuν , StrtB

BStrtuξ , StrtB
BStrtuσ , EndB

BEnduν , EndB
BEnduξ , EndB

BEnduσ  =  Mutually orthogonal unit 

vectors in B frame coordinates along IMU ν , ξ , σ  B Frame axes at the start and 
end of the rotation sequence.  

 

Scalνλ  = Diagonal element in column and row ν  of B
LinScal Asym SFSignAλ λ+  with 

LinScalλ  and Asymλ  from (9) or (15).  
 

ξνλ , σνλ  = Elements in column ν  and rows ξ , σ  of Misλ  in (9) or (15). 
 
Similarly, Biasλ  in (97) can be written as 
 

Strt Strt Strt End End EndB B B B B B
Bias BStrt BStrt BStrt BEnd BEnd BEndu u u u u uν ξ σ ν ξ σν ξ σ ν ξ σλ λ λ λ λ λ λ= + + = + +  (100) 

 
where 
 
 , ,ν ξ σλ λ λ  = Elements in locations ν , ξ , and σ  of Biasλ  in (9) or (15). 
 

With (99) and (100), Strt
Strt

B
SFaδ  and End

End
B
SFaδ in (97) become 

 

 
( )

( )

/

.

.

Strt Strt
Strt

Strt Strt Strt Strt Strt

Strt Strt Strt

Strt Strt

B B
Scal Mis Dwn BiasSF

B B B B B
Dwn ScalBStrt BStrt BStrt BStrt

B B B
BStrt BStrt BStrt

B B
Scal Dwn BStrt BStrt

g ua

g u u u u u

u u u

g u u

ν

ν

ξν σνν ν ξ σ

ν ξ σν ξ σ

νν ν

λλδ

λ λ λ

λ λ λ

λ λ

= − +

= − + +

+ + +

= − + ( ).Strt Strt Strt StrtB B B B
Dwn BStrt BStrtgu u u uξν ξν ξλ λ+ − +

 

 ( ).Strt Strt StrtB B B
Dwn BStrt BStrtg u u uσν σν σλ λ+ − +  (101) 

 

( ) ( )
( )

/

. .

.

End End
End

End End End End End End

End End End

B B
Scal Mis Dwn BiasSF

B B B B B B
Scal Dwn DwnBEnd BEnd BEnd BEnd

B B B
Dwn BEnd BEnd

g ua

g gu u u u u u

g u u u

ν ν ξν ξν ν ν ξ

σν σν σ

λλδ

λ λ λ λ

λ λ

= − +

= − + + − +

+ − +
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With (101) while recognizing that StrtB
BStrtuν  and EndB

BEnduν  are vertical, we obtain for the 

horizontal Strt
SF

B
HaΔ  measurement component in (95): 

 

( ) ( )
( ) ( )

. .

. .

Strt End End Strt End End Strt
SF

Strt Strt Strt Strt Strt Strt

B B B B B B B
Dwn DwnBEnd BEnd BEnd BEndH

B B B B B B
Dwn DwnBStrt BStrt BStrt BStrt

g gu u u u u ua

g gu u u u u u

ξν ξ σν σν ξ ν σ

ξν ξ σν σν ξ ν σ

λ λ λ λ

λ λ λ λ

= − + + − +Δ

− − + − − +
 (102) 

 
Collecting contributions from each error source while recognizing that the dot product between 
two vectors is identical in any coordinate frame, (102) becomes the final form: 
 

 

( ) ( )
( ) ( )

( )

. .

. .

Strt Strt Strt Strt Strt Strt Strt
SF

Strt Strt Strt Strt Strt Strt

Strt Strt

B B B B B B B
Dwn Dwn BStrt BStrtBEnd BEndH

B B B B B B
Dwn Dwn BStrt BStrtBEnd BEnd

B B
BStrtBEnd BE

g u u u u u ua

g u u u u u u

u u

ξν ν ξν ξ

σν ν σν σ

ξ σξξ σ

λ

λ

λ λ

⎡ ⎤= − −Δ ⎢ ⎥⎣ ⎦
⎡ ⎤− −⎢ ⎥⎣ ⎦

+ − + ( )Strt StrtB B
BStrtndu uσ−

(103) 

 
Eq. (103) can now be used for IMU orientation definition at the start and end of the rotation 

sequence to generate a signature from only one of the accelerometer bias or misalignment errors 
on one of the Strt

SF
B
HaΔ  components.  Having defined all rotations in the sequence to be 180 

degrees considerably simplifies the design process.  Then the , ,Strt Strt StrtB B B
BEnd BEnd BEndu u uν ν σ  unit 

vectors will be parallel (directed along or oppositely) to their , ,Strt Strt StrtB B B
BStrt BStrt BStrtu u uν ν σ  starting 

equivalents.     
 

6.3.1.1  Accelerometer Misalignment Error Determination 
 

A principle advantage of the SRT is the ability to directly determine sensor-to-sensor 
misalignment errors, the groupings that directly impact inertial navigation accuracy.  For the 
accelerometers, the misalignment of interest is between the accelerometer and gyro triads.  For 
each accelerometer there are two such misalignments; between the accelerometer input axis and 
the two gyro input axes perpendicular to the accelerometer input axis.  Fig. 5 shows that the 
relative misalignment between an i axis accelerometer and a j axis gyro is 

 jii jλ κ+  where 
 i jλ  

and jiκ  are i, j elements in the (8) - (9) Misκ  and Misλ  matrices.  Selecting the B frame 
selected to be a MARS type equates 

 i jλ  to 
 i jμ , thus with (12), the relative accelerometer-to-

gyro misalignment becomes 1
2   jii j i ji jμλ υκ+ = + where 

 i jυ is the orthogonality error between 

the i and j axis gyros. 
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Fig. 5 - Accelerometer-To-Gyro Misalignment 
 
The previous discussion shows that for an SRT rotation sequence designed to determine 

accelerometer-to-gyro misalignment, a signature of 
 jii jλ κ+  (or 1

2   i ji jμ υ+ ) must appear in 

(97) measurement Strt
SF

B
HaΔ .  Thus, StrtB

Ha φΔ in (96) must excite jiκ  and Strt
SF

B
HaΔ  in (103) must 

excite 
 i jλ  so they combine in (95) for the StrtB

HaΔ  measurement component.  Ideally, this 
should be accomplished without additional errors entering the measurement.  Both of these 
objectives can be achieved with a single 180 degree rotation around a horizontal axis. 

 
Consider the 180 degree rotation to be around StrtB

BStrtuξ .  Then Strt StrtB B
BStrtBEndu uξξ = , 

Strt StrtB B
BStrtBEndu uσσ = − , Strt StrtB B

BStrtBEndu uνν = − , and (103) simplifies to 
 

 ( )2 . 2Strt Strt Strt Strt Strt
SF

B B B B B
Dwn BStrt BStrt BStrtH

g u u u ua ξν σν ξ σλ λ= −Δ  (104) 

 
Eq. (104) shows that accelerometer misalignment can be determined from the component of 

Strt
SF

B
HaΔ  along rotation axis StrtB

BStrtuξ .     
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The Strt
SF

B
HaΔ  accelerometer error driven component from (104) combines in (95) with gyro 

error driven component StrtB
Ha φΔ  from (96) to form the StrtB

HaΔ  horizontal differential 

measurement.  For the 180 degree (plus or minus) single rotation selected for this sequence, 
StrtB

Ha φΔ  in (96) simplifies: 

 

( )1 1 1 1 1
2Strt Strt Strt Strt StrtStrt

Strt Strt Strt Strt Strt

Strt Strt Strt

B B B B BB
ScalEnd B B B B

B B B
Dwn EndH

u u u u u

g ua

μ

φ

ςμ ημμ μ ς μ ηΒ
φ π κ κ κ

φ

= ± + × + ×

= ×Δ
 (105) 

 
Having defined StrtB

BStrtuξ in (104) as the rotation axis sets rotation axis 
1

Strt
Strt

B
B

uμ in (105) to 

1
Strt Strt

Strt
B B

BStrtB
u uξμ =  and μ ξ= .  For (105) we then arbitrarily assign 

1
, ,Strt Strt

Strt
B B

BStrtB
u uνςς ν=  

which sets the remaining third axis to 
1

, ,Strt Strt
Strt

B B
BStrtB

u uσηη σ= .  Substituting these equalities in 

(105) converts StrtB
Endφ  to the equivalent: 

 
 ( )2Strt Strt Strt Strt StrtStrt B B B B BB

Scal BStrt BStrt BStrt BStrt BStrtEnd u u u u uξ νξ σξξ ξ ν ξ σφ π κ κ κ= ± + × + ×  (106) 

 
Because StrtB

BStrtuν  has been defined in Section 6.3.1 to be vertical, 

( ).Strt Strt Strt StrtB B B B
Dwn DwnBStrt BStrtu u u uν ν=  and StrtB

Ha φ
Δ  in (105) becomes with (106): 

 

 

( )

( ) ( )
( )

.

.
2

Strt StrtStrt Strt Strt

Strt Strt

B BB B B
DwnBStrt BStrt EndH

B BStrt Strt
Scal BStrt BStrt

B B BB B Strt Strt Strt
BStrt BStrt BStrtDwnBStrt

B B BStrt Strt Strt
BStrt BStrt BStrt

H

g u u ua

u u

u u ug u u

u u u

φ ν ν

ν ξξ

νξ ν ξ νν

σξ ν ξ σ

φ

π κ

κ

κ

= ×Δ

± ×

⎡ × ×=
+

+ × ×
⎣

( )( ). 2Strt Strt Strt Strt StrtB B B B B
ScalDwnBStrt BStrt BStrt BStrtg u u u u uξ νξν ν ξ ξπ κ κ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪⎤
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎦⎩ ⎭

= ± × +

 (107) 

 
Substituting (104) and (107) into (95) then obtains: 
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 ( )
( ) ( )

. 2

2 .

Strt Strt Strt
SF

Strt Strt Strt Strt Strt

Strt Strt Strt

B B B
H H H

B B B B B
Scal DwnBStrt BStrt BStrt BStrt

B B B
Dwn BStrt BStrt

a a a

g u u u u u

g u u u

φ

ξ σν ν ξ σ

νξξνν ξ

π λκ

λ κ

= +Δ Δ Δ

± × −

+ +

 (108) 

 
and with (43) and (8) or (14) for Scalξκ : 

 

 
( ) ( )

( ) ( )
1 .

2 2 .

.
Strt Strt Strt Strt Strt

Strt Strt Strt Strt

B B B B B
DwnBStrt BStrt BStrtH

B B B B
DwnBStrt BStrt BStrt

g u u u uSigna

gu u u u

ξξ ξξξ ν ν ξ

νξσ ξνσ ν ξ

π βκ κ

λ λ κ

⎡ ⎤± + ×Δ ⎢ ⎥⎣ ⎦

− + +
 (109) 

 
With (12) and (13) for MARS based B frame coordinates, (109) is equivalently: 
 

 
( ) ( )

( ) ( )
1 .

2 2 . / 2

.
Strt Strt Strt Strt Strt

Strt Strt Strt Strt

B B B B B
DwnBStrt BStrt BStrtH

B B B B
DwnBStrt BStrt BStrt

g u u u uSigna

gu u u u

ξξ ξξξ ν ν ξ

σ ξνξνσ ν ξ

π βκ κ

μλ υ

⎡ ⎤± + ×Δ ⎢ ⎥⎣ ⎦

− + +
 (110) 

 
The StrtB

BStrtuξ  component of StrtB
HaΔ  in (110) or (109) was used as the accelerometer-to-gyro 

misalignment measurement for rotation sequences 7 - 12 in Table 1.  For example, for Sequence 
7, the initial IMU ν  vertical axis is down along y (i.e., along Strt Strt StrtB B B

DwnBStrt yBStrtu u uν = = ) and the 

IMU ξ rotation axis is x (around Strt StrtB B
BStrt xBStrtu uξ = ), thus using the traditional x, y, z right-hand 

rule, Strt Strt Strt Strt StrtB B B B B
BStrt BStrt yBStrt xBStrt zBStrtu u u u uν ξ× = × = − .  From the form of (100) we select StrtB

BStrtuσ  

for x, y, z right-hand compatibility, thus Strt Strt Strt Strt Strt StrtB B B B B B
xBStrt yBStrt BStrt BStrt zBStrt BStrtu u u u u uξ ν σ× = × = = .  

Then, for Sequence 7 having positive 1
.

β  rotation rate around x, (110) becomes: 
 

 
( ) ( )2 2 / 2Strt Strt StrtB B B

xx xxx z xyxyzBStrt xBStrtH g gu ua π μλ υκ κ− + + + +⎡ ⎤Δ ⎣ ⎦  (111) 

 
Eq. (111) matches 7

StrtB
xaΔ  and 7

StrtB
zaΔ  in Eq. (16) for the StrtB

xBStrtu  and StrtB
zBStrtu  components of 

StrtB
HaΔ .  For confirmation, Part 3 derives the 7

StrtB
xaΔ  and 7

StrtB
zaΔ  Sequence 7 measurement 

formulas [4, Eq. (54)] directly from (7) with (5), obtaining the identical result. 
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6.3.1.2  Accelerometer Bias Error Determination 
 

Eqs. (109) - (110) in Section 6.3.1.1 show that for the 180 degree single rotation sequence 
used for accelerometer misalignment determination (from the StrtB

BStrtuξ component of StrtB
HaΔ ),  

accelerometer bias σλ  also appears on the StrtB
BStrtuσ  component (but together with the 

( )1
.

g Signξξ ξξξπ βκ κ⎡ ⎤± +⎢ ⎥⎣ ⎦
 scale factor term).  Thus, σλ can also be determined as part of the 

Section 6.3.1.1 misalignment test by subtracting ( )1
.

g Signξξ ξξξπ βκ κ⎡ ⎤± +⎢ ⎥⎣ ⎦
from the StrtB

BStrtuσ

component of StrtB
HaΔ .  However, this method requires that the ξξκ  and ξξξκ  scale factor error 

coefficients be known from previously performed Section 6.2.1 gyro scale factor error 
determination tests.  A problem with this approach (for some gyros) is the potential shift in gyro 
scale factor errors that could occur from the time of gyro scale factor measurement to the time of 
the accelerometer misalignment test.  To eliminate this potential error source, this section 
discusses an alternative as an extension of the accelerometer misalignment determination test.  
The result will be the equivalent of  (109) - (110), but with the gyro scale factor error replaced by 
gyro orthogonality error.  Since gyro orthogonality is more stable than scale factor (for some 
gyros), the following test is recommended for accelerometer bias determination in general.  
Unfortunately, limitations of a two-axis rotation fixture only allow two of the accelerometer 
biases to be determined with this method ( xλ  and yλ  for a Section 4.1 IMU mounting having 
IMU z along the inner rotation fixture axis).  Thus, for the Table 1 sequence (based on a Section 
4.2 type IMU mounting), the StrtB

zBStrtu  component of Eq. (111) would still be used for zλ  
determination, as shown in Eqs. (16). 

 
An alternative method for accelerometer bias determination adds a 180 degree rotation 

around the vertical preceding the 180 degree horizontal axis rotation discussed in the previous 
section.  The added rotation reverses the polarity of the bias and misalignment effects along the 
horizontal rotation axis at the start of the second rotation.  The bias polarity reversal holds during 
the second rotation along the rotation axis.  In contrast, during the second rotation, the 
misalignment effect along the rotation axis again reverses polarity, returning to its value at the 
start of the rotation sequence.  The difference between horizontal acceleration components 
before and after the rotation sequence (i.e., StrtB

HaΔ ), thereby cancels the misalignment effect 
components along the second rotation axis and doubles the bias effect.  The analytics are detailed 
next. 

 
We define the first rotation to be around the IMU ν  axis and the second around axisξ .  

Because all rotations in the sequence are 180 degrees, the , ,ν ξ σ  axes following each rotation 
will remain parallel to , ,ν ξ σ  at the start of the rotation sequence.  The first rotation is around 
the vertical (IMU axisν ), reversing the direction of the IMU ,ξ σ  axes so that following 
rotation 1, 
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 1 21 2

1 2

Strt Strt Strt Strt Strt Strt
End Strt StrtEnd Strt Strt

Strt Strt Strt
End Strt Strt

B B B B B B
B B B B B B

B B B
B B B

u u u u u u

u u u

ξ ξ ξ σ σ σ

ν ν ν

= = − = = −

= =
 (112) 

 
The second rotation is about the IMU ξ  axis, reversing the direction of the IMU ,ν σ  axes.  
Thus, following rotation 2, 
 

 2 2 2 2

2 2

Strt Strt Strt Strt Strt Strt
End Strt Strt End Strt Strt

Strt Strt Strt
End Strt Strt

B B B B B B
B B B B B B

B B B
B B B

u u u u u u

u u u

ν ν ν σ σ σ

ξ ξ ξ

= − = − = − =

= = −
 (113) 

 
Since rotation 2 is the last in the sequence, 

2
Strt Strt

End End
B B

B Bu uσ σ= , 
2

Strt Strt
End End

B B
B Bu uξ ξ= , 

2
Strt Strt

End End
B B

B Bu uν ν=  and the (113) results are equivalently: 

 
 Strt Strt Strt Strt Strt Strt

End Strt End StrtEnd Strt
B B B B B B

B BB B B Bu u u u u uξ ξν ν σ σ= − = − =  (114) 

 
Substituting (114) into (103) then obtains for Strt

SF
B
HaΔ : 

 
 ( )2 . 2Strt Strt Strt Strt Strt

SF
B B B B B

Dwn BStrt BStrt BStrtH
g u u u ua σν ξν σ ξλ λ= −Δ  (115) 

 
The Strt

SF
B
HaΔ  accelerometer error driven component from (115) combines in (95) with gyro 

error driven component StrtB
Ha φΔ  from (96) to form the StrtB

HaΔ  horizontal differential 

measurement.  For the first rotation around IMU axis ν  in (112), we set rotation axis μ  in (96) 
to μ ν= , and arbitrarily assign ,ς η  in (96) to, respectively, ,ξ σ .   For the second rotation 
around the IMU ξ  axis in (113) we set rotation axis μ  in (96) to μ ξ=  , and arbitrarily assign 

,ς η  in (96) , respectively, to ,ν σ .  Thus, for rotations 1 and 2, 
 

1 11 1 1 1

2 22 2 2 2

, , , , , ,

, , , , , ,

Strt Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt Strt

Strt Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt Strt

B B B B B B
B B B BB B

B B B B B B
B B B BB B

u u u u u u

u u u u u u

μ ς ξ ην σ

μ ξ ς ην σ

μ ν ς ξ η σ

μ ξ ς ν η σ

= = =

= = =
 (116) 

 
Equating 

1 11
, , , ,Strt Strt Strt Strt Strt Strt

Strt Strt Strt StrtStrt Strt
B B B B B B

B BB B B Bu u u u u uξ ξν σ ν σ=  by definition, (116) with (112) 

becomes: 
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1 1 1

2 2 2

, , , , , ,

, , , , , ,

Strt Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt Strt

Strt Strt Strt Strt Strt Strt
Strt StrtStrt Strt Strt Strt

B B B B B B
B B B BB B

B B B B B B
B B B BB B

u u u u u u

u u u u u u

μ ς ξ ην σ

μ ξ ς ην σ

μ ν ς ξ η σ

μ ξ ς ν η σ

= = =

= − = = −
(117) 

 
Substituting (117) in (96) then obtains for 1

StrtBφΔ  and 2
StrtBφΔ : 

 

( )
( ) ( )

1

2

2

2

Strt Strt Strt Strt StrtStrt
Strt Strt Strt StrtStrt

Strt Strt Strt Strt StrtStrt
Strt StrtStrt Strt Strt

B B B B BB
Scal BB B B B

B B B B BB
Scal B B BB B

u u u u u

u u u u u

ν

ξ

ξν σνξν ν ν σ

νξ σξξ ξ ξν σ

φ π κ κ κ

φ π κ κ κ

Δ = ± + × + ×

Δ = − ± + − × + ×
 

(118) 

 
Summing 1

StrtBφΔ  and 2
StrtBφΔ  from (118) in (96) then finds for StrtB

Endφ : 
 

( )
( )

1 2

2 2 2

Strt StrtStrt Strt Strt
Strt Strt

Strt Strt Strt Strt Strt Strt
Strt Strt Strt StrtStrt Strt

B BB B B
Scal ScalEnd BB

B B B B B B
B BB B B B

u u

u u u u u u

ν ξ ξν

ξν νξ σν σξξ ξν ν σ σ

φ φ φ π πκ κ

κ κ κ κ

= Δ + Δ = ± − ±

+ + × + × + ×
(119) 

 
The impact of StrtB

Endφ  from (119) on the (95) StrtB
HaΔ  measurement is determined by 

Nom
Strt Strt StrtBB B

Dwn EndH
g ua

φ
φ= ×Δ  in (96) which adds to Strt

SF
B
HaΔ  in (95) to form StrtB

HaΔ .  Because 

Nom
StrtB

Dwnu  and Strt
Strt

B
Buν  are parallel, ( ).Strt Strt Strt Strt

Strt Strt
B B B B
Dwn Dwn B Bu u u uν ν= , hence StrtB

Ha φΔ  in (96) 

becomes with (119): 
 

 

( )
( ) ( )

( ) ( )

.

.

2 .

Nom
Strt Strt Strt Strt StrtStrt Strt

Strt Strt

Strt Strt Strt Strt
Strt Strt Strt

Strt Strt Strt Strt
Strt StrtStrt

BB B B BB B
Dwn DwnEnd EndB BH

B B B B
Scal Dwn BB B

B B B B
Dwn BB B

g gu u u ua

g u u u u

g u u u u

φ

ξ

ν ν

ξν ν

ξν νξ σνξν σ

φ φ

π κ

κ κ κ

= × = ×Δ

= − ± ×

⎡− + +⎢⎣
⎤
⎥⎦

 (120) 

 

Finally, we combine (120) for StrtB
Ha φΔ  with (115) for Strt

SF
B
HaΔ  to form StrtB

HaΔ  in (95) for the 

sequence horizontal measurement:  
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( ) ( )

( ) ( )

. 2

2 .

Strt Strt Strt
SF

Strt Strt Strt Strt Strt
Strt Strt StrtStrt

Strt Strt Strt
Strt Strt

B B B
H H H

B B B B B
ScalDwn BB B B

B B B
Dwn BB

a a a

g u u u u u

gu u u

φ

ξ σνσνξν ν σ

ξν νξξ ξν

π λκ κ

λ κ κ

= +Δ Δ Δ

⎡ ⎤= − ± × − −⎢ ⎥⎣ ⎦

⎡ ⎤− + +⎣ ⎦

 (121) 

 
Using the (11) - (12) gyro orthogonality error formulas and (13) for MARS B frame coordinates, 
(121) becomes equivalently: 
 

( ) ( )

( ) ( )

. 2

2 .

Strt Strt Strt Strt Strt Strt
Strt Strt StrtStrt

Strt Strt Strt
Strt Strt

B B B B B B
ScalDwn BB B BH

B B B
Dwn BB

g u u u u ua

gu u u

ξ σνσνξν ν σ

ξ νξ ξν

π μ υκ

λ υ

⎡ ⎤= − ± × − −Δ ⎢ ⎥⎣ ⎦

− +
 (122) 

 
For Sequence 13 in Table 1, the initial IMU ν  vertical axis is downward along z (along 
Strt Strt StrtB B B

DwnBStrt zBStrtu u uν = = ) and the IMU ξ rotation axis is y (around Strt StrtB B
BStrt yBStrtu uξ = ), thus, 

using the traditional x, y, z right-hand rule, Strt Strt Strt Strt StrtB B B B B
BStrt BStrt zBStrt yBStrt xBStrtu u u u uν ξ× = × = − .  

From the form of (100) we select StrtB
BStrtuσ  for x, y, z right-hand compatibility, thus,

Strt Strt Strt Strt Strt StrtB B B B B B
yBStrt zBStrt BStrt BStrt xBStrt BStrtu u u u u uξ ν σ× = × = = .  Then, for Sequence 13 having positive 

1
.

β  rotation rate around x, (122) with (98) becomes with (43) and (8) or (14) for Scalξκ : 

 

( ) ( ) ( )2 2Strt Strt Strt
Strt

B B B
yy yyy xz y yzxz xBStrt yBH g gu ua π μ υ λ υκ κ⎡ ⎤= + + − − +Δ ⎣ ⎦  (123) 

 
Eq. (123) matches the Part 3 result [4, Eq. (63)] for Sequence 13 in Table 1. 
 

The component of (122) along Strt
Strt

B
Buξ  is used as the differential acceleration measurement 

in determining the gξ νξλ υ+  accelerometer-to-gyro misalignment: 
 

 ( ). 2StrtStrt
Strt

BB
B H gu a ξ νξξ λ υ= − +Δ  (124) 

 
 Eq. (124) was used to form the ( )13 2StrtB

y yzy ga λ υΔ = − +  and ( )14 2StrtB
x zxx ga λ υΔ = − +  

measurement components in Eqs. (16) for rotation sequences 13 and 14 with Strt
Strt

B
Buξ defined to 

be along the outer rotation fixture axis and zν =  downward at rotation sequence start. 
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 6.3.2  Sequences To Determine Accelerometer Scale Factor Errors 
 

In contrast with the previous sections, accelerometer scale factor errors are determined from 
either the start or end of the rotation sequence vertical downward acceleration measurements in (7) 
with (6), using (9) or (15) for the LinScalλ  and Asymλ  error components.  For the 14 rotation 
sequences in Table 1, there are multiple choices of which vertical measurements to use.  As a 
minimum, the choice should include a measurements for each IMU axis being up and down so that 
the components of LinScalλ  and Asymλ  can be discriminated (e.g., Sequences 7 - 9 in Table 1). 

 

Using (6) for Strt
Strt

B
SFaδ  and End

End
B
SFaδ  , the vertical components in (7) become 

 

( )
( )

.

.

Strt Strt Strt Strt
Down

Nom
Strt End End End

Down

B B B B
LinScal Mis Asym BiasDwn DwnSFSignStrt

BB B B
LinScal Mis Asym BiasDwn DwnSFSignEnd

gu uAa

gu uAa

λλ λ λ

λλ λ λ

⎡ ⎤≈ − + + +⎢ ⎥⎣ ⎦
⎡ ⎤

≈ − + + +⎢ ⎥
⎣ ⎦

 (125) 

 
Because the IMU orientation at the start of a rotation sequence will have one of its axes parallel 
to StrtB

Dwnu ,  (9) or (15) show that StrtB
Mis Dwnuλ  will have no component along StrtB

Dwnu  and 

( )Strt StrtB B
LinScal Asym DwnSFSign uAλ λ+  will be along StrtB

Dwnu .  Similarly, because the IMU orientation 

at the end of a rotation sequence will have one of its axes parallel to EndB
Dwnu , (9) or (15) show 

EndB
Mis Dwnuλ  will have no component along EndB

Dwnu and ( )Strt EndB B
LinScal Asym DwnSFSign uAλ λ+  is 

along EndB
Dwnu .  Thus, with (9) or (15) for the LinScalλ  and Asymλ  components, (125) reduces to: 

 

 
( )
( )

. .

. .

Strt Strt Strt Strt
StrtDown

Strt End End End
EndDown

B B B B
kk kkk BiasDwn DwnkBStrt

B B B B
ll lll BiasDwn DwnlBEnd

g u u ua

g u u ua

λλ λ

λλ λ

= − − +

= − − +
 (126) 

 
where 

k  =  IMU axis parallel to StrtB
Dwnu  at the start of a rotation sequence. 

 
Strt
Strt

B
kBu  = Unit vector along IMU axis k at the start of a rotation sequence. 

  
kkλ  and kkkλ   =  Elements in the (9) or (15) LinScalλ  and Asymλ  matrices 

corresponding to IMU axis k. 
 
l  =  IMU axis parallel to EndB

Dwnu  at the end of a rotation sequence. 
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End
End

B
lBu  = Unit vector along IMU axis l at the end of a rotation sequence. 

 
llλ  and lllλ   =  Elements in the (9) or (15) LinScalλ  and Asymλ  matrices corresponding 

to IMU axis l. 
 

As an example, consider Sequence 7 for which IMU axis k is y, downward at the start of the 
sequence, and IMU axis l is y, upward at the end of the sequence.  Thus, 

Strt Strt Strt
Strt Strt

B B B
DwnyBkBu u u= =  and End End Strt

End End
B B B

DwnyBlBu u u= = − .   Then (126) becomes 

 

( )
( ) ( )

. .

. .

Strt Strt Strt Strt
Down Strt

Strt Strt Strt
Strt Strt Strt

B B B B
yy yyy BiasDwn DwnyBStrt

B B B
yy yyy yy yyy yBiasyB yB yB

g u u ua

g gu u u

λλ λ

λλ λ λ λ λ

= − − +

= − − + = − − +
 

  (127) 

( )
( ) ( )

. .

. .

Strt End End End
Down End

End End End
End End End

B B B B
yy yyy BiasDwn DwnyBEnd

B B B
yy yyy yy yyy yBiasyB yB yB

g u u ua

g gu u u

λλ λ

λλ λ λ λ λ

= − − +

= − + − = − + −
 

 
which was used for 7

StrtB
Downa  and 7

EndB
Downa  in (16).  Part 3 [4, Eqs. (55)] confirms the same results 

based directly on using numerical values for the matrix and vector parameters. 
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