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ABSTRACT 

 
This article defines analytical formulas for combining a sequence of high-

speed calculated coning/sculling (or rotation/translation vectors) with integrated 
angular-rate/specific-force-acceleration increments into the form required for 
lower-speed strapdown inertial navigation attitude/velocity updating.  This has 
been the basic “two-speed” concept traditionally embedded within strapdown 
inertial navigation system (INS) software.  This article expands the two-speed 
concept into two physically separate operations, the high-speed portion resident 
within a strapdown Inertial Measurement Unit (IMU), the lower-speed portion 
resident within a separate central computer receiving the IMU outputs.  The focus 
is to analytically identify the IMU high-speed computations, outputs, and “down-
summing” interface routine required in the central computer for conversion into 
the lower-speed equivalent for attitude/velocity updating.  A universal IMU high-
speed output interface format is then defined, compatible with down-summing 
into several attitude/velocity computation approaches, each differing by analytical 
approximations used in their velocity update formulation. This article is an 
expansion of the approach described in a previous article for down-summing IMU 
provided high-speed coning (or rotation) vectors and integrated-angular-rate-
increments, into the form needed for lower-speed attitude updating within a 
central computer. 

 
INTRODUCTION 
 

In a modern-day strapdown inertial navigations system (INS), a two-speed architecture has 
been commonly used for attitude and velocity updating.  With the two-speed approach, attitude/ 
velocity are updated at a basic computation speed using inputs generated at high-speed.  The 
high-speed algorithms are designed to accurately measure high frequency dynamic angular-
rotation and linear-acceleration effects (“coning” motion for attitude updating, “sculling” motion 
for velocity updating ).  The general concept was originated in 1966 for attitude updating as a 
means for reducing computer throughput [1].  An important subsequent contribution in [2] was 
to use an exact algorithm for attitude updating coupled with an approximate high-speed coning 
correction based on the Goodman/Robinson theorem [3].  More sophisticated two-speed digital 
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attitude updating approaches have evolved since [4 - 11] based on simplified versions of the 
Laning rotation vector rate equation [12]. 

 
Ref. [5] presented a two-speed analytical approach for velocity updating.  Refs. [9, 13, 14 

(Sects. 7.2), 15] expanded the [2] exact two-speed attitude updating architecture to velocity 
updating coupled with associated high-speed sculling algorithms.  For the unified 
attitude/velocity/position updating architecture presented in [16], the sculling contribution was 
imbedded within a “velocity-translation vector”, analogous to the coning contribution for attitude 
updating imbedded within the “rotation vector”.  (Note: Refs. [11, 14 (Sects. 7.3.3 & 19.1.4), 16] 
also describe a “position translation vector” for high resolution position updating with an 
associated high-speed “scrolling” computation analogous to coning/sculling for attitude/velocity 
updating.)  Ref. [15] showed how a fixed gain digital filter can be designed and applied to 
strapdown accelerometer (or gyro) outputs so that sculling algorithms can be modified to 
accommodate dynamic phase shift between gyros/accelerometers and between angular/linear 
vibrations.  Ref. [17] identified the common analytical structure that exists within a class of 
coning versus sculling algorithms, and [18] provided a general formula for converting previously 
designed coning algorithms into their equivalent sculling counterparts. 

 
For many years, high accuracy strapdown technology contained navigation parameter 

updating operations within the INS computer with associated results provided as outputs.  After 
basic strapdown computational methods had reached a common high level of sophistication (i.e., 
“documented analytical agreement”), new INS architectures expanded to include a strapdown 
Inertial Measurement Unit (IMU) as an option, a separate package containing gyros, 
accelerometers, sensor compensation related computations, while providing high-speed 
coning/sculling vectors and integrated angular-rate/specific-force increments for output.  With 
this approach, navigational attitude/velocity/position updating is executed within a separate 
centralized computer using IMU data for input.  Interfacing algorithms are then required to 
convert (“down-sum”) the IMU provided high-speed data into the lower-speed equivalents for 
navigation parameter updating (i.e., a physically separated two-speed approach).  The required 
down-summing interface routines are identical to what has been applied within previous 
integrated strapdown INS two-speed computational structures. 

 
Ref. [19] defined an IMU to central-computer rate-conversion function for the rotation 

vector, analytically showing how IMU high-speed coning and integrated-angular rate increment 
outputs can be down-summed into a rotation vector for lower-speed attitude updating.  This 
article expands on [19], adding the equivalent for the sculling vector, showing how IMU high-
speed computed sculling (and associated integrated angular-rate/specific-force increments) can 
be “down-summed” into a velocity-translation vector (or equivalent) for lower-speed velocity 
updating.  Down-sum approaches are presented for four velocity update approaches, differing by 
approximations used in their analytical formulation.  Based on the down-sum methods shown, a 
universal IMU high-speed output format is then defined that is compatible with down-summing 
for either of the attitude/velocity updating methods shown.     
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ROTATION AND VELOCITY-TRANSLATION VECTOR ANALYTICS 
  

Angular attitude and velocity in a modern-day strapdown INS is updated at a prescribed rate 
based on the fundamental equation relating the attitude rate of change to angular rotation rate, 
and the velocity rate of change to gravity plus non-gravitational “specific force” acceleration: 
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where 

 

N = Superscript indicating that the underlined vector components are projected on navigation 
coordinate frame N.  For this article, N is defined to be non-rotating.  Augmentation can 
be added to include prescribed rotations of the N frame [14 (Sects. 7.1.1.2 & 7.1.1.2-2)]. 

 

B = Superscript indicating that the vector components are as projected on strapdown rotating 
(“body”) coordinate frame B, the frame to which the strapdown gyros and accelerometers 
are aligned. 

 

n = Computation cycle index used for attitude/velocity updating in the INS computer. 
 

1nB − = Non-rotating coordinate frame parallel to the rotating B frame at computer cycle n-1. 
 

B
IBω = Angular rate vector of the B frame relative to non-rotating inertial space (IB subscript) 

that would be measured by the INS strapdown gyro triad. 
 

N
BC  = Direction cosine matrix that transforms vectors from the B frame to the N frame. 

 

1n
N
BC −

 =  matrix at computer cycle n-1. N
BC

 

1nB
BC −  = Direction cosine matrix that transforms vectors from the instantaneously rotating B 

frame to the non-rotating  coordinate frame. 1nB −
 

Nv  = Velocity (rate of change of position) in non-rotating N frame navigation coordinates. 
 

Ng  = Local gravity in non-rotating N frame coordinates. 
 

B
SFa = Non-gravitational “specific-force” acceleration in B frame coordinates, the 

acceleration sensed by the strapdown accelerometers. 
 

 
Refs. [13 Rev 2 (Sect. 19.1.3), 15, 16] provide a high-accuracy two-speed incremental 

integral form of (1) for attitude/velocity updating: 
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where 
 

nφ  = Rotation vector for attitude update cycle n that measures angular rotation relative to 
non-rotating inertial space over the n-1 to n time interval. 

 

 nφ  = Magnitude of nφ . 
 

( nφ ×)  = Cross-product operator form of nφ  defined such that when formatted as a square 

matrix, its product with an arbitrary column-matrix formatted V vector equals the cross-
product of nφ with that vector, i.e., ( )n nV Vφ φ× = × . 

 
N
nv  = Velocity vector at computer cycle n. 

 

n
N
gvΔ  = Change in velocity caused by gravity over the n-1 to n velocity update time cycle 

interval. 
 

1n
n

B
SFv −Δ  = Change in velocity due to specific force (non-gravitational) acceleration over the 

n-1 to n velocity update time cycle interval as measured in the non-rotating  frame.  1nB −
 

nη = Velocity-translation vector that measures velocity change over the n-1 to n time 
interval. 

 
The rate of change of the rotation and velocity-translation vectors in (2) is derived in [16] as: 
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where 
 
 

t = General time parameter. 
 

1nt −  = Time t at the end of the last n cycle. 
 

φ  = Rotation vector that measures angular rotation relative to non-rotating inertial space over 
general small time interval  to t. 1nt −

 

α  = Integral of B
IBω  over the  to t time interval.  1nt −

 

η  = Velocity-translation vector over the small integration time interval in (3) from  to t. 1nt −
 

υ  = Integral of B
SFa  over the  to t time interval. 1nt −

 

τ  = Dummy integration parameter. 
 

The integral of (3) over a velocity update cycle provides the rotation/velocity-translation vectors 
in (2): 
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where 
 

nα  = Integrated angular rate increment over the n-1 to n time interval (i.e., from  to ). 1nt − nt
 

nφδ = The “coning correction” vector used in calculating nφ  , i.e., the “correction” to 
integrated angular rate increment nα . 

 

nυ = Integrated specific force increment over the n-1 to n time interval (i.e., from  to ). 1nt − nt
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nηδ   = The “sculling correction” vector used in calculating nη  , i.e., the “correction” to 
integrated specific force increment nυ . 

 
An important characteristic of (2) with (4) is that it provides an exact (true) solution under 

constant B frame angular-rate/specific-force-acceleration, being only in error by approximations 
in the (4) coning/sculling correction calculations.  Since coning and sculling corrections as 
analytically defined in (4) are very small in operation (under vibration), inaccuracies in (2) are 
negligible, particularly when compared with gyro/accelerometer errors. 

  
For strapdown IMU output (see definition in the Introduction), coning/sculling vectors and 

integrated angular-rate/specific-force increments can be calculated over a faster l time cycle (i.e., 
shorter than attitude/velocity update cycle n) as an integral of (3) over the IMU computation l 
cycle time period: 
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where 
 

l  = Computer cycle index for calculating lφ  and lη .  There are an integer number of l-1 to l 
time intervals (i.e., from  to ) in each n-1 to n time interval (i.e., from  to ). 1lt − lt 1nt − nt

 

( )tαΔ = Integral of B
IBω  over the  to t time interval.  1lt −

 

( )tυΔ = Integral of B
SFa  over the  to t time interval. 1lt −

 

lαΔ = Integral of B
IBω  over the l-1 to l time interval. 

 

lυΔ  = Integral of B
SFa  over the l-1 to l time interval. 

 

lφδ = The “coning” correction to integrated angular rate increment lαΔ . 
 

lφ = Rotation vector for attitude update cycle l that measures angular rotation relative to non-
rotating inertial space over the l-1 to l time interval. 

 

lηδ  = The “sculling” correction to integrated specific force increment lυΔ . 
 

lη = Velocity-translation vector that measures velocity change over the l-1 to l time interval. 
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Several digital algorithms have been designed to calculate the lφδ , lηδ  coning/sculling 

integrals based on assumed analytical forms of B
IBω  and B

SFa .  For example, for B
IBω  and B

SFa

approximated by constant plus linear ramping functions, [13] shows that ( )1
1

12 l llφδ α α−= Δ × Δ  

and ( )1 1
1

12 l l l llηδ α υ α υ−= Δ × Δ − Δ × Δ − .  More accurate lφδ , lηδ  approximations have 

included additional l iα −Δ , l jυ −Δ  cross products (i.e., for i and j from 0 to greater than 1), or 

have been structured as a summation of weighted k iα −Δ , k jυ −Δ  cross products, each k iα −Δ , 

k jυ −Δ  integrated angular-rate/specific-force increment taken over a higher speed k cycle (Note -  

There are an klL  number of k cycles in an l cycle, and the number N of sequential k cycles used to 
form lφδ , lηδ  can be equal to or larger than klL  [10].) 
 

The next section derives algorithms for converting (“down-summing”) a sequence of lφδ , 

lηδ  coning/sculling correction vectors (and associated lαΔ , lυΔ  integrated angular-
rate/specific-force increments) generated with (5) at computation rate l, into single rotation/ 
velocity-translation vectors nφ , nη  spanning the longer n cycle time interval required for 
attitude/velocity updating in (2).  Additionally, the equivalent will be provided for converting a 
sequence of lφ , lη  rotation/velocity-translation vectors into their n cycle equivalent nφ , nη  
form.   The l cycle coning/sculling correction and rotation/velocity-translation vectors (with the 
integrated angular-rate/specific-force increments) in (5) represent outputs that would be provided 
by a strapdown IMU for central-computer down-summing into a lower n cycle rate for 
attitude/velocity updating. 

 
Sections following the next will develop equivalent down-summing algorithms for situations 

where approximations to the (2) velocity equations are the basis for IMU outputs and subsequent 
velocity updating operations.    

 
BASIC CONING AND SCULLING CORRECTION VECTOR DOWN-SUMMING 
 

For the coning correction vector nφδ  used in (4) for n-cycle attitude updating in (2), [19] 

derived a down-summing routine to generate nφδ  from a sequence of  lφδ  coning correction 
vectors and lαΔ  integrated angular rate increments provided at the higher l cycle rate from a 
strapdown IMU: 
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The nφδ  result from (6) would then be used in place of nφδ in (4) to generate rotation vector 

nφ  for attitude/velocity updating in (2).  Ref. [19] also derives the equivalent of (6) for down-

summing a sequence of  lφ  rotation vectors directly into nφ : 
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Note that for l = 1, the 1lα −  term in (6) and (7) is zero as can be seen from the following: 
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For the sculling correction vector nηδ  used in (4) for n-cycle velocity updating in (2), the 

remainder of this section derives a down-summing routine to generate nηδ  from a sequence of 

lηδ  sculling correction vectors and lαΔ , lυΔ  integrated angular-rate/specific-force increments 
provided at a higher l cycle rate from a strapdown IMU.  Alternatively, [18] could be used 
directly to convert (6) for the coning vector into the equivalent sculling vector down-summing 
routine.  For comparison, the same result is derived next from (4) and (5) as in [19]. 

 
For subsequent reference, first recall that  
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From (9) we can write 
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Substituting (10) into the (4) sculling correction vector nηδ  expression then finds  
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Eq. (11) simplifies by substituting definitions from (9) for particular terms: 
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The nηδ  result from (12) would then be used in place of nηδ in (4) to generate velocity-

translation vector nη  for velocity updating in (2). 
 

The equivalent of rotation vector nφ  down-summing formula (7) is also easily derived from 

(12) for velocity-translation vector nη  by recognizing from (4) with (9) that 
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Substituting nηδ  from (12) with (5) for lη  in (13) obtains 
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Then from (14) with (5) for lη , the equivalent to (12) becomes 
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Eqs.  (12) and (15) are down-summing routines for calculating the n cycle sculling correction 
vector nηδ  or the velocity-translation vector nη  used in (4) for n-cycle velocity updating in (2).  
Comparing (12) and (15) with the (6), (7) coning/rotation vector equivalents shows the similarity 
in form between the two expressions.  Ref. [18] analytically shows how this similarity can be 
used to directly translate (6), (7) into (12), (15), thus bi-passing the (9) – (15) derivation process. 

 
DOWN-SUMMING REQUIREMENTS FOR ALTERNATE VELOCITY UPDATING 

 
This section discusses down-summing requirements when the velocity updating computation 

differs from the “exact” version provided in (2) with (4).  Three such examples are provided 
next, denoted as Variation 1, 2, and 3. 

 
VARIATION 1 
 

For Variation 1, an approximate equivalent of (2) can be derived as in [14 Sect. 7.2.2.2.1], or 
equivalently, by incorporating approximations in (2).  For the latter approach, the coning 
correction vector used when calculating rotation vector nφ  is neglected so that nφ  becomes 

approximately nα , the n cycle integrated angular rate increment.  Then with (4), 1n
n

B
SFv −Δ  in (2) 

approximates as 
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The nηδ  sculling vector in (16) would be calculated as in (4) with (12) for the corresponding 
down-summed l cycle formula. 
 

The term in (16) between nυ  and nηδ   has been denoted as “exact rotation compensation” 
[14 Sect. 7.2.2.2.1] in that the velocity updating result would be exact under constant B frame 
angular-rate/specific-force conditions for which nηδ  sculling is zero, and coning is zero (hence, 

nφ  would exactly equal nα ).  Errors in (16) are minimal compared with the (2) form because 
the neglected coning correction product effect is generally very small. 
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VARIATION 2 
 

 Variation 2 is a further approximation of (16), in which 2n
f  is approximated as 1/2 and 

3n
f  is equated to zero: 
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The nηδ  sculling computation in (17) would be calculated as in (4) with (12) for the 
corresponding down-summed l cycle formula. 
 

The term in (17) between nυ  and nηδ  has been denoted as “rotation compensation” [14 Sect. 
7.2.2.2].  The 2n

f and 3n
f approximations in (17) are its principle error source, being of concern 

when nα  is large (e.g., under high angular rates when using a lower n cycle time interval for 
velocity updating). 

 
VARIATION 3 
 

As in [14 Sect. 7.2.2.2], Variation 3 derives directly from the integral of (1) by defining an 
equivalent 1*n

n
B
SFv −Δ  for 1n

n
B
SFv −Δ  in (2), and using a first order approximation for : 1nB

BC −

 

( )1 1
1 1 1

* ( )n n nn n
n n n n

B BB B
B SF n SF n SFSF

t t tdt t dt t dtv a aCt t tα αυ υ− −
− − −

Δ ≡ ≈ + × = +∫ ∫ ∫ ( ) Ba  (18) 

 
The integral in (18) can be calculated from the nηδ  pure sculling correction term by applying 
the integral of the [14, Eq. (7.2.2.2-21)] identity: 

 

( )
1 1

1 1 1( ) ( ) ( )
2 2 2

n n
n n

B B B
SF n n SF IB n n n

t tt dt t t dta at t
ηα α υα υ ω α υ

− −
× = × + × − × = × +∫ ∫ δ   (19) 

 
With (19), 1*n

n
B
SFv −Δ  in (18) is 

 

 1 1*
2

n
n

B
n n n nSFv ηδυ α υ−Δ = + × +  (20) 

 
and the equivalent of (2) becomes with (9): 
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1
1

1

1 1

1 *

1*
2

n
n nn

n n
n

n
n n

N N N BN
n n g B SF

B
n l n l n n n nSF

v v v vC

t t
v

t t
ηδα α υ υ υ α υ

−
−

−

− −

−≈ + + ΔΔ

= Δ = Δ Δ = + × +∑ ∑
 (21) 

 
Eq. (21) for 1*n

n
B
SFv −Δ  is identical to the Variation 2 Eq. (17) approximation for 1n

n
B
SFv −Δ .  Thus, 

the Variation 3 approximation in (18) for  is equivalent to the  and  

approximations in (17) for Variation 2.  Hence, Variation 3 is equivalent to Variation 2, and the 
basic down-summing routine shown previously for 

1nB
BC −

2 1 / 2n
f = 3 0n

f =

nηδ  in (12) applies for (21), as it did for (17).   
 
POTENTIAL UNIVERSAL IMU OUTPUT FORMAT 
 

A universal IMU computation/output format can now be defined at the l cycle rate that is 
compatible with either of the basic or variation velocity updating approaches discussed 
previously.  Since each of these approaches use the same nηδ  sculling vector for velocity 
updating, the universal interface can be based on (5) (repeated next) with (6) and (12) or (7) and 
(15) for attitude/velocity down-summing operations: 

 

 

( ) ( )

1 1

1 1

1 1

( ) ( )

1 1( ) ( ) ( )
2 2

l l

l l
l l

l l
l l

B B
IB SF

B B
l IB l SF

B B
IB SF IBl l

l ll l l l

t tt d t dat t
t tdt dtat t

t tt dt t tat t

α τ υ τω

α ω υ

φ ηδ α δ α υω ω

φ φ η ηδ δα υ

− −

− −

− −

Δ = Δ =

= =Δ Δ

= × = Δ × − × Δ

= Δ + = Δ +

∫ ∫

∫ ∫

∫ ∫ B dt
 (22) 

 
The lαΔ , lυΔ , lφδ , lηδ , lφ , lη  outputs in (22) from a universal IMU output can be used to 
generate the down-summed result required for n cycle attitude and velocity updating: 
 

For attitude updating in Basic Formula (2):  Using (6) for nφδ  

For velocity updating in Basic Formula (2):  Using (6) and (12) for nφδ , nηδ  

For velocity updating in Variation 1 Formula (16):  Using (6) and (12) for nφδ , nηδ  

For velocity updating in Variation 2 Formula (17):  Using (6) and (12) for nφδ , nηδ  
For velocity updating in Variation 3 Formula (21):  Using (6) and (12) for nφδ , nηδ  

 
Note:  The lφ , lη  outputs in (22) have been included for cases when the central computer 
interface has been designed for the (7) and (15) type down-summing interface formulas.    
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OUTPUT ADAPTER FOR UNIVERSAL DOWN-SUMMING FROM AN EXISTING IMU 
 

In some applications, the output from an existing IMU’s output may differ from the (22) 
universal format.  This section defines interface adapters for several situations where an existing 
IMU output may not contain all lαΔ , lυΔ , lφδ , lηδ , lφ , lη  terms required in down-summing 
formulas (6), (7) and (12), (15). 

 
THE FIRST SITUATION 

 
The first situation addresses the case where an existing IMU output may contain the lαΔ , 

lυΔ  terms and either the lφδ , lηδ  or lφ , lη  terms (but not both).  For the lφδ , lηδ  case, (6) 
and (12) would be used for down-summing in the central computer receiving the IMU data; for 
the lφ , lη  case, (7) and (15) would be used for down-summing. 

 
THE SECOND SITUATION 
 

For this situation, the existing IMU outputs would contain lαΔ , lυΔ  but not the lφδ , lηδ  

or lφ , lη  terms in (22).  Under this condition, lφδ , lηδ  would be calculated from the current 

and previous lαΔ , lυΔ  outputs using classical algorithms, e.g., from [13], 

( )1
1

12 l llφδ α α−= Δ × Δ  and ( 1
1

12 l l l llηδ α υ α υ−= Δ × Δ − Δ × Δ )1− .   Alternatively, algorithms 

with additional lαΔ , lυΔ  terms could be used, e.g., [10], with the klL  ratio between a higher 

speed k cycle rate (for αΔ , υΔ  sampling) and the l cycle rate set to 1 (i.e., the l cycle data 

would be the source for past samples used in the algorithm).   Having so calculated lφδ , lηδ , 

down-summing would then be performed with (6) and (12).      

 
ANOTHER SITUATION 
 

Another case has the IMU providing lφ , lη  in (22), but not lαΔ , lυΔ  required in (7), (15) 
for down-summing.  To generate lαΔ  in (7), it is reasonable based on (5), to approximate 

l l l lφ φ φδα = − ≈Δ .  Since the lφδ  coning correction is small compared with lαΔ , its product 
with the small 1lα − , 1lυ −  terms in (7), (15) should be negligible.  Similarly, lυΔ  can be 

generated using the approximate l lηυ ≈Δ .  The error in nφ  and nη  induced by these 
approximations is derived in Appendices A and B as given by (A-5) and (B-6): 
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1

1 1

1 1

1 1 1

1

1 1

1
2

1
2

n l

n n

n l l

n n n

l ln n l l

l l ln n l ll l

t t

t t

t t t

t t t

φ φ φ φδ δα α

η η φ φη η δ δα α υδ δ

−

− −

− −

− − −

−

− −

⎡ ⎤⎛ ⎞
⎢ ⎥− = × + ×⎜ ⎟ Δ∑ ∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥− = × + × Δ + × + × Δ⎜ ⎟ ⎜ ⎟∑ ∑ ∑⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

lυ

 (23) 

 
where ( )  symbolizes the computed value for ( ) containing error.  Under angular rate and 
specific-force acceleration represented as a constant plus a linear ramp in time, lαΔ  , lυΔ  in 
(23) can be represented by 
 
 l c rmp l c rmlα α α υ υ υ= + = +Δ Δ Δ Δ Δ Δ p l  (24) 

 
 where cαΔ , cυΔ , rmpαΔ , rmpυΔ  are constant, and l changes linearly from 0 to L over an n 

cycle.  Then (C-4) and (C-5) in Appendix C, show that for constant lφδ  and lηδ , 

 

 
( )

( ) ( )
1

1

1 1
4

1 1
4

L
rmpn n ll

L
rmp rmpn n l ll

l l

l l

φ φ φδ α

η η η φδ δα υ

=

=

⎛ ⎞
− = − ×Δ∑⎜ ⎟

⎝ ⎠
⎛ ⎞

− = − × + ×Δ Δ∑⎜ ⎟
⎝ ⎠

 (25) 

 
Note in (25) that the cαΔ , cυΔ  constant angular-rate/specific-force terms in (24) have no 

impact on the nφ , nη  errors.  For L from 1 to 10, the bracketed term in (25) is 
 

 L 1 2  3  4  5   6   7   8   9  10 
 
 2 8 20 40 70 112 168 240 330  0 

)

( )
1

1
L

l
l l

=
−∑

 
 
To illustrate the magnitude of the (25) errors, consider an example where L = 10 for which 

from the previous table,  is 330, and (25) becomes (
1

1
L

l
l l

=
−∑

 

 ( )330 330
4 4rmp rmp rmpn n l n n l lφ φ φ η η η φδ δα α− = × − = × + ×Δ Δ δ υΔ  (26) 

 
For worst case analysis, numerical values for the (26) terms can be defined under extreme 
conditions.  For example, [14] Section 7.4 shows that under a severe 7.2 g random vibration, a 50 
Hz isolated sensor assembly with 5% isolator mismatch and 1.4% center-of-mass offset (from 
balance) develops a sculling rate of 1.3 milli-g and a coning rate of 9.9 deg/hr.  For an IMU 
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computation/output l rate of 1 KHz, the lφδ , lηδ  coning/sculling correction magnitudes in (25) 

would be lφδ = 9.9 × π /(3600 ×180 × 1000) = 4.8 E-8 rad and lηδ  = 1.3 × 32.2 / (1000 

× 1000) = 4.2 E-5 fps.  For an angular rate change over one second of 5 rad/sec (286 deg/sec) 
and a specific-force acceleration change over 1 second of 4 gs, the rmpαΔ , rmpυΔ  magnitudes in 

(26) under the l rate of 1 KHz would be rmpαΔ  5 × 1 / 1000 = 0.005 rad/l-cycle and  = rmpυΔ

.2 × 1 / 1000 = 0.129 fps/l-cycle.  Based on these results and the assumed L value of 1

 

= 4 × 32 0, 
the magnitude of the three contributors to n nφ φ−  and n nη η−  in (26) approximate as 

For

 

 n nφ φ− :   330
4 rmplφδ α× ≈Δ

330
4

  × 4.8 E-8 × 0.005 = 3.96 E-8 = 0.020 µrad 

For 

  

n nη η− :   330
4 rmplηδ α× ≈Δ

330
4 

 × 4.2 E-5 × 0.005 = 17.3 E-6 fps   

 

For n nη η− :   330
4 rmplφδ υ× ≈Δ

330
4

  × 4.8 E-8 × 0.129 = 5.1 E-7 fps 

 value of 10 high-speed 
orresponds to an n cycle rate of 1000/10 = 100 Hz, i.e., 100 n cycles per second.  For a 

.e., 
slate 

 
For the hypothesized L l cycles per n cycle, the l cycle rate of 1 KHz 
c
maneuver at the previously hypothesized angular-rates/accelerations lasting for one second (i
100 n cycles in one second), the previous n cycle attitude/velocity errors in (26) then tran
into 

 For 100 × 330 φδ α× ≈Δ 2.0 µrad n nφ φ− :   100 ×
4 rmpl

For 100 × 

  

n nη η− :   100 × 330
4 rmplηδ α× ≈Δ

 
 0.00173 fps   

 

For 100 × n nη η− :   100 × 330
4 rmplφδ υ× ≈Δ 0.000051 fps 

ligible com  and 2 fps attitude/velocity errors experienced 
 a typical 1 nmph (nautical-mile-per-hour) accuracy INS. 

  
 the IMU not providing

 
These errors are neg pared with 40 µrad
in
 
A MORE COMPLICATED SITUATION   
  

, providing lφ lαΔ , lυΔA more complicated situation might have , 

but instead of lη , providing 1n
l

B
SFv −Δ , the l rate equivalent of 1n

n
B
SFv −Δ  (see (17 or example). s

in the previous paragraph, 

) f   A  

lαΔ be approximated as  can l lφαΔ ut ≈ , b lυΔ  cannot be 
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analogously approximated as 1nBv −  because of the pres
lSFΔ ence of 1 α υΔ  rotation-

compensation, i.e., from the l rate equivalent of (17), 
2 l l× Δ

1 1 1n
l

B
l l l ll lSFv η ηδυ α υ α υ−Δ ≈ Δ + Δ × Δ + = Δ + Δ × Δ  from 1n

l
B
SFv −Δ

2 2 l .  To extract lηΔ , an 

iteration procedure can be used based on a revised vers ula:ion of the previous form
1 1n

l
B

l l ll SFl vη ηυ α υδ −Δ = Δ + = Δ − Δ × Δ .  Using the 
2 lφ  IMU input to approximate lαΔ  and the 

estimated lηΔ  to approximate lυΔ , the u

 

 iteration form la would be 
 

1
1

1
2

n
lj j

B
lSFl l

v φη η−
−

= − ×ΔΔ Δ  (27) 

here  signifies the estimated value of ( ) and j is the iteration cycle number.  Note that the 
 
w  ( )

iteration process is performed within an l cycle so that 1n
l

B
SFv −Δ  and lφ in (27) would be constan

 

t. 

Starting with an initial value of , (D-12) of Appendix D shows that 
j ll

ηη⎛ ⎞−⎜ ⎟
⎝ ⎠

 1
0

n
l

B
SFl

vη −≈ Δ , 

the 

 

error in (27), is given by 
 

( ) ( )
1 11

2 2j

j

l l l ll ll
φη η δα υ αδη

+⎛ ⎞ ⎡ ⎤− = − − Δ × Δ + × Δ − × Δ⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ lυ  (28) 

he first term in (28) converges to a negligible value after only a few j iterations of (27).  For 
 
T
example, for an l rate of 1 KHz under 5 rad/sec angular-rate and 4 g’s specific-force, lαΔ  = 5

1000 = 0.005 rad and 

 / 

lυΔ  = 4 × 32.2 / 1000 = 0.129 fps. Then after 4 iteration j cycles of (27), 

(28) shows that 
51⎛ ⎞

2 l lα υΔ Δ⎜ ⎟
⎝ ⎠

 = 
50.005⎛ ⎞

maneuver, the cu ity ld be 1000 × 1.3 E-14 = 1.3 E-11 fps - Forge
it !!   Based on this finding, it can be safely assumed that the (27) iteration result will be 

2⎜ ⎟
⎝ ⎠

 × 0.129 = 1.3 E-14 fps.  After a one second 

mulative veloc error wou t about 

( )1
l lll l l

φη η η δα υδ= + × Δ − × Δ .  Using this value for 
2 nη  and with lαΔ , lυΔ  approximated 

as l lφαΔ ≈ , ( )φδ υ× Δ − × Δ , (E-6) in Appendix E shows that 

 

1
2l l lll l lη η ηυ αδΔ ≈ = +
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( )
1

1 1

1 1 1
1 1

1
2

1
2

n

n

n l l

n n n

l ln n ll

l l l l ll l

t

t
t t t

t t t

η η φη δα υδ

φ φη η δ δα α υδ δ

−

− −

− − −
− −

− = × Δ − × Δ∑

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥+ × + × Δ + × + ×⎜ ⎟ ⎜ ⎟∑ ∑ ∑⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

lυΔ

 (29) 

 
Using (24) for lαΔ  and lυΔ , (F-4) in Appendix F shows that (29) leads to 
  

 
( ) ( ) ( )

( ) ( )
1

1
2 4

1 1
4

c c rmpn n l ll l

L
rmp rmpl ll

L LL

l l

η η φ φη ηδ δα υ α υδ δ

η φδ δα υ
=

+
− = × − × + × − ×Δ Δ Δ Δ

⎛ ⎞
= − × + ×Δ Δ∑⎜ ⎟

⎝ ⎠

rmp
 (30) 

 
The reader can numerically evaluate the (30) error using the same method performed in the 
previous section.  As in the previous analysis, the result for (30) will also show that the n nη η−  
error is negligible. 
 
CONCLUSION 

 
A strapdown inertial navigation two-speed attitude/velocity updating architecture can be 

readily separated into two physical packaging arrangements: 1. A strapdown IMU that 
computes/outputs high-speed coning/sculling and integrated angular-rate/specific-force vectors, 
and 2. A centralized computer for executing lower-speed attitude/velocity updates using down-
summed versions of the IMU outputs.  The form of the down-summing routines depends on 
approximations used in the composite velocity updating operations.  A universal IMU output 
format is readily defined that is compatible with any of the described velocity updating 
operations. 

   
 

APPENDIX A - DERIVING n nφ φ−  IN EQUATION (23) 
 

This appendix derives the error induced in down-summing algorithm (7) when lαΔ  in is 

approximated by lφ .  From (7), the nominal down-summing formula is 
 

 ( )
1

1 1 1
1

1 1
2 2

n n l

n n n
l l ln l l

t t t

t t t
φ φ φα α α α

−

− − −
− l

⎡ ⎤⎛ ⎞⎡ ⎤ ⎢ ⎥= + × = + Δ ×⎜ ⎟Δ Δ∑ ∑ ∑⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦
 (A-1) 

 
With lαΔ  approximated by lφ , the erroneously computed value for nφ  would be 
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1

1 1

1
2

n l

n n
n l l

t t

t t lφ φ φ φ
−

− −

⎡ ⎤⎛ ⎞
⎢= + ×⎜ ⎟∑ ∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎥  (A-2) 

 
where ( )  signifies the error in ( ).  Substituting for lφ  from (5) and expanding finds 
 

 

( ) ( )1

1 1

1 1 1

1 1 1 1

1
1 1

1
2

1
2

1 1
2 2

n l

n n

n l l l

n n n n

n

n

l ln l l l

l l l ll l

l l ll l

t t

t t

t t t t

t t t t

t

t

φ φ φ φδ δα α

φ φδ δα α α α

φ φδα α α

−

− −

− − −

− − − −

−
− −

⎧ ⎫⎡ ⎤⎪ ⎪= + + × +Δ Δ∑ ⎢ ∑ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥≈ + Δ × + × + ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ∑ ∑ ∑ ∑⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

⎛ ⎞= + × + ×Δ∑ ⎜ ⎟
⎝ ⎠

lφ

1

1 1

n l

n n
ll

t t

t t
φδ α

−

− −

⎡ ⎤⎛ ⎞
⎢ ⎥+ ×⎜ ⎟ Δ∑ ∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (A-3)  

 
or with (A-1) for the (A-3) leading term, 
 

 
1

1 1
1

1
2

n l

n n
ln n l l

t t

t t
φ φ φ φδ δα

−

− −
−

⎡ ⎤⎛ ⎞
⎢= + × + ×⎜ ⎟ Δ∑ ∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

lα ⎥  (A-4) 

 
Thus, the nφ  error ( n n)φ φ−  in (A-2), is 

 

 ( ) 1

1 1
1

1
2

n l

n n
ln n l l

t t

t t
φ φ φ φδ δα

−

− −
−

⎡ ⎤⎛ ⎞
⎢− = × + ×⎜ ⎟ Δ∑ ∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

lα ⎥  (A-5) 

 
 

APPENDIX B - DERIVING n nη η−  IN EQUATION (23) 
 

This appendix derives the error induced in down-summing algorithm (15) when lαΔ  and 

lυΔ  are approximated by lφ  and lη .  From (15), the nominal down-summing formula is 
 

 (
1

1
1
2

n

n
l l l ln l

t

t
η η α υ α υ

−
−

⎡= + × − Δ ×Δ∑ ⎢⎣ ⎦
)1−
⎤
⎥  (B-1) 

 
With the previously designated approximations, the estimated value for nη  in (B-1) is 
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 (
1

1
1
2

n

n
l l l ln l

t

t
η η α υ α υ

−
−

⎡= + × − Δ ×Δ∑ ⎢⎣ ⎦
)1−
⎤
⎥  (B-2) 

 
with 
 

 ( )

( )

1 1 1

1 1 1

1 1 1

1 1 1

1

1 1

l l l

n n n

l l l

n n n

l l l ll l l l

l l l ll

l l l ll l

t t t

t t t
t t t

t t t

φ φ η ηδα α υ υ δ

1 lφ φδα α α α δ

η ηυ υ υ υδ δ

− − −

− − −

− − −

− − −

−

− −

Δ = = Δ + = = Δ +Δ

= Δ = Δ + = +∑ ∑ ∑

= = + = +Δ Δ∑ ∑ ∑

−  (B-3) 

 
Substituting from (B-3), the ( )1l l l lα υ α υ− × − Δ ×Δ 1−  term in (B-2) is 

 

 

( ) ( )1 1

1 1

1

1

1

1

1 1

1 1

1 1

1 1

1 1 1 1

l l

n n

l

n

l

n

l l l l

l l l ll ll l

l l l lll

l l l lll

l l l l l lll

t t

t t
t

t
t

t

α υ α υ

φ φη ηδ δα υ α υδ δ

φη δα υ α υδ

φη δα υ α υδ

φη δα υ α υ α υδ

− −

− −

−

−

−

−

− −

− −

− −

− −

− − − −

× − Δ ×Δ

⎛ ⎞ ⎛
= + × Δ + − Δ + × +⎜ ⎟ ⎜∑ ∑⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎛ ⎞
≈ × Δ + × + × Δ⎜ ⎟∑⎜ ⎟

⎝ ⎠

−Δ × − Δ × − ×∑

= × Δ − Δ × + × − ×

+

⎞
⎟⎟
⎠

1 1

1 1

l l

n n
l ll l

t t

t t
φ ηδ υ α δ

− −

− −

⎛ ⎞
× Δ − Δ ×⎜ ⎟∑ ∑⎜ ⎟

⎝ ⎠

 (B-4) 

 
With (B-4), (B-2) becomes 
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( )

( )

1

1 1
1

1 1

1

1 1

1 1 1

1 1

1

1
2

1
2

1
2

1
2

n

n

n
l l

n
n n

n

n

l l l ln l

l l l l l lll

l
l ll l

l l l ll

l l

t

t

t
t t

t
t t

t

t

η η α υ α υ

φη δα υ α υ α υδ

η
φ ηδ υ α δ

η α υ α υ

α δ

−

− −
−

− −

−

− −

− − − −

− −

−

⎡ ⎤= + × − Δ ×Δ∑ ⎢ ⎥⎣ ⎦

⎧ ⎫× Δ − Δ × + × − ×⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪= + ⎛ ⎞⎢ ⎥∑ ⎨ ⎬

+ × Δ − Δ ×⎜ ⎟∑ ∑⎢ ⎥⎪ ⎪⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

⎡ ⎤= + × Δ − Δ ×∑ ⎢ ⎥⎣ ⎦

+ ×

1

1 1

1 1 1

1 1

1 1 1

1

1 1
1
2

n l l

n n n

n l l

n n n

l l ll ll

l l ln ll l

t t t

t t t

t t t

t t t

φ φη η δ δα υ υδ

η φη η δ δα α υδ δ

− −

− − −

− −

− − −

−

− −

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥+ × Δ + × + × Δ⎜ ⎟ ⎜ ⎟∑ ∑ ∑⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= + × + × Δ + × + × Δ⎜ ⎟ ⎜ ⎟∑ ∑ ∑⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

llφ υ

 (B-5) 

 
showing that 
 

 
1 1

1 1 1
1 1

1
2

n l l

n n n
l l ln n l ll l

t t t

t t t
η η φ φη η δ δα α υδ δ

− −

− − −
− −

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥− = × + × Δ + × + × Δ⎜ ⎟ ⎜ ⎟∑ ∑ ∑⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

lυ  (B-6) 

 
 

APPENDIX C –EQUATION (23) ERRORS UNDER SPECIFIED 
ANGULAR/LINEAR MOTION 

 
This appendix derives analytical values for the ( )n nφ φ−  and ( n n)η η− errors in (23) when 

the lφδ , lηδ  coning/sculling corrections are constant, and the lαΔ , lυΔ  integrated angular-
rate/specific-force increments are characterized by a constant plus a linear ramping increase in 
time.  If the l values are analytically defined to be zero at , the 1nt − lαΔ , lυΔ  increments can be 
analytically defined as 

 
 l c rmp l c rmlα α α υ υ υ= + = +Δ Δ Δ Δ Δ Δ p l  (C-1) 

 
where cαΔ , rmpαΔ , cυΔ , rmpυΔ  are constants.  Using (C-1), the (15) definitions for 1lα − , 

1lυ −  translate into 
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( )

( )

1

1

1

1

1 1 1
1

1 1 1

1 1
1

1 1

1

1

l

n

l

n

m l m l m l m l
l l m c rmp c rmp

m m m m

m l m l
l l m c rmp

m m

t
m l

t
t

l m
t

α α α α α α α

υ υ υ υ υ

−

−

−

−

= − = − = − = −
−

= = =

= − = −
−

= =

= Δ = Δ = + = − +Δ Δ Δ Δ∑ ∑ ∑ ∑ ∑

= Δ = Δ = − +Δ Δ∑ ∑ ∑

1

1
m

=
(C-2) 

 
where m is a dummy integer parameter for l.  In (C-2), the m sequence represents an arithmetic 
progression with a first term a of 1, a number of terms nmbr of , and a last term lst of .  

Ref. [20, Sect. I - ALGEBRA, Subsect. 10] shows that the sum  would then be

1l −

1

m l

m

= −

=
∑

1l −
1
m

( ) ( ) ( ) ( )1
1 1

2 2
lnmbr a lst l

−
+ = + − =

1
2

l l−
.  Substitution in (C-2) finds 

 
 ( ) ( ) ( ) ( )1 11 1 / 2 1 1 / 2l c rmp l c rmpl l l l l lα α α υ υ υ− −= − + − = − + −Δ Δ Δ Δ  (C-3) 

 
Applying (C-3) in (23) then obtains for ( )n nφ φ− : 

 

 

( )
( ) ( )

( ) ( )
( ) ( ){ }

( ) ( )

1

1 1

1

1

1

1

1

1
2

1 1 / 21
2 1

1 1 / 2 1
2

1 11 1
4 4

n l

n n

n

n

n

n

n

n

l ln n l l

c rmp l

c rmpl

rmp l

L
rmp l l

l

t t

t t

l l lt

t l l

t
l l l l

t
t

l l l l
t

φ φ φ φδ δα α

φδα α

φδ α α

φδα

φ φδ δα

−

− −

−

−

−

−

=

⎡ ⎤⎛ ⎞
⎢ ⎥− = × + ×⎜ ⎟ Δ∑ ∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤− + − ×Δ Δ⎣ ⎦⎪ ⎪= ∑ ⎨ ⎬
+ − × +⎪ ⎪Δ Δ⎩ ⎭

= − − − ×⎡ ⎤ Δ∑ ⎣ ⎦

⎛ ⎞
= − − × = − ×Δ∑ ∑⎜ ⎟

⎝ ⎠
rmpαΔ

 (C-4) 

 
where L is the number of l cycles in an n cycle.  Similarly for ( n n)η η− , by comparison with (C-4): 

 

 

( ) ( )

1 1

1 1 1
1 1

1

1
2

1 1
4

n l l

n n n
l l ln n l ll l

L
rmp rmpl l

l

t t t

t t t

l l

η η φ φη η δ δα α υδ δ

η φδ δα υ

− −

− − −
− −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥− = × + × Δ + × + × Δ⎜ ⎟ ⎜ ⎟∑ ∑ ∑⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
= − × + ×Δ Δ∑⎜ ⎟

⎝ ⎠

lυ
  (C-5) 
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APPENDIX D - DERIVATION OF ITERATION PROCESS ERROR EQUATION 
 

The error in the (27) iteration process is 
j ll

ηη − .  An analytical solution for the error is 

derived by first substituting 1 1
2

n
l

B
l l l lSFv ηδυ α υ−Δ ≈ + Δ × Δ +  and ll lφ φδα= Δ +  into (27) and 

expanding: 
 

( ) ( )

1
1

1
1

1

1

1

1
2

1
2

1 1 1
2 2 2

1 1 1
2 2 2

1 1 1
2 2 2

n
lj j

n
l j

j

j

j

B
ll lSFl l

B
ll l lSF l

l ll l ll l ll

l l l ll ll ll

l l ll ll

v

v

φη ηη η

φη η ηη

η φ φη η ηα υ η

φ φη ηδα υ α υ δη

φ ηα υ αη

−
−

−
−

−

−

−

⎛ ⎞− = − × −Δ⎜ ⎟
⎝ ⎠

⎛ ⎞= − − × − +Δ ⎜ ⎟
⎝ ⎠
⎛ ⎞= + Δ × Δ − − × − − ×⎜ ⎟
⎝ ⎠

⎛ ⎞= Δ × Δ − × − − Δ + × Δ +⎜ ⎟
⎝ ⎠

⎛ ⎞= Δ × Δ − × − − Δ⎜ ⎟
⎝ ⎠

( )

( )
1

1 1
2 2j

l l ll ll l

l ll ll ll

φ φη ηδ δυ α υδ δ

φ φη η δα υδη
−

× Δ + Δ × + × Δ + ×

⎛ ⎞≈ − × − + × Δ − × Δ⎜ ⎟
⎝ ⎠

(D-1) 

 
Thus, 
 

 (
1

1 1
2 2j j ll ll l ll l

φη η η δαδη η
−

⎛ ⎞ ⎛ ⎞− + × − ≈ × Δ − × Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

)lφ υ  (D-2) 

 

Eq. (D-2) is a constant coefficient difference equation for estimation error 
j ll

ηη⎛ ⎞−⎜
⎝ ⎠

⎟  that can be 

solved in traditional fashion as the sum of “homogeneous” plus “particular” parts. 
 

The homogeneous solution 
j lhl

ηη⎛ −⎜
⎝ ⎠

⎞
⎟  for (D-2) sets 

 

 
1

1 0
2j jllhl hl

φηη η
−

⎛ ⎞ ⎛ ⎞− + × − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠l

η  (D-3) 

 

The solution assumed for (D-3) is of the form 
j

j
lhl

Aηη⎛ ⎞− = Γ⎜ ⎟
⎝ ⎠

 where Γ  is a constant matrix 

and A  is an arbitrary constant vector.  Substitution in (D-3) gives 
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 ( ) ( ) ( )1 1 1 11 1 1 0
2 2 2

j j j j j
l l lA A A Aφ φ φ− − − −⎡ ⎤+ × = + × = + × =ΓΓΓ Γ Γ Γ Γ⎢ ⎥⎣ ⎦

A  (D-4) 

 

To satisfy (D-4) for arbitrary 1j A−Γ , the bracketed term must be zero, thus (1
2 lφΓ = − ×)  and 

 

 ( )1
2j

j
j

llhl
A φηη⎛ ⎞ ⎡− = = − ×Γ⎜ ⎟ ⎢⎣ ⎦⎝ ⎠

A⎤
⎥  (D-5) 

 

The particular solution 
j lpl

ηη
⎛ ⎞

−⎜
⎝ ⎠

⎟  for (D-2) has 
j ll

ηη⎛ −⎜
⎝ ⎠

⎞
⎟  constant so that  

1j jll l lη ηη η
−

⎛ ⎞ ⎛− = −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

.  Then (D-2) becomes 

 

( ) ( )1 1 1
2 2 2j j j

ll ll l l lpl pl pl
Iφ φη η η η δαδη η η

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤− + × − = + × − = × Δ − × Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠
llφ υ  (D-6) 

 
hence, 
 

 
( ) (

11 1
22j

lll lpl
I φη η δαδη

−⎛ ⎞ ⎡ ⎤− = + × × Δ − × Δ⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
)llφ υ  (D-7) 

 
The total solution to (D-2) is the sum of the homogeneous (D-5) and particular (D-7) parts:  
 

 ( ) ( ) ( )
111 1

2 22

j j jl l lpll hl

j

l ll l lA I

η η ηη η η

φ φ φη δα υδ
−

⎛ ⎞⎛ ⎞ ⎛ ⎞− = − + −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤= − × + + × × Δ − × Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ l

 (D-8) 

 
It remains to find the value of A  in (D-8).  This is achieved by setting (D-8) to the value of 

j ll
ηη⎛ ⎞−⎜

⎝ ⎠
⎟  at j = 1, i.e., that matches the (D-1) value at j = 1 for the iteration process.  The j = 1 

value for  
1j ll

ηη
−

⎛ ⎞−⎜
⎝ ⎠

⎟  in (D-1) is 
0 ll

ηη⎛ −⎜
⎝

⎞
⎟
⎠

, the initial error value in the iteration process.  To 

start the process we approximate 1
0

n
l

B
SFl

vη −≈ Δ  in (27) so that at j = 1,  

23 
 



1
1

1
2

n n
l

B B
ll

1
lSF SFl

v vφ
lη ηη − −⎛ ⎞− = − × −Δ Δ⎜ ⎟

⎝ ⎠
 .  Then with lη from (5) and the l rate equivalent of 

(17), 1 1
2

n
l

B
l l l lSFv ηδυ α υ−Δ ≈ Δ + Δ × Δ + :  
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( )( ) ( )
( ) ( )

1 1
1

2

1
2

1 1 1
2 2 2

1 1
4 2

1 1
4 2

n n
l l

B B
ll lSF SFl
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l l l l lll

l l l lll

v vφη ηη

δφη η ηυ α υ α υ α υδ δ

φη δα α υ α υδ

φη δα υ α υδ

− −− = − × −Δ Δ

⎛ ⎞= Δ + Δ × Δ + − − Δ + × Δ + Δ × Δ +⎜ ⎟
⎝ ⎠

≈ − Δ × Δ × Δ + × Δ − × Δ

= − Δ × Δ + × Δ − × Δ

 (D-9) 

 
Equating (D-9) to (D-8) at j = 1 finds 
 

 

( ) ( )

( ) ( ) ( )
( ) ( )

2

1

1 1
4 2

1 1 1
22 2

1 1
2 2

l l l lll

l ll l

l l ll

A I

A

φη δα υ α υδ

l

l

φ φηφ δα υδ

φη δα αδ

−

− Δ × Δ + × Δ − × Δ

⎡ ⎤= − × − + × Δ × − Δ ×⎢ ⎥⎣ ⎦

≈ − Δ × + × Δ − × Δυ

 (D-10) 

 
or  

 ( ) ( )21 1
2 4l lAα α− × = − Δ × ΔΔ lυ  (D-11) 

 

For arbitrary lαΔ , (D-11) shows that ( )1
2 lA α= Δ × Δ lυ  for which (D-8) becomes the final form 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

1 1

1

1 11 1
2 22 2

11 1
2 22

11
2 2

j

j

l l l ll ll ll

j

l l l ll ll

j

l l l lll

I

I

φ φη η δα α υ αδη

φ φη δα υ α υδ

φη δα υ α υδ

−

+ −

+

⎛ ⎞ ⎡ ⎤ ⎡ ⎤− = − Δ × Δ × Δ + + × × Δ − × Δ⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤ ⎡ ⎤= − − Δ × Δ + + × × Δ − × Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤≈ − − Δ × Δ + × Δ − × Δ⎢ ⎥⎣ ⎦

lυ

(D-12) 
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APPENDIX E – DERIVATION OF EQUATION (29) 
 

This appendix derives the error induced in the (15) down-summing algorithm when lαΔ  is 

approximated by lφ , and both nη  and lυΔ  are approximated by nη , where nη  is the value 

estimated by the (22) iteration process for nη .  The main text following (28) shows that after a 

few iteration of (22), (1
2 l ll l l

φη η η δαδ= + × Δ − × Δ )lυ , the value to be used in this appendix. 

 
Paralleling the approach taken in Appendix B, the nominal down-summing formula in (15) is 
 

 (
1

1
1
2

n

n
l l l ln l

t

t
η η α υ α υ

−
−

⎡= + × − Δ ×Δ∑ ⎢⎣ ⎦
)1−
⎤
⎥  (E-1) 

 
With the previously designated approximations, the estimated value for nη  in (E-1) is 
 

 (
1

1
1
2

n

n
l l l ln l

t

t
η η α υ α υ

−
−

⎡= + × − Δ ×Δ∑ ⎢⎣ ⎦
)1−
⎤
⎥  (E-2) 

 
with 
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1 1 1

1 1 1

1 1 1
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1
2

1
2

1
2

l l l
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l ll l
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l lll l l
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φ φδα α

l
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φ φδ δα α α α

φη η η δα υδ

φη η η δυ αδ

φ

υ

η η ηδυ α υδ δ δυ

η ηυ υ υ υδ δ

− − −

− − −

− − −

− − −

− −

− −

Δ = = Δ +

= Δ = Δ + = +∑ ∑ ∑

= + × Δ − × Δ

= = + × Δ − × ΔΔ

= Δ + + × Δ − × Δ ≈ Δ +

= ≈ Δ + = +Δ∑ ∑
t
∑

 (E-3) 

 
Substituting from (E-3) as in (B-4) of Appendix B, the ( )1 1l l l lα υ α υ− −× − Δ ×Δ  term in (E-2) 

becomes 
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1 1
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1 1
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l l
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t t
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α υ α υ
φη δα υ α υ α υδ
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× − Δ ×Δ

= × Δ − Δ × + × − ×

⎛ ⎞
+ × Δ − Δ ×⎜ ⎟∑ ∑⎜ ⎟
⎝ ⎠

1l−  (E-4) 

  
With (E-4) and lη  from (E-3), (B-2) becomes 
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⎡ ⎤= + × − Δ ×Δ∑ ⎢ ⎥⎣ ⎦
 

 

( )
1

11
1 1

1 1

1 1

1
2

1
2

ln

nn
l l

n n

l lll l

l l l l lll

l ll l

tt

tt
t t

t t

φη η δα υδ

φηα δα υ α υ υδ

φ ηδ υ α δ

−

−−
− −

− −

− −

⎧ ⎫+ × Δ − × Δ⎪ ⎪
⎪ ⎪

⎡ ⎤⎛ ⎞⎪ ⎪
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⎪ ⎪⎛ ⎞⎢ ⎥
⎪ ⎪+ × Δ − Δ ×⎜ ⎟∑ ∑⎢ ⎥⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭
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−
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Thus, 
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1
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n n n
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lυΔ

 (E-6) 

 
 

APPENDIX F – DERIVATION OF EQ. (30) 
 

This appendix derives analytical values for (E-6) of Appendix E when the lφδ , lηδ  
coning/sculling corrections are constant, and the lαΔ , lυΔ  integrated angular-rate/specific-f
increments are characterized by a constant plus a linear ramping increase in time as in (C-1) of 
Appendix C: 

orce 

 
 l c rmp l c rmlα α α υ υ υ= + = +Δ Δ Δ Δ Δ Δ p l  (F-1) 
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Using (F-1), the (
1

1
2

n

n
l ll

t

t
φη δαδ

−
× Δ − × Δ∑ )lυ  term in (E-6) becomes 
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⎝ ⎠

(F-2) 

 

As in Appendix C, the  term in (F-1) is the sum of an L term arithmetic progression in l 

starting with 1 and ending in L  which from [20, Sect. I - ALGEBRA, Subsect. 10] equals 
.  Thus, 
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L

l
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=
∑

( )1 /L L+ 2
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2 4
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L LL

φη δα υδ
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+
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 (F-3) 

 
Eq. (F-3) represents the first term in (E-6) under the (F-1) conditions.  The second term in (F-3) 
is given by (C-5) in Appendix C.  Thus, the total (F-3) response is 
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