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ABSTRACT 
 

A new concept in non-recursive fixed gain digital filter design is presented to achieve 
a specified dynamic phase shift response over a user defined frequency range.  The 
desired response can be specified analytically or numerically.  Filter coefficients are 
designed based on an optimal formulation to minimize the integral of a filter error 
parameter.  The minimization process can be performed numerically for a general error 
parameter selection, or analytically based on a minimum least squares formulation.  
Numerical examples are provided showing how the filter can be utilized to eliminate 
phase shift from a digitally sampled analog sensor. 

 
INTRODUCTION 

 
Fixed gain digital filter design has generally been based on creating a filter amplitude 

response to sinusoidal inputs that realizes some general performance criteria (e.g., 
generating an equivalent pole/zero configuration as a reference analog filter, 
approximating a specified analog transfer function using a bilinear transformation 
process, generating a specified amplitude response at selected discrete frequencies, 
generating a maximally flat amplitude response [1 - Sects. 6.3.1, 6.4.2, 7.3, 7.6].  Digital 
filter design for a specified phase response has generally only been utilized as a means of 
simplifying the form of an amplitude designed digital filter algorithm (e.g., linear phase 
response though symmetrical coefficients - [1 - Sect 7.2]) or as the design approach for a 
general coefficient configuration (e.g., minimum phase - [1 - Sect. 7.5.5]).  This paper 
introduces a new concept in constant coefficient digital filter design to achieve a 
specified phase response over a user specified frequency range.  The specified response 
can be defined as an analytical or numerical function of input frequency.  The filter 
configuration is a simple non-recursive weighted sum of current and past filter inputs 
over a selected moving time window. 
 

This article is a generalized and expanded version of the same approach first 
published by the author in Appendix B of Reference [2]. 
 

FILTER DESIGN FOR SPECIFIED DYNAMIC PHASE RESPONSE 
 

The digital filter structure selected for this application is of the general finite impulse  
response (FIR) non-recursive form: 
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 y( nt ) = ib
i=1

M
∑ x nt − (i − 1)T[ ]  (1) 

where y is the filter output, x is the filter input, T is the time between filter input (and 
output) samples, nt is the time at filter (and input) computer cycle n, and M is the number 

of current through past input samples used for each y( nt )  output cycle.  The non-

recursive (1) form was selected to intentionally exclude past values of y as part of the 
y( nt )  input to guarantee a known finite response time and to eliminate potential 

undesirable intrinsic dynamic characteristics from the resulting filter response (e.g., 
marginally stable roots). 
 

Under a unit amplitude digital sinusoidal input x( nt )  in (1), each ith contribution to 

y( nt ) is: 

 
x nt − (i − 1)T[ ] = sin Ω nt − (i − 1)T[ ]{ }

= sin Ω nt( )cos Ω(i − 1)T[ ] − cos Ω nt( )sin Ω(i − 1)T[ ]  (2) 

so that (1) becomes: 

 y( nt ) = sin Ω nt( ) ib
i=1

M
∑ cos Ω(i − 1)T[ ] − cos Ω nt( ) ib

i=1

M
∑ sin Ω(i − 1)T[ ]  (3) 

The (3) response can also be represented by the general form: 

 
y( nt ) = FltA Ω( ) sin Ω nt( )+ Fltγ Ω( )⎡⎣ ⎤⎦

= sin Ω nt( ) FltA Ω( ) cos Fltγ Ω( )⎡⎣ ⎤⎦ + cos Ω nt( ) FltA Ω( ) sin Fltγ Ω( )⎡⎣ ⎤⎦
 (4) 

Comparing (3) and (4) shows the equivalency 

 

FltA Ω( ) cos Fltγ Ω( )⎡⎣ ⎤⎦ = ib
i=1

M
∑ cos Ω(i − 1)T[ ]

FltA Ω( ) sin Fltγ Ω( )⎡⎣ ⎤⎦ = − ib
i=1

M
∑ sin Ω(i − 1)T[ ]

 (5) 

The filter amplitude FltA Ω( )  and phase response Fltγ Ω( )  can be derived from (5) as: 

 

2
FltA Ω( ) cos Fltγ Ω( )⎡⎣ ⎤⎦{ } +

2
FltA Ω( ) sin Fltγ Ω( )⎡⎣ ⎤⎦{ } = 2

FltA Ω( )

=
2

ib
i=1

M
∑ cos Ω(i−1)T[ ]⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

2

ib
i=1

M
∑ sin Ω(i−1)T[ ]⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

tan Fltγ Ω( )⎡⎣ ⎤⎦ = FltA Ω( ) sin Fltγ Ω( )⎡⎣ ⎤⎦
FltA Ω( ) cos Fltγ Ω( )⎡⎣ ⎤⎦

= −
ib

i=1

M
∑ sin Ω(i − 1)T[ ]

ib
i=1

M
∑ cos Ω(i − 1)T[ ]
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hence, 

 

FltA Ω( ) =
2

ib
i=1

M
∑ cos Ω(i−1)T[ ]⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

2

ib
i=1

M
∑ sin Ω(i−1)T[ ]⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Fltγ Ω( ) = − −1tan
ib

i=1

M
∑ sin Ω(i − 1)T[ ]

ib
i=1

M
∑ cos Ω(i − 1)T[ ]

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 (6) 

 

The filter design requirement being addressed is for Fltγ Ω( )  in (6) to match a 

specified Desiredγ Ω( )  over a specified frequency range RangeΩ .  This can be achieved in 

general, by first defining a general error parameter h Ω( )  as a function of the magnitude 

of the difference between Fltγ Ω( )  and Desiredγ Ω( ) : 

 

 
 
h Ω( ) f Fltγ Ω( ) − Desiredγ Ω( ){ } f 0( ) = 0  (7) 

 
The (6) ib  coefficients would then be calculated as those that minimize the average value 

of h Ω( )  over RangeΩ , represented analytically as the minimization of z, the integral of 

h Ω( )  over RangeΩ : 
 

 

  

z

RangeΩ
∫ h Ω( ) dΩ  (8) 

 

When feasible, the z minimization process can be performed analytically.  Alternatively, 
z minimization can always be achieved numerically by evaluating z over all possible 

ib values and saving the bi s for minimum z along the way.  For current high-speed 

computer technology, the latter would yield the desired solution in relatively short order, 
depending on the number of terms M carried in (1). 
 

When z minimization is analytically achievable, classical methods can be utilized 
(e.g., a minimum least-squares integral approach) as in [3] for strapdown inertial 
navigation system coning algorithm coefficients, or in [1 - Sect. 7.4] for non-recursive 
fixed gain filters designed to meet a specified amplitude versus frequency characteristic.  
In the latter case, the design was performed using a linear phase versus frequency 
response filter achieved through use of symmetrical filter coefficients.  For the specified 
phase matching approach presented here, no restriction is required on the general form of 

the (1) filter ib  coefficients. 

 
In formulating the minimum least-squares phase error design process, an error 

parameter e Ω( )  is first defined as: 
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e Ω( ) W Ω( ) FltA Ω( ) cos Fltγ Ω( )⎡⎣ ⎤⎦sin Desiredγ Ω( )⎡⎣ ⎤⎦
− FltA Ω( ) sin Fltγ Ω( )⎡⎣ ⎤⎦ cos Desiredγ Ω( )⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= − W Ω( ) FltA Ω( ) sin Fltγ Ω( ) − Desiredγ Ω( )⎡⎣ ⎤⎦

 (9) 

 
where W Ω( )  is a general application dependent weighting factor.  Thus, e Ω( )  measures 

the weighted error in the filter's ability to achieve the goal of setting Fltγ Ω( )  equal 

to Desiredγ Ω( ) .  Substituting (5) into (9) finds e Ω( )  in (9) as a function of Desiredγ Ω( )  

and the ib s: 

 
 

e Ω( ) = f Ω( ) ib
i=1

M
∑ cos Ω(i − 1)T[ ] + g Ω( ) ib

i=1

M
∑ sin Ω(i − 1)T[ ]  (10) 

where 

 
 
f Ω( ) W Ω( )sin Desiredγ Ω( )⎡⎣ ⎤⎦ g Ω( ) W Ω( )cos Desiredγ Ω( )⎡⎣ ⎤⎦   (11) 

 
An exactness constraint is also incorporated requiring y( nt ) = x( nt )  at low frequencies 

when x nt − (i − 1)T[ ] ≈ x( nt ) .  From (1), this is equivalent to ib
i=1

M
∑ = 1  or: 

 1b = 1 − ib
i=2

M
∑   (12) 

so that (10) becomes 

e Ω( ) = f Ω( ) 1 + ib
i=2

M
∑ cos Ω(i − 1)T[ ] − 1{ }⎧

⎨
⎩

⎫
⎬
⎭

+ g Ω( ) ib
i=2

M
∑ sin Ω(i − 1)T[ ]

= f Ω( ) + ib
i=2

M
∑ f Ω( ) cos Ω(i − 1)T[ ] − 1{ } + g Ω( )sin Ω(i − 1)T[ ]

 (13) 

Using an integral least-squares minimization approach sets h Ω( ) = 2e Ω( )  in (8) so 

that with (13): 

 

z =
2

f Ω( ) + ib
i=2

M
∑ f Ω( ) cos Ω(i−1)T[ ]−1{ } + g Ω( )sin Ω(i−1)T[ ]⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dΩ

RangeΩ
∫  (14) 

Minimization of (14) can be classically achieved analytically by taking the partial 
derivative of (14) with respect to each ib  and equating each to zero: 

 

∂z

∂ ib
=

∂
2

f Ω( ) + ib
i=2

M
∑ f Ω( ) cos Ω(i−1)T[ ]−1{ } + g Ω( )sin Ω(i−1)T[ ]⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dΩ

RangeΩ
∫

∂ ib

= e Ω( ) f Ω( ) cos Ω(i − 1)T[ ] − 1{ } + g Ω( )sin Ω(i − 1)T[ ] dΩ
RangeΩ
∫ = 0

 (15) 
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Thus, with (13): 

 

f Ω( ) cos Ω(i − 1)T[ ] − 1{ }
+g Ω( )sin Ω(i − 1)T[ ] jb

j=2

M
∑

f Ω( ) cos Ω( j − 1)T[ ] − 1{ }
+g Ω( )sin Ω( j − 1)T[ ] dΩ

RangeΩ
∫

= − f Ω( ) f Ω( ) cos Ω(i − 1)T[ ] − 1{ } + g Ω( )sin Ω(i − 1)T[ ] dΩ
RangeΩ
∫

 (16) 

or 

 

jb
j=2

M
∑

f Ω( ) 1 − cos Ω(i − 1)T[ ]{ }
− g Ω( )sin Ω(i − 1)T[ ]

f Ω( ) 1 − cos Ω( j − 1)T[ ]{ }
− g Ω( )sin Ω( j − 1)T[ ] dΩ

RangeΩ
∫

= f Ω( ) f Ω( ) 1 − cos Ω(i − 1)T[ ]{ } − g Ω( )sin Ω(i − 1)T[ ] dΩ
RangeΩ
∫

 (17) 

In matrix form, (17) is equivalently: 

 A U = V (18) 

where U is an M-1 length column matrix with the element in location r equal to r+1b ,  

A is an M-1 by M-1 square matrix with element a(r,s)  in row r, column s equal to 
 

 

 

a(r,s) =
f Ω( ) 1 − cos r ΩT( )⎡⎣ ⎤⎦

− g Ω( )sin r ΩT( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

f Ω( ) 1 − cos s ΩT( )⎡⎣ ⎤⎦
− g Ω( )sin s ΩT( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dΩ

RangeΩ
∫  (19) 

V is an M-1 length column matrix with element v(r)  in location r equal to 

 

 

v(r) = f Ω( ) f Ω( ) 1 − cos r ΩT( )⎡⎣ ⎤⎦ − g Ω( )sin r ΩT( ){ } dΩ
RangeΩ
∫  (20) 

and f Ω( )  is as defined in (11).  The solution for the best fit ib s is from (18) with (12): 

 B = 1b

U

⎡

⎣
⎢

⎤

⎦
⎥    with U = −1A V    and   1b = 1 - ru

r=1

M−1
∑  (22) 

where B is an M length column matrix with element s equal to ib . 

 
 

EXAMPLE 1 
 

Using [2] as an example, consider an analog sensor with the following SensA (Ω) , 

Sensγ (Ω)  dynamic amplitude/phase characteristic as a function of frequency Ω : 
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SensA (Ω) = Sens
2ω

2

Sens
2ω − 2Ω( ) + 22 Sensς Sensω Ω( )

Sensγ (Ω) = − −1tan
2 Sensς Sensω Ω

Sens
2ω − 2Ω( )

⎡

⎣
⎢

⎤

⎦
⎥  (23) 

where Sensω  and Sensς  are the undamped natural frequency and damping ratio.  The 

sensor output is sampled into a computer at a 1 KHz sampling rate.  For this example, 

consider a 400 Hz sensor bandwidth ( Sensω = 2π × 400 hz = 2,513 rad/sec) and 0.707 

damping ratio Sensς .  It is required (as in [2]) that the Sensγ (Ω)  phase shift on the 

sampled signal be cancelled over a specified frequency range of 0 to 100 Hz using a 
digital pre-filter. 
 

To cancel Sensγ (Ω) , Desiredγ Ω( )  in (21) would be set to − Sensγ (Ω) .  To focus filter 

effectiveness over the specified frequency range, the weighting function W Ω( )  in (21) is 

set to unity in the 0 - 150 Hz region (spanning the 0 - 100 Hz design specification with a 
50 Hz margin), and zero otherwise.  For a filter processing rate set to the 1 KHz sensor 
sample rate (T = 0.001 sec), the least-squares minimization range RangeΩ  for filter 

design in (19) and (20) is set to 500 Hz, the Nyquist frequency corresponding to 1 KHz.  
For such settings in (19), (20) and (23), the resulting (22) filter ib  coefficients based on a 

4 sample (M = 1) filter configuration are: 
 

1b = 1.90452576 2b = -1.32175784 3b = 0.492638638 4b = -0.0754065576  (24) 

 

Fig. 1 is a plot of Sensγ (Ω)  from (23) and Fltγ Ω( )  from (6) with the (24) 

coefficients, versus frequency (in Hz).  Fig. 2 plots Sensγ Ω( ) + Fltγ Ω( ) , the Fltγ Ω( )  

error in canceling Sensγ (Ω) .  Fig. 3 shows the corresponding SensA (Ω) , FltA Ω( )  

amplitude responses from (23) and (6) with the (24) coefficients, and the resulting 
combined filtered sensor amplitude response FltA Ω( ) SensA Ω( ) .  Fig. 2 demonstrates the 

filter's effectiveness in canceling Sensγ (Ω)  over the 0 - 100 Hz design frequency range 

RangeΩ . 

 
EXAMPLE 2 

 
As a second example, consider the same deign problem as in Example 1, but with the 

added requirement that the filtered sensor amplitude response be reasonably flat (i.e., 
without the noticeable higher frequency resonant rise in Fig. 3).  To achieve the flat 
amplitude response we allow that the filtered sensor phase response be negative linear 
versus frequency (rather than zero ) over the Example 1 specified design frequency range 
of 0 to 100 Hz.  This is equivalent to introducing a fixed time delay in the filtered output 
signal for all frequency components within the 0 to 100 Hz band.  (Note: In some digital 
filtering applications, a fixed time delay is acceptable, providing that the filter output 
tracks the sensor input in amplitude and relative phase.  For example, in [2], the filtered 
accelerometer output is combined with an ideal gyro output to form a sculling correction.  
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Fig. 1 - Sensor And Filter Phase Response Characteristics 

Sensγ (Ω)  (deg), Fltγ Ω( )  (deg) vs. 2πΩ  (hz) 

 

 

 
Fig. 2 - Filter Phase Compensation Effectiveness 

Sensγ Ω( ) + Fltγ Ω( ) (deg) vs. 2πΩ  (hz) 
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Fig. 3 - Corresponding Amplitude Responses 

SensA (Ω)  (dmls), FltA Ω( )  (dmls), FltA Ω( ) SensA Ω( ) (dmls) vs. 2πΩ  (hz) 

 
If the accelerometer filtered output includes phase correction to a negative linear slope, 
the negative phase slope will not generate an error in the sculling calculation if the gyro 
input for sculling is time delayed by an amount corresponding to the filtered 
accelerometer negative linear phase slope. 

 
Achieving the acceptable filter amplitude response is a numerical trial and error 

process whereby different negative linear phase slopes versus frequency are numerically 
tried.  For the Example 1 problem, it was found that acceptable amplitude response 
performance could be obtained if Desiredγ Ω( )  had a linear phase versus frequency Ω  

slope of Desiredγ Ω( ) / Ω = − 0.75 × [π / (2 Sensω )] .  Figs. 4 - 6 show the resulting filtered 

sensor performance using this linear phase relationship.  The associated (1) filter 
coefficients from (22) are as follows: 

1b = 1.15934133 2b = -0.235116786 3b = 0.861694648 4b = -0.0103940075  (25) 

 
Fig. 4 shows the SensA (Ω)  and FltA Ω( )  amplitude responses from (23) and (6), and the 

resulting combined filtered sensor amplitude response FltA Ω( ) SensA Ω( )  designed against the 

reasonably flat high frequency goal (compared with Fig. 3), using the (25) coefficients.  Fig. 5 is 
a plot of Sensγ (Ω)  from (23) and Fltγ Ω( ) from (6) using the (25) coefficients, the previously 

described Desiredγ (Ω)  requirement, and the resulting filter output phase Sensγ Ω( ) + Fltγ Ω( ) , 

all versus frequency (in Hz).  Fig. 6 plots Sensγ Ω( ) + Fltγ Ω( ) − Desiredγ Ω( ) , the filter output 

error in matching the Desiredγ (Ω)  linear phase response over the 0 - 100 Hz frequency range 

RangeΩ . 
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Fig. 4 - Sensor And Filter Amplitude Response 

SensA (Ω)  (dmls), FltA Ω( )  (dmls), FltA Ω( ) SensA Ω( ) (dmls) vs. 2πΩ  (hz) 

 

 
 

Fig. 5 - Sensor And Filter Phase Response 

Sensγ (Ω)  (deg), Fltγ Ω( )  (deg), Desiredγ (Ω)  (deg), Sensγ Ω( ) + Fltγ Ω( )  (deg) 

vs. 2πΩ  (hz) 
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Fig. 6 - Filter Phase Compensation Effectiveness 

Sensγ Ω( ) + Fltγ Ω( ) − Desiredγ Ω( )  (deg)  vs. 2πΩ  (hz) 

 
 

CAUTIONARY NOTE 
 

Numerical matrix inversion is required in this paper to compute filter coefficients.  In 
some unusual cases, numerical round-off will impact results obtained (e.g., for large 
values of M which directly translates to the dimension of the matrix being inverted).  A 
simple solution (as in [3]) is to maintain a small value of W(Ω)  at high frequencies so 

that it never equals zero.  It is recommended when computing coefficients that the matrix 
inversion routine be tested for accuracy by pre and post multiplying its output with the 
matrix being inverted to assure that the result (call it I*) equals identity within acceptable 
limits (e.g., so that each element of I* is within 1.E-5 of the correct identity matrix 
value). 

 
CONCLUSIONS 

 
Non-recursive fixed gain digital filter design can be based on achieving a specified 

dynamic phase response over a selected frequency range.  This provides an alternative to 
past filter design approaches based on specified amplitude response or general dynamic 
characteristics.  Some numerical experimentation may be required to achieve optimum 
results. 
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