DIGITAL INTEGRATION ALGORITHM ERROR FOR BAND-LIMITED RANDOM PROCESS INPUTS

Paul G. Savage
Strapdown Associates, Inc.
SAI WBN-14018
www.strapdownassociates.com
June 26, 2016

Abstract

This article develops an analytical model for evaluating digital integration algorithm error build-up under band-limited random process input. It is demonstrated that the digital integration process introduces a random walk type error in the output that is directly proportional to the root-mean-square input amplitude, directly proportional to the square-root of the input bandwidth, and inversely proportional to the digital integration update frequency.

ANALYSIS

Consider the analytical model in Fig. 1, illustrating a band limited random noise process to be integrated. A true integral is illustrated in the top half of Fig. 1. An approximate digital integration process is described in the lower half of Fig. 1 as a trapezoidal integration algorithm with updating time interval T and cycle index n . The digital integration error is the difference between the digital and true integrals. The following analysis develops a simple equation for evaluating the digital integration error as a function of the integration algorithm processing rate and the band-limited random noise magnitude/bandwidth.

Fig. 1 - Digital Integration Algorithm Error
The analysis begins by first describing the Fig. 1 model analytically:

$$
\begin{gather*}
\dot{x}_{1}=-\omega_{b w} x_{1}+n_{p_{1}} \quad \dot{x}_{2}=x_{1} \tag{1}\\
\mathrm{x}_{3_{n}}=\mathrm{x}_{3_{n-1}}+\frac{1}{2}\left(\mathrm{x}_{1_{n}}+\mathrm{x}_{1_{n-1}}\right) \mathrm{T} \tag{2}
\end{gather*}
$$

where,
$\mathrm{x}_{1}=\begin{aligned} & \text { Band-limited white noise input to the integrators (modeled as a first order Markov } \\ & \text { process). }\end{aligned}$
$\omega_{\mathrm{bw}}=$ Bandwidth of band-limited white noise inputs (i.e., Markov process gain).
$\mathrm{n}_{\mathrm{p}_{1}}=$ White noise input to the Markov process.
$\mathrm{x}_{2}=$ True integral of x_{1}.
$\mathrm{x}_{3}=$ Digital integral of x_{1} (using a trapezoidal integration algorithm).
$\mathrm{n}=$ Integration algorithm computation cycle index.
$\mathrm{T}=$ Integration algorithm computation cycle time period (reciprocal of algorithm
iteration rate).

Eqs. (1) can also be expressed in the equivalent state vector form [1, Eq. (15-2)]:

$$
\begin{equation*}
\underline{\dot{x}}=\mathrm{A} \underline{\mathrm{x}}+\underline{\mathrm{n}}_{\mathrm{p}} \tag{3}
\end{equation*}
$$

in which

$$
\underline{x} \equiv\left[\begin{array}{l}
\mathrm{x}_{1} \tag{4}\\
\mathrm{x}_{2}
\end{array}\right] \quad \mathrm{A} \equiv\left[\begin{array}{cc}
-\omega_{\mathrm{bw}} & 0 \\
1 & 0
\end{array}\right] \quad \underline{\mathrm{n}}_{\mathrm{p}} \equiv\left[\begin{array}{c}
\mathrm{n}_{\mathrm{p}_{1}} \\
0
\end{array}\right]
$$

and where

$$
\begin{aligned}
& \underline{x}=\text { State vector } \\
& A=\text { State dynamic matrix. } \\
& \underline{n}_{p}=\text { Process noise vector. }
\end{aligned}
$$

The equivalent integrated form of (3), valid at the digital integration algorithm iteration times, is given by the classical form [1, Eq. (15.1.1-14)]:

$$
\begin{equation*}
\underline{\mathrm{x}}_{\mathrm{n}}=\Phi_{\mathrm{n}} \underline{\mathrm{x}}_{\mathrm{n}-1}+\underline{\mathrm{q}}_{\mathrm{n}} \tag{5}
\end{equation*}
$$

in which

$$
\begin{align*}
& \Phi_{\mathrm{n}}=\Phi(\mathrm{T}) \quad \Phi(\tau)=\int_{\mathrm{t}_{\mathrm{n}-1}}^{\mathrm{t}_{\mathrm{t}-1}+\tau} \mathrm{A} \Phi\left(\tau_{1}\right) \mathrm{d} \tau_{1} \quad \Phi(0)=\mathrm{I} \tag{6}\\
& \underline{\mathrm{q}}_{\mathrm{n}}=\int_{\mathrm{t}_{\mathrm{n}-1}}^{\mathrm{t}_{\mathrm{n}-1}+\mathrm{T}} \Phi(\tau) \underline{\mathrm{n}}_{\mathrm{p}} \mathrm{~d} \tau
\end{align*}
$$

where
$\Phi=$ State transition matrix.
$\mathrm{I}=$ Identity matrix.
$\underline{q}_{\mathrm{n}}=$ Integrated process noise vector (over $\mathrm{t}_{\mathrm{n}-1}$ to t_{n}).
It is easily shown by integrating (6) for $\Phi(\tau)$ that

$$
\Phi_{\mathrm{n}}=\left[\begin{array}{cc}
\mathrm{e}^{-\omega_{\mathrm{bw}} \mathrm{~T}} & 0 \tag{7}\\
\frac{1}{\omega_{\mathrm{bw}}}\left(1-\mathrm{e}^{-\omega_{\mathrm{bw}} \mathrm{~T}}\right) & 1
\end{array}\right]
$$

We now define

$$
\Phi_{\mathrm{n}} \equiv\left[\begin{array}{ll}
\phi_{11_{\mathrm{n}}} & \phi_{12_{\mathrm{n}}} \tag{8}\\
\phi_{21_{\mathrm{n}}} & \phi_{22_{\mathrm{n}}}
\end{array}\right] \quad \underline{\mathrm{q}}_{\mathrm{n}} \equiv\left[\begin{array}{l}
\mathrm{q}_{\mathrm{n}} \\
\mathrm{q}_{\mathrm{n}}
\end{array}\right]
$$

From (7):

$$
\begin{array}{cc}
\phi_{11_{\mathrm{n}}}=\mathrm{e}^{-\omega_{\mathrm{bw}} \mathrm{~T}} & \phi_{12_{\mathrm{n}}}=0 \\
\phi_{21_{\mathrm{n}}}=\frac{1}{\omega_{\mathrm{bw}}}\left(1-\phi_{11_{\mathrm{n}}}\right) & \phi_{22_{\mathrm{n}}}=1 \tag{9}
\end{array}
$$

With (8) and (9), (5) and (2) become in component form:

$$
\begin{gather*}
\mathrm{x}_{1 \mathrm{n}}=\phi_{11_{\mathrm{n}} \mathrm{x}_{1_{\mathrm{n}-1}}+\mathrm{q}_{1}} \\
\mathrm{x}_{2_{\mathrm{n}}}=\mathrm{x}_{2_{\mathrm{n}-1}}+\phi_{21_{\mathrm{n}} \mathrm{x} 1_{\mathrm{n}-1}+\mathrm{q}_{2}} \tag{10}\\
\mathrm{x}_{3_{\mathrm{n}}}=\mathrm{x}_{3_{\mathrm{n}-1}}+\frac{1}{2}\left(\mathrm{x}_{1_{\mathrm{n}}}+\mathrm{x}_{1_{\mathrm{n}-1}}\right) \mathrm{T}
\end{gather*}
$$

The error in x_{3} is defined as the difference between x_{3} and the true integral x_{2} :

$$
\begin{equation*}
\mathrm{e}_{\mathrm{n}} \equiv \mathrm{x}_{3_{\mathrm{n}}}-\mathrm{x}_{2_{\mathrm{n}}} \tag{11}
\end{equation*}
$$

where

$$
\mathrm{e}_{\mathrm{n}}=\text { Error in } \mathrm{x}_{3_{\mathrm{n}}}
$$

The e_{n} error can be evaluated in terms of its variance:

$$
\begin{equation*}
\left.\mathrm{Pe}_{\mathrm{n}}=\mathrm{E}\left(\mathrm{e}_{\mathrm{n}}^{2}\right)=\mathrm{E}\left[\left(\mathrm{x}_{3_{\mathrm{n}}}-\mathrm{x}_{2}\right)^{2}\right)^{2}\right]=\mathrm{E}\left(\mathrm{x}_{3_{\mathrm{n}}}^{2}\right)+\mathrm{E}\left(\mathrm{x}_{2_{\mathrm{n}}}\right)^{2}-2 \mathrm{E}\left(\mathrm{x}_{3_{\mathrm{n}}} \mathrm{x}_{2_{\mathrm{n}}}\right) \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{P}_{\mathrm{ee}_{\mathrm{n}}}=\mathrm{P}_{33_{\mathrm{n}}}+\mathrm{P}_{22_{\mathrm{n}}}-2 \mathrm{P}_{32_{\mathrm{n}}} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{E}()=\text { Expected value operator. } \\
& \mathrm{P}_{\mathrm{ee}_{\mathrm{n}}}=\text { Variance of } \mathrm{e}_{\mathrm{n}} . \\
& \mathrm{P}_{\mathrm{ij}_{\mathrm{n}}}=\text { Expected value of } \mathrm{x}_{\mathrm{i}_{\mathrm{n}}} \mathrm{x}_{\mathrm{j}_{\mathrm{n}}} \text { (i.e., the covariance of } \mathrm{x}_{\mathrm{i}_{\mathrm{n}}} \text { with } \mathrm{x}_{\mathrm{j}_{\mathrm{n}}} \text {). }
\end{aligned}
$$

For error build-up analysis, it is convenient to define (13) in terms of its build-up rate over a computer cycle:

$$
\begin{equation*}
\dot{\mathrm{P}}_{\mathrm{ee}_{\mathrm{n}}} \equiv \Delta \mathrm{P}_{\mathrm{ij}_{\mathrm{n}}} / \mathrm{T}=\left(\Delta \mathrm{P}_{33_{\mathrm{n}}}+\Delta \mathrm{P}_{22_{\mathrm{n}}}-2 \Delta \mathrm{P}_{32_{\mathrm{n}}}\right) / \mathrm{T} \tag{14}
\end{equation*}
$$

in which
and where

$$
\dot{\mathrm{P}}_{\mathrm{ee}}^{\mathrm{n}}, ~=\text { Error e variance build-up rate over computer cycle } \mathrm{n} .
$$

We now develop analytical expressions for the individual terms in (14) by first forming particular products of the (10) terms:

$$
\begin{gather*}
x_{3_{n}} x_{1_{n}}=\left[x_{3_{n-1}}+\frac{1}{2}\left(x_{1_{n}}+x_{1_{n-1}}\right) T\right] x_{1_{n}}=x_{3_{n-1}} x_{1_{n}}+\frac{1}{2} x_{1_{n}}^{2} T+\frac{1}{2} x_{1_{n-1}} x_{1_{n}} T \\
x_{3_{n}} x_{2_{n}}=\left[x_{3_{n-1}}+\frac{1}{2}\left(x_{1_{n}}+x_{1_{n-1}}\right) T\right] x_{2_{n}}=x_{3_{n-1}} x_{2_{n}}+\frac{1}{2} x_{1_{n}} x_{2_{n}} T+\frac{1}{2} x_{1_{n-1}} x_{2_{n}} T \\
x_{3_{n}}^{2}=\left[x_{3_{n-1}}+\frac{1}{2}\left(x_{1_{n}}+x_{1_{n-1}}\right) T\right]^{2} \tag{16}\\
=x_{3 n-1}^{2}+x_{3_{n-1}}\left(x_{1_{n}}+x_{1_{n-1}}\right) T+\frac{1}{4}\left(x_{1_{n}}^{2}+2 x_{1_{n}} x_{1_{n-1}}+x_{1_{n-1}}^{2}\right) T^{2} \\
=x_{3 n-1}^{2}+x_{3_{n-1}} x_{1_{n-1}} T+\frac{1}{4} x_{1_{n}}^{2} T^{2}+\frac{1}{4} x_{1_{n-1}}^{2} T^{2}+x_{3_{n-1}} x_{1_{n}} T+\frac{1}{2} x_{1_{n}} x_{1_{n-1}} T^{2}
\end{gather*}
$$

Particular terms in (16) are with (10):

$$
\begin{align*}
& \mathrm{x}_{3_{\mathrm{n}-1}} \mathrm{x}_{1_{\mathrm{n}}}=\mathrm{x}_{3_{\mathrm{n}-1}}\left(\phi_{11_{\mathrm{n}}} \mathrm{x}_{1_{\mathrm{n}-1}}+\mathrm{q}_{1_{\mathrm{n}}}\right)=\phi_{11_{\mathrm{n}}} \mathrm{x}_{3_{\mathrm{n}-1}} \mathrm{x}_{1_{\mathrm{n}-1}}+\mathrm{x}_{3_{\mathrm{n}-1}} \mathrm{q}_{1_{\mathrm{n}}} \\
& \mathrm{x}_{1_{n-1}} \mathrm{x}_{1_{\mathrm{n}}}=\mathrm{x}_{1_{\mathrm{n}-1}}\left(\phi_{11_{\mathrm{n}}} \mathrm{x}_{1_{\mathrm{n}-1}}+\mathrm{q}_{1_{\mathrm{n}}}\right)=\phi_{11_{\mathrm{n}}} \mathrm{x}_{1_{\mathrm{n}-1}}^{2}+\mathrm{x}_{1_{\mathrm{n}-1}} \mathrm{q}_{1_{\mathrm{n}}} \\
& \mathrm{x}_{3_{\mathrm{n}-1}} \mathrm{x}_{2_{\mathrm{n}}}=\mathrm{x}_{3_{\mathrm{n}-1}}\left(\mathrm{x}_{2_{\mathrm{n}-1}}+\phi_{21_{\mathrm{n}}} \mathrm{x}_{1_{\mathrm{n}-1}}+\mathrm{q}_{2}\right)=\mathrm{x}_{3_{\mathrm{n}-1}} \mathrm{x}_{2_{\mathrm{n}-1}}+\phi_{21_{\mathrm{n}}} \mathrm{x}_{3_{\mathrm{n}-1}} \mathrm{x}_{1_{\mathrm{n}-1}}+\mathrm{x}_{3_{\mathrm{n}-1}} \mathrm{q}_{2_{\mathrm{n}}} \tag{17}\\
& \mathrm{x}_{1_{\mathrm{n}-1}} \mathrm{x}_{2_{\mathrm{n}}}=\mathrm{x}_{1_{\mathrm{n}-1}}\left(\mathrm{x}_{2_{\mathrm{n}-1}}+\phi_{21_{\mathrm{n}}} \mathrm{x}_{1_{\mathrm{n}-1}}+\mathrm{q}_{2_{\mathrm{n}}}\right)=\mathrm{x}_{1_{\mathrm{n}-1}} \mathrm{x}_{2_{\mathrm{n}-1}}+\phi 2_{1_{\mathrm{n}}} \mathrm{x}_{1_{\mathrm{n}-1}}^{2}+\mathrm{x}_{1_{\mathrm{n}-1}} \mathrm{q}_{2_{\mathrm{n}}}
\end{align*}
$$

Substituting (17) in (16), taking the expected value, and recognizing that the q_{n} terms are uncorrelated with $\mathrm{x}_{\mathrm{n}-1}$ terms yields:

$$
\begin{gather*}
\mathrm{P}_{31_{n}}=\phi_{11_{n}} \mathrm{P}_{31_{n-1}}+\frac{1}{2} \mathrm{P}_{11_{n}} \mathrm{~T}+\frac{1}{2} \phi_{11_{n}} \mathrm{P}_{11_{\mathrm{n}-1}} \mathrm{~T} \\
\mathrm{P}_{32_{\mathrm{n}}}=\mathrm{P}_{32_{\mathrm{n}-1}}+\phi_{21_{\mathrm{n}}} \mathrm{P}_{31_{\mathrm{n}-1}}+\frac{1}{2} \mathrm{P}_{12_{n}} \mathrm{~T}+\frac{1}{2} \mathrm{P}_{12_{\mathrm{n}-1}} \mathrm{~T}+\phi_{21_{\mathrm{n}}} \mathrm{P}_{11_{\mathrm{n}-1}} \mathrm{~T} \tag{18}\\
\mathrm{P}_{33_{\mathrm{n}}}=\mathrm{P}_{33_{\mathrm{n}-1}}+\left(1+\phi_{11_{n}}\right) \mathrm{P}_{31_{\mathrm{n}-1}} \mathrm{~T}+\frac{1}{4} \mathrm{P}_{11_{\mathrm{n}}} \mathrm{~T}^{2}+\left(\frac{1}{4}+\frac{1}{2} \phi_{11_{n}}\right) \mathrm{P}_{11_{\mathrm{n}-1}} \mathrm{~T}^{2}
\end{gather*}
$$

The P_{11} and P_{12} terms in (18) are evaluated from the continuous covariance form of (3) [1, Eq. (15.1.2.1.1.3-1)] :

$$
\begin{equation*}
\dot{\mathrm{P}}=\mathrm{AP}+\mathrm{PA} \mathrm{~A}^{\mathrm{T}}+\mathrm{N}_{\mathrm{p}} \tag{19}
\end{equation*}
$$

in which

$$
\mathrm{P} \equiv \mathrm{E}\left(\underline{\mathrm{x}} \underline{\mathrm{x}}^{\mathrm{T}}\right) \equiv\left[\begin{array}{ll}
\mathrm{P}_{11} & \mathrm{P}_{12} \tag{20}\\
\mathrm{P}_{21} & \mathrm{P}_{22}
\end{array}\right] \quad \mathrm{N}_{\mathrm{p}} \equiv\left[\begin{array}{cc}
\mathrm{N}_{\mathrm{P}_{11}} & 0 \\
0 & 0
\end{array}\right]
$$

and where

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{ij}}=\text { Element in row i column } \mathrm{j} \text { of covariance matrix P. } \\
& \mathrm{N}_{\mathrm{p}}=\text { Process noise density matrix. } \\
& \mathrm{N}_{\mathrm{P}_{11}}=\text { Density of process noise } \mathrm{n}_{\mathrm{P}_{1}} .
\end{aligned}
$$

Expanding (19) with (20) and (3) in component form yields:

$$
\begin{equation*}
\dot{\mathrm{P}}_{11}=-2 \omega_{\mathrm{bw}} \mathrm{P}_{11}+\mathrm{N}_{\mathrm{P}_{11}} \quad \dot{\mathrm{P}}_{12}=\dot{\mathrm{P}}_{21}=\mathrm{P}_{11}-\omega_{\mathrm{BW}} \mathrm{P}_{12} \quad \dot{\mathrm{P}}_{22}=2 \mathrm{P}_{12} \tag{21}
\end{equation*}
$$

We now assume that at the start of the Fig. 1 integration process, P_{11} is at its steady state value. Then from (21):

$$
\begin{equation*}
\dot{\mathrm{P}}_{12}+\omega_{\mathrm{bw}} \mathrm{P}_{12}=\mathrm{P}_{11_{\infty}} \quad \dot{\mathrm{P}}_{22}=2 \mathrm{P}_{12} \tag{22}
\end{equation*}
$$

where,

$$
\mathrm{P}_{11_{\infty}}=\text { Steady state value of } \mathrm{P}_{11} .
$$

The integral solution to (22) starting with zero P_{12} and P_{22} initial conditions is

$$
\begin{equation*}
P_{12}=\frac{1}{\omega_{b w}}\left(1-\mathrm{e}^{-\omega_{b w} t}\right) P_{11_{\infty}} \quad P_{22}=\frac{2}{\omega_{b w}}\left[t-\frac{1}{\omega_{b w}}\left(1-\mathrm{e}^{-\omega_{b w} t}\right)\right] P_{11_{\infty}} \tag{23}
\end{equation*}
$$

where
$\mathrm{t}=$ Time since start of the Fig. 1 integration process.
At computer cycles $n-1$ and n, P_{22} in (23) is given by:

$$
\begin{gather*}
\mathrm{P}_{22_{\mathrm{n}-1}}=\frac{2}{\omega_{\mathrm{bw}}}\left[\mathrm{t}_{\mathrm{n}-1}-\frac{1}{\omega_{\mathrm{bw}}}\left(1-\mathrm{e}^{\left.-\omega_{\mathrm{bw}} \mathrm{t}_{\mathrm{n}-1}\right)}\right] \mathrm{P}_{11_{\infty}}\right. \\
\mathrm{P}_{22_{\mathrm{n}}}=\frac{2}{\omega_{\mathrm{bw}}}\left[\mathrm{t}_{\mathrm{n}}-\frac{1}{\omega_{\mathrm{bw}}}\left(1-\mathrm{e}^{-\omega_{\mathrm{bw}} T} \mathrm{e}^{\left.-\omega_{\mathrm{bw}} \mathrm{t}_{\mathrm{n}-1}\right)}\right] \mathrm{P}_{11_{\infty}}\right. \tag{24}
\end{gather*}
$$

or

$$
\begin{equation*}
P_{22_{n}}=P_{22_{n-1}}+\frac{2}{\omega_{b w}}\left[T-\left(1-e^{-\omega_{b w} T}\right) e^{-\omega_{b w} t_{n-1}}\right] P_{11_{\infty}} \tag{25}
\end{equation*}
$$

in which from its definition

$$
\begin{equation*}
\mathrm{T}=\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}-1} \tag{26}
\end{equation*}
$$

From (23) at cycle $\mathrm{n}, \mathrm{P}_{12}$ is

$$
\begin{equation*}
\mathrm{P}_{12_{\mathrm{n}}}=\frac{1}{\omega_{\mathrm{bw}}}\left(1-\mathrm{e}^{-\omega_{\mathrm{bw}} \mathrm{t}_{\mathrm{n}}}\right) \mathrm{P}_{11_{\infty}} \tag{27}
\end{equation*}
$$

We also note that

$$
\begin{equation*}
\mathrm{P}_{11_{\mathrm{n}}}=\mathrm{P}_{11_{\mathrm{n}-1}}=\mathrm{P}_{11_{\infty}} \tag{28}
\end{equation*}
$$

and from (15)

$$
\begin{equation*}
\Delta \mathrm{P}_{33_{\mathrm{n}}}=\mathrm{P}_{33_{\mathrm{n}}}-\mathrm{P}_{33_{\mathrm{n}-1}} \quad \Delta \mathrm{P}_{22_{\mathrm{n}}}=\mathrm{P}_{22_{\mathrm{n}}}-\mathrm{P}_{22_{\mathrm{n}-1}} \quad \Delta \mathrm{P}_{32_{\mathrm{n}}}=\mathrm{P}_{32_{\mathrm{n}}}-\mathrm{P}_{32_{\mathrm{n}-1}} \tag{29}
\end{equation*}
$$

Eqs. (18) with (25), (27), (28) and (29) comprise a complete set for evaluating $\dot{\mathrm{P}}_{\mathrm{ee}_{\mathrm{n}}}$ in (14).
The analysis is now simplified by considering the steady state solution to (14) (i.e., for very large n). In the steady state we write from (18) and (27):

$$
\begin{gather*}
\mathrm{P}_{31_{\mathrm{n}}}=\mathrm{P}_{31_{\mathrm{n}-1}}=\mathrm{P}_{31_{\infty}} \quad \mathrm{P}_{12_{\mathrm{n}}}=\mathrm{P}_{12_{\mathrm{n}-1}}=\mathrm{P}_{12_{\infty}} \\
\mathrm{P}_{31_{\infty}}=\phi_{11_{\mathrm{n}}} \mathrm{P}_{31_{\infty}}+\frac{1}{2}\left(1+\phi_{11_{\mathrm{n}}}\right) \mathrm{P}_{11_{\infty}} \mathrm{T} \quad \mathrm{P}_{12_{\infty}}=\frac{1}{\omega_{\mathrm{bw}}}\left(1-\mathrm{e}^{-\omega_{\mathrm{bw}} \mathrm{t}_{\infty}}\right) \mathrm{P}_{11_{\infty}} \tag{30}
\end{gather*}
$$

or

$$
\begin{gather*}
\mathrm{P}_{12_{\mathrm{n}}}=\frac{1}{\omega_{b w}} \mathrm{P}_{11_{\infty}} \\
\mathrm{P}_{31_{\mathrm{n}}}=\mathrm{P}_{31_{\mathrm{n}-1}}=\mathrm{P}_{31_{\infty}}=\frac{1}{2}\left(\frac{1+\phi_{11_{n}}}{1-\phi_{11_{n}}}\right) \mathrm{P}_{11_{\infty}} \mathrm{T} \tag{31}
\end{gather*}
$$

where,

$$
\mathrm{P}_{12_{\infty}}, \mathrm{P}_{31_{\infty}}=\text { Steady state values for } \mathrm{P}_{12} \text { and } \mathrm{P}_{31}
$$

Then with (18), (25), (28) and (31), (29) becomes

$$
\begin{gather*}
\Delta \mathrm{P}_{32_{\mathrm{n}}}=\phi_{21_{\mathrm{n}}} \mathrm{P}_{31_{\infty}}+\mathrm{P}_{12_{\infty}} \mathrm{T}+\frac{1}{2} \phi_{21_{\mathrm{n}}} \mathrm{P}_{11_{\infty}} \mathrm{T} \\
=\left[\frac{1}{2} \phi_{21_{\mathrm{n}}}\left(\frac{1+\phi_{11_{n}}}{1-\phi_{11_{\mathrm{n}}}}\right)+\frac{1}{2} \phi_{21_{\mathrm{n}}}+\frac{1}{\omega_{\mathrm{bw}}}\right] \mathrm{P}_{11_{\infty}} \mathrm{T}=\left[\frac{\phi_{21_{\mathrm{n}}}}{1-\phi_{11_{\mathrm{n}}}}+\frac{1}{\omega_{\mathrm{bw}}}\right] \mathrm{P}_{11_{\infty}} \mathrm{T} \\
\Delta \mathrm{P}_{33_{\mathrm{n}}}=\left(1+\phi_{11_{\mathrm{n}}}\right) \mathrm{P}_{31_{\infty}} \mathrm{T}+\frac{1}{2}\left(1+\phi_{11_{\mathrm{n}}}\right) \mathrm{P}_{11_{\infty}} \mathrm{T}^{2} \tag{32}\\
=\frac{1}{2}\left(1+\phi_{11_{\mathrm{N}}}\right)\left[\frac{1+\phi_{11_{n}}}{1-\phi_{11_{\mathrm{n}}}}+1\right] \mathrm{P}_{11_{\infty}} \mathrm{T}^{2}=\left(\frac{1+\phi_{11_{\mathrm{n}}}}{1-\phi_{11_{\mathrm{n}}}}\right) \mathrm{P}_{11_{\infty}} \mathrm{T}^{2} \\
\Delta \mathrm{P}_{22_{\mathrm{n}}}=\frac{2}{\omega_{\mathrm{bw}}} \mathrm{P}_{11_{\infty}} \mathrm{T}
\end{gather*}
$$

Substituting (32) into (14) yields

$$
\begin{equation*}
\dot{\mathrm{P}}_{\mathrm{ee}}^{\mathrm{n}}, ~=\left[\left(\frac{1+\phi_{11_{\mathrm{n}}}}{1-\phi_{11_{\mathrm{n}}}}\right) \mathrm{T}+\frac{2}{\omega_{\mathrm{bw}}}-2\left(\frac{\phi_{21_{\mathrm{n}}}}{1-\phi_{11_{\mathrm{n}}}}+\frac{1}{\omega_{\mathrm{bw}}}\right)\right] \mathrm{P}_{11_{\infty}}=\left[\frac{\left(1+\phi_{11_{\mathrm{n}}}\right) \mathrm{T}-2 \phi_{21_{\mathrm{n}}}}{1-\phi_{11_{\mathrm{n}}}}\right] \mathrm{P}_{11_{\infty}} \tag{33}
\end{equation*}
$$

From (9):

$$
\begin{align*}
& \frac{\left(1+\phi_{11_{n}}\right) \mathrm{T}-2 \phi_{21_{n}}}{1-\phi_{11_{n}}}=\frac{1+\phi_{11_{n}}-\frac{2}{\omega_{b w}}\left(1-\phi_{11_{n}}\right)}{1-\phi_{11_{n}}} \tag{34}\\
& =\left(\frac{1+\phi_{11_{n}}}{1-\phi_{11_{n}}}\right) \mathrm{T}-\frac{2}{\omega_{b w}}=\left(\frac{1+\mathrm{e}^{-\omega_{b w} T}}{1-\mathrm{e}^{-\omega_{b w} T}}-\frac{2}{\omega_{b w} T}\right) \mathrm{T}
\end{align*}
$$

Finally, from (33) and (34):

$$
\begin{equation*}
\sigma_{\mathrm{e}_{\mathrm{rw}}}=\sigma_{\mathrm{x}} \sqrt{\left(\frac{1+\mathrm{e}^{-\mu}}{1-\mathrm{e}^{-\mu}}-\frac{2}{\mu}\right) \frac{1}{\mathrm{f}_{\mathrm{c}}}} \tag{35}
\end{equation*}
$$

where
$\sigma_{\mathrm{e}_{\mathrm{rw}}}=\sqrt{\dot{\mathrm{P}}_{\mathrm{ee}_{\mathrm{n}}}}=$ Standard deviation of integration algorithm random walk output
error (per square-root-of-secs).
$f_{C}=1 / T=$ Integration algorithm iteration rate (hz).
$\sigma_{\mathrm{x}}=\sqrt{\mathrm{P}_{11_{\infty}}}=$ Standard deviation of band-limited input to digital integrator.

$$
\mu=\omega_{\mathrm{bw}} / \mathrm{f}_{\mathrm{c}}=\text { Bandwidth/iteration rate ratio (rad/sec per hz). }
$$

Eq. (35) is an exact expression for the steady state random walk error in the digital integration process. An approximate expression can be obtained for $\sigma_{\mathrm{e}_{\mathrm{rw}}}$ for small values of μ from the Taylor series expansion:

$$
\begin{equation*}
e^{-\mu}=1-\mu+\frac{1}{2} \mu^{2}-\frac{1}{6} \mu^{3}+\ldots \tag{36}
\end{equation*}
$$

From (36):

$$
\begin{align*}
& \frac{1+\mathrm{e}^{-\mu}}{1-\mathrm{e}^{-\mu}}-\frac{2}{\mu}=\frac{2-\mu+\frac{1}{2} \mu^{2}-\frac{1}{6} \mu^{3}+\ldots}{\mu-\frac{1}{2} \mu^{2}+\frac{1}{6} \mu^{3}-\ldots}-\frac{2}{\mu}=\frac{2}{\mu} \frac{\left(1-\frac{1}{2} \mu+\frac{1}{4} \mu^{2}-\frac{1}{6} \mu^{3}+\ldots\right)}{\left(1-\frac{1}{2} \mu+\frac{1}{6} \mu^{2}-\ldots\right)}-\frac{2}{\mu} \\
& =\frac{2}{\mu}\left[\frac{1-\frac{1}{2} \mu+\frac{1}{4} \mu^{2}-\ldots-1+\frac{1}{2} \mu-\frac{1}{6} \mu^{2}+\ldots}{1-\frac{1}{2} \mu+\frac{1}{6} \mu^{2}-\ldots}\right] \approx \frac{2}{\mu}\left(\frac{1}{4}-\frac{1}{6}\right) \mu^{2}=\frac{1}{6} \mu \tag{37}
\end{align*}
$$

With (37), (35) becomes

$$
\begin{equation*}
\sigma_{\mathrm{e}_{\mathrm{rw}}} \approx \sigma_{\mathrm{x}} \sqrt{\frac{1}{6} \frac{\mu}{\mathrm{f}_{\mathrm{c}}}} \tag{38}
\end{equation*}
$$

Substituting for the definition of $\mu \equiv \omega_{\mathrm{bw}} / \mathrm{f}_{\mathrm{C}}$ then yields the approximate form:

$$
\begin{equation*}
\sigma_{\mathrm{e}_{\mathrm{rw}}} \approx \sqrt{\frac{1}{6} \omega_{\mathrm{bw}}} \frac{1}{\mathrm{f}_{\mathrm{c}}} \sigma_{\mathrm{x}} \tag{39}
\end{equation*}
$$

REFERENCE

[1] Savage, P. G., Strapdown Analytics, Second Edition, Strapdown Associates, Inc., 2007

