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ABSTRACT 
 

This article specializes and expands the kinematics of Point-To-Point 
Relativity to describe the differential motion of a remote point as observed at two 
spatial points in motion relative to one another.  In its original form, Point-To-
Point Relativity was restricted to constant relative velocity between the two 
observers (as in traditional Special Relativity). The differential approach 
described in this article places no restriction on relative velocity between 
observers.  As a result, the equations for observed remote point acceleration also 
account for relative acceleration between the two observation points. 

  
 
INTRODUCTION 
 

Point-To-Point Relativity [1] is a revised form of traditional Relativity theory in which 
position is described as the distance vector between two points in space as viewed by observers 
translating relative to one-another.  Unlike traditional Relativity theory, the Point-to-Point 
approach avoids the use of relatively translating reference frames, space-time diagrams, world 
lines intersecting with space-time events, and the concept of space-time simultaneity.  In the 
Point-to-Point approach, distance vectors are represented as free vectors having no preferred 
location in reference frames in which they are described.  An advantage for the new approach is 
eliminating the requirement for clock synchronization between the observers [2 Chpt. 8, 3 Sect. 
12-2, 4 Chpt. VI Sect. 1].  As part of the Point-to-Point formulation, a new notation was 
developed in [1] to explicitly identify point-to-point distance-vectors/time-intervals measured by 
a particular observer, and their relationship with equivalent measurements taken by another 
observer.   
 

This article describes a differential version of Point-to-Point kinematic, deriving Point-to-
Point Lorentz formulas for the differential position change, velocity, and acceleration of a remote 
spatial point as determined by observers travelling relative to one-another.  The original Point-
To-Point article [1] was based on constant relative velocity between observers (as in traditional 
Special Relativity theory), initially deriving finite position change formulas as the basis for 
subsequent velocity and acceleration measurements.  This article expands the scope of [1] to 
accommodate variations in relative velocity (acceleration) between the observation points. 
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The article first derives fundamental equations of differential kinematic position change 
between points in space for compatibility with either Newtonian or Relativistic geometries.  The 
equations are then specialized for compatibility with the speed of light constancy requirement of 
Relativity theory.  Deriving the position change equations in differential form allows them to be 
developed without assuming constant relative velocity between observation points (as in 
classical Special Relativity).  The resulting Point-To-Point Relativity differential position change 
formulas are then used to develop the corresponding velocity and acceleration of a remote spatial 
point as determined by two observers in general motion (velocity and acceleration) relative to 
one another, to derive the differential equivalents of Lorentz “time dilation” and “length 
contraction”, and to demonstrate the invariance between observers of classical Relativity “proper 
time”. 
 
 
NOTATION 
 

The following general notation is used throughout the article: 
 
 ( )  =  Vector parameter having length and direction. 

 
/ i  =  Vector subscript denoting the vector parameter being observed (measured or 

calculated from measurements) at observation point i (i being point a or b). 
 
Observable Event – An event at a position location in space at an instant in time (e.g., a 

lightning strike, explosion, or radar pulse illumination) that can be observed at a 
remote spatial location based on electro-magnetic wave propagation (e.g. light or 
radar) from the event to the observation point [2 pp. 29 & 36, 3 pp. 515 & 521, 4 pp. 
28 & 236-238, 5 pp. 10]. 

 
 
GENERAL KINEMATIC EQUATIONS  
 

Consider observers at points a and b observing the motion of a distant point p,  each observer 
measuring the motion as the difference between observed p position locations (“events”) at two 
successive time points t1 and t2 (t2 following t1): 

 
 

2 1 2 1/ / / / / /p p p pp a a a p b b bx x x x x x= − = −Δ Δ  (1) 

 
where 

1/p ax , 
2/p ax  are distance vectors (position) measured at point a from point a to p at 

times t1 and t2, /p axΔ  is the change (linear translation) in the point a observed p position vector 

over the t1 to t2 time interval, and similarly for 
1/p bx , 

2/p bx , /p bxΔ . 
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If points a and b have translated during the t1 to t2 time interval, /p axΔ  will differ from 

/p bxΔ .  Observers a and b can account for the relative translation when predicting what the 

other would observe: 
 

 / / / / / /bp a p a b a ap b p b a bx x x x x x= − = −Δ Δ Δ Δ Δ Δ  (2) 

 
where /bp axΔ  is the point a prediction of /p bxΔ  and similarly for /ap bxΔ .  As in (1) we can 

also write 
 
 2 1 2 1/ / / / / /b b a ab a a a a b b bx x x x x x= − = −Δ Δ  (3) 

 
Now assume that the t1 to t2 time interval is infinitesimally small.  Then (2) becomes the 

differential equivalent: 
 

 / / / / / /bp a p a b a ap b p b a bd d d d d dx x x x x x= − = −  (4) 

 
where d ( ) is the differential equivalent of Δ ( ) over the infinitesimal time interval from t1 to t2.  
Based on Newtonian and Relativity theory symmetry and the principle of non-uniqueness 
between points a and b [6 pp. 423, 2 Chpt. 5, 7 pp. 177], we can further assume that /b ad x  and 

/a bd x  will be parallel but oppositely directed so that 
 

/ /
/ / / // / / // /b a a b

b a a b b a a bb a v a b v v b a a b
a b

d dx x
v u v u u v vv v v v

dt dt
≡ = ≡ = − = = −  (5) 

 
where /b av  is the velocity of point b measured at point a, /b av  is the magnitude of /b av , adt  is 
an infinitesimal time interval for the /b ad x  position change as measured on a clock located at 
point a, similarly for /a bv  and bdt , and  vu   is a unit vector in the direction of /b av  (and /b ad x ). 
 

Traditional Relativity and Newtonian theory invokes the principle that there is no “preferred” 
velocity reference location [6 pp. 423, 2 Chpt. 5, 7 pp. 177], hence, the velocity magnitude of 
point a observed at point b will equal the velocity magnitude of point b observed at point a: 
 
 / /a b b a abv v v= ≡  (6)  
 
where abv  is the magnitude of the relative velocity between points a and b.  From (5) and (6), 
 
 / /ab a ab bb a v a b vd dx u x uv dt v dt= = −  (7) 
 
With (7), (4) becomes the equivalent differential of the classical Newtonian form [2 pp. 37, 3 pp. 
508, 4 pp. 237, 5 pp.19]: 
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 / / / /ab a ab bbp a p a v ap b p b vd d d dx x u x x uv dt v dt= − = +  (8) 

 
For subsequent use, we also expand /bp ad x  and /ap bd x  in (8) into components parallel and 

perpendicular to the b-relative-to-a velocity vector direction vu .  Recognizing that vector 
components along vu  are their dot products with vu : 

 

 / / / // /. .p a p a v v p b p b v vp a p bd dx x u u x x x u u xd d d d
⊥ ⊥

= + = +  (9) 

 
where subscript ⊥  identifies a parameter’s component perpendicular to vu . 
 
 
RELATIVITY AND NEWTONIAN GEOMETRY COMPATIBILITY 
 

Traditional Newtonian geometry would have / /ap b p ad dx x=  , / /bp a p bd dx x= , and 

b adt dt=  in (8).  According to Relativity theory, however, these traditional equalities do not 
exactly hold along vu .  To accommodate both, the (9) equalities are modified as in [4 pp. 236]: 

 
 / / / // /. .bp a p b v v ap b p a v vp b p ad d d dx x u u x x x u u xd dα α

⊥ ⊥
= + = +  (10) 

 
where α is set to 1 for Newtonian compatibility and to a different value (to be determined 
subsequently) for Relativity compatibility.  Substituting (8) with (9) in (10) obtains after 
rearrangement (similar to [4 pp. 236]): 
 

 

/ // /

/ // /

. .

. .

ab bp a v v p b v v vp a p b

ab ap b v v p a v v vp b p a

d x u u x x u u x ud d d v dt

d x u u x x u u x ud d d v dt

α

α
⊥ ⊥

⊥ ⊥

+ = + +

+ = + −
 (11) 

 
The vu  components in (11) can be rearranged into 

 

( )
( )

( )
( )

/ /

/ /

/ /

/ /

1. .

1. 1 .

1. .

1. 1 .

ab bp a v v p b v v v

ab b ab bp b v v v p b v v v

ab ap b v v p a v v v

ab a ab ap a v v v p a v v v

d x u u x u u ud v dt

x u u u x u u ud dv dt v dt

d x u u x u u ud v dt

x u u u x u u ud dv dt v dt

α

α

α

α

= +

⎛ ⎞= + + − +⎜ ⎟
⎝ ⎠

= −

⎛ ⎞= − + − −⎜ ⎟
⎝ ⎠

 (12) 

 
Substituting / .p a v vd x u u  from (12) into the (9) /p ad x  expression yields: 
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( )/ / //
1. 1 .ab b ab bp a p b v v v p b v v vp ad x x u u x u x u u ud d dv dt v dtα⊥

⎛ ⎞= + + + − +⎜ ⎟
⎝ ⎠

 (13) 

 
Then, recognizing from the perpendicular components in (11) that / /p a p bx xd d

⊥ ⊥
= , and from 

(9) that / //.p b v v p bp b dx u u x xd d
⊥

+ = , (13) becomes 

                                                                                                                                                                                    

 
( )/ / /

1 1 .ab b ab bp a p b v p b v v vd dx x u x u u udv dt v dtα
⎛ ⎞= + + − +⎜ ⎟
⎝ ⎠

 (14) 

 
Using the identical procedure for the / .p b v vd x u u  expression in (12) finds similarly for /p bd x : 

 

 
( )/ / /

1 1 .ab a ab ap b p a v p a v v vd dx x u x u u udv dt v dtα
⎛ ⎞= − + − −⎜ ⎟
⎝ ⎠

 (15) 

 
Eqs. (14) and (15) comprise a set of generalized differential distance vector conversion 

formulas (from observer b to a and from observer a to b) that are compatible with either 
Newtonian geometry or Relativity kinematic theory.  For a complete conversion set it remains to 
find generalized equations for converting bdt  to adt  and adt  to bdt . 

 
Eqs. (14) and (15) can be inverted to find general solutions for the adt  and bdt  differential 

time intervals.  Taking the dot product of (14) with vu obtains with rearrangement: 
 

 ( )/ /
1. . ab bp a v p b vd x u x ud v dtα

= +  (16) 

 
Substituting / .p a vd x u  from (16) into (15) (multiplied by α dotted with vu ) and solving for adt  

gives:  

( )
( ) ( )

/ /
/

2 2
/ / /

/

1 1 . .

1 1. . 1 . /

a ab bp b v p b v
b a

ab b b abp b v p b v p b v
b a

dx u x uddt v dt
v

dx u x u x ud dv dt dt v
v

α
α

α αα α

⎡ ⎤= + −⎢ ⎥⎣ ⎦

⎡ ⎤= + − = + −⎣ ⎦

 (17) 

 
Similarly, dotting (15) with vu  and substituting the / .p a vx ud  result into (14) (multiplied by α 

dotted with vu ) solves for bdt : 
 

 ( )2
/

1 1 . /b a abp a vd x udt dt vαα
⎡ ⎤= − −⎣ ⎦  (18) 

 
Eqs. (14), (15), (17), and (18) summarize as follows 

 



 

6 
 

 

( )
( )

( )
( )

/ / /

2
/

/ / /

2
/

1 1 .

1 1 . /

1 1 .

1 1 . /

ab b ab bp a p b v p b v v v

a b abp b v

ab a ab ap b p a v p a v v v

b a abp a v

d dx x u x u u udv dt v dt

x uddt dt v

d dx x u x u u udv dt v dt

d x udt dt v

α

αα

α

αα

⎛ ⎞= + + − +⎜ ⎟
⎝ ⎠

⎡ ⎤= + −⎣ ⎦

⎛ ⎞= − + − −⎜ ⎟
⎝ ⎠

⎡ ⎤= − −⎣ ⎦

 (19) 

 
Substituting / / abv b au v v=  from (5) with (6), (19) becomes 
 

 

( )
( )

( )
( )

2
/ / / / / / /

2 2
/ /

2
/ / / / / / /

2 2
/ /

1 1 . /

1 1 . /

1 1 . /

1 1 . /

b bp a p b b a p b b a b a b aab

a b p b b a ab

a ap b p a b a p a b a b a b aab

b a p a b a ab

d dx x v x v v vddt v dt

x vddt dt v

d dx x v x v v vddt v dt

d x vdt dt v

α

αα

α

αα

⎛ ⎞= + + − +⎜ ⎟
⎝ ⎠

⎡ ⎤= + −⎣ ⎦

⎛ ⎞= − + − −⎜ ⎟
⎝ ⎠

⎡ ⎤= − −⎣ ⎦

 (20) 

 
An equivalent symmetrical version of (20) derives from (5) using / / abv a bu v v= −  for the first 
equation set in (19) and / / abv b au v v=  for the second equation set in (19): 
 

 

( )
( )

( )
( )

2
/ / / / / / /

2 2
/ /

2
/ / / / / / /

2 2
/ /

1 1 . /

1 1 . /

1 1 . /

1 1 . /

b bp a p b a b p b a b a b a bab

a b p b a b ab

a ap b p a b a p a b a b a b aab

b a p a b a ab

d dx x v x v v vddt v dt

x vddt dt v

d dx x v x v v vddt v dt

d x vdt dt v

α

αα

α

αα

⎛ ⎞= − + − −⎜ ⎟
⎝ ⎠

⎡ ⎤= − −⎣ ⎦

⎛ ⎞= − + − −⎜ ⎟
⎝ ⎠

⎡ ⎤= − −⎣ ⎦

 (21) 

 
Eqs. (19), (20), or (21), with (6) constitute generalized sets of Point-to-Point kinematic 

conversion formulas that are compatible with either Newtonian geometry or Relativity theory.  
The distinguishing characteristic between either is the value selected for α.  For α = 1, Eqs. (19) 
– (21) reduce to the classic Newtonian form.  For compatibility with Relativity theory, α must be 
set so that the speed-of-light constancy law of Relativity theory is satisfied. 
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SETTING ALPHA FOR RELATIVITY COMPATIBILITY 
 

For compatibility with Relativity theory, α in (19) – (21) is used to account for experimental 
and theoretical findings that the speed of light (or any electro-magnetic wave speed) is the same 
constant to any observer in the same isotropic homogenous medium (or in a vacuum) [8, 9 Sect. 
II].  Thus, consider what observers a and b would measure for the distance a photon r of light 
would travel between two observable points (“events”) in space (events 1 and 2, event 2 
following event 1).  Each observer would find: 

 

 
2 22 2 2 2

/ / / / / /. .ar a r a r a r b r b r b bx x x x x xc t c t= = = =Δ Δ Δ Δ Δ ΔΔ Δ  (22) 
 
where /r axΔ  is the distance vector traversed by photon r between event points 1 and 2, atΔ  is 
the time interval recorded on a point a located clock between observations 1 and 2, c is the speed 
of light, and similarly for /r bxΔ , btΔ .  The equivalent of (22) over an infinitesimal space time 
interval would be 
 

 2 22 2 2 2
/ / / / / /. .ar a r a r a r b r b r b bd d d d d dx x x x x xc dt c dt= = = =  (23) 

 
Applying the generalized previous results to photon motion equates point p to photon r for 

which (9), (23), and Pythagoras give 
 

 
( )
( )

2 2 2 2
/ / / /

2 2 2 2
/ / / /

. .

. .

ar a r a v r a r a

r b r b v br b r b

d x x u x xd d d c dt

d x x u x xd d d c dt

⊥ ⊥

⊥ ⊥

= + =

= + =
 (24) 

 
Taking the difference between the (24) expressions finds 
 

 
( ) ( )

( )
2 2

/ /
2 2 2

/ / / /

. .

. .
r b v r a v

a p a p a p b p bb

x u x ud d

x x x xd d d dc dt dt
⊥ ⊥ ⊥ ⊥

−

= − + −
 (25) 

 
For this exercise it is convenient to use the equivalent (11) form of the (19) position change 
conversion pair.  Identifying photon r as p in (11) obtains 

 

 
/ // /

/ // /

. .

. .
ab br a v v r b v v vr a r b

ab ar b v v r a v v vr b r a

d x u u x x u u x ud d d v dt

d x u u x x u u x ud d d v dt

α

α
⊥ ⊥

⊥ ⊥

+ = + +

+ = + −
 (26) 

 
The components of (26) parallel and perpendicular to vu  can be written individually as 
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/ /

/ /

/ /

. .

. .
ab br a v r b v

ab ar b v r a v

r b r a

d x u x ud v dt
d x u x ud v dt

x xd d

α
α

⊥ ⊥

= +

= −
=

 (27) 

 
Solving for / .r b vx ud  from the first expression in (27) and substitution in the second obtains 
with rearrangement: 
 
 ( ) ( )2

/ .1 ab b ar a vd x u v dt dtαα = −−  (28) 

 
Similarly, solving for / .r a vx ud  from the second expression in (27) and substitution in the first 
obtains: 
 
 ( ) ( )2

/ .1 ab b ar b vd x u v dt dtαα = −−  (29) 

 
Squaring (28) and (29), and taking their difference gives 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 22 2
/ /

2 22 2 2 2 2 2 2

1 . .

1

b a b ar b v r a v ab

a b a aab b ab b

d dx u x u v dt dt dt dt

v dt dt dt dt v dt dt

α αα

α α α

⎡ ⎤ ⎡ ⎤− − = − − −⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤= + − − = − −⎢ ⎥⎣ ⎦

 (30) 

or 
 

 ( ) ( ) ( ) ( )2 22 2 2 2
/ /1 . . ar b v r a v ab bd dx u x u v dt dtα ⎡ ⎤− − = −⎢ ⎥⎣ ⎦

 (31) 

 
Substituting (25) in (31) and applying the third expression from (27) finds 
 
 ( ) ( ) ( )2 2 2 2 2 2 21 a ab ab bc dt dt v dt dtα− − = −  (32) 

 
or 
 2 2 21 /abv cα− =  (33) 
 
Eq. (33) easily solves for α, yielding the well-known Relativity coefficient: 
 
 2 21 /abv cα = −  (34) 
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POINT-TO-POINT RELATIVITY OBSERVATIONS OF REMOTE POINT DIFFERENTIAL 
POSITION CHANGE 

 
With (33) and (34), Eqs. (21) become Differential Point-To-Point Relativity conversion 

formulas relating remote point p differential position change as viewed by observers at points a 
and b:  

( )

( )

( )

( )

2
/ / / / / / /2 2

2
/ /2 2

2
/ / / / / / /2 2

2
/ /2 2

1 1 . /
1 /

1 . /
1 /

1 1 . /
1 /

1 . /
1 /

b bp a p b a b p b a b a b a bab
ab

a b p b a b
ab

a ap b p a b a p a b a b a b aab
ab

b a p a b a
ab

d dx x v x v v vddt v dt
v c

x vddt dt c
v c

d dx x v x v v vddt v dt
v c

d x vdt dt c
v c

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟−⎝ ⎠

= −
−

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟−⎝ ⎠

= −
−  

 (35) 

 
Eqs. (35) are the differential Point-To-Point Relativity conversion equivalent of the general 
Lorentz transformation operations in traditional Relativity theory [3 Eqs. (12-5a); 5 Eqs. (10.32) 
- (10.33), (10-36) - (10.37) & pp. 30].  Note that the /a bv , /b av , abv  relative velocity terms 
between points a and b as defined by (5) with (6) are completely general without any constancy 
assumption.  This characteristic will carry forward into the subsequent derivation of p 
acceleration viewed from points a and b in which relative acceleration between a and b is 
included. 
 
 
POINT-TO-POINT RELATIVITY OBSERVATIONS OF REMOTE POINT VELOCITY  

 
The derivation of remote point p velocity relative to observation point a begins with a 

restatement of the (35) observation equations for observer a: 
 

( )

( )

2
/ / / / / / /2 2

2
/ /2 2

1 1 . /
1 /

1 . /
1 /

b bp a p b a b p b a b a b a bab
ab

a b p b a b
ab

d dx x v x v v vddt v dt
v c

x vddt dt c
v c

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟−⎝ ⎠

= −
−

 (36) 

 
Dividing (36) by bdt  finds with rearrangement 
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/ / / /2 2
/ / / / /2 2

/

/ 2
/2 2

1. / . /
1 /

1 1 . /
1 /

p a p b p b p ba
a b a b a b a b a bab ab

a b b b ba b

p ba
a b

b bab

d d d dx x x xdt v v v v vv v
dt dt dt dt dtv c

d xdt v c
dt dtv c

⎛ ⎞
= − + −⎜ ⎟⎜ ⎟− ⎝ ⎠

⎛ ⎞
= −⎜ ⎟⎜ ⎟− ⎝ ⎠  

(37) 

 
Defining 

 / /
/ /

p a p b
p a p b

a b

dd x x
v v

dt dt
≡ ≡  (38) 

 
where /p av  and /p bv  are the point p velocities observed at points a and b.  With (38), (37) 

becomes 
 

( )

( )

2 2
/ / / / / / / / /2 2

/

2
/ /2 2

1. / . /
1 /

1 1 . /
1 /

a
p a p b p b a b a b p b a b a b a bab ab

b a b

a
p b a b

b ab

dtv v v v v v v v vv v
dt v c

dt v v c
dt v c

= − + −
−

= −
−

 (39) 

 
Substituting the second expression in (39) into the first obtains 
 

( )

( )

2
/ / /2 2

2 2
/ / / / / / / // 2 2

1 1 . /
1 /

1. / . /
1 /

p a p b a b
ab

p b p b a b a b p b a b a b a ba b ab
ab

v v v c
v c

v v v v v v v vv v
v c

−
−

= − + −
−

 (40) 

 
Rearrangement of (40) then yields the Point-to-Point Relativity equation for /p av , point p 

velocity relative to point a, as a function of /p bv , point p velocity relative to point b: 

 

( )
( )

( )
( )

2 2 2 2
/ / / / / / /

/ 2 2
/ / / /

1 / . / 1 . /

1 . / 1 . /
p b p b a b a b p b a b a bab ab ab

p a
p b a b p b a b

v v v v v v vv c v v
v

v v v vc c

− − −
= −

− −
 (41) 

 
Substituting / /a b b av v= −  from (5) – (6) into (41) would obtain the equivalent to what has 
previously been found by traditional Relativity theory [3 pp. Eq. (12-12), 5 pp. Eq. (16.07)]. 

 
The velocity of point p velocity relative to point b is found similarly, but starting with the 

(35) observation equations for observer b.  The result is 
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( )
( )

( )
( )

2 2 2 2
/ / / / / / /

/ 2 2
/ / / /

1 / . / 1 . /

1 . / 1 . /
p a p a b a b a p a b a b aab ab ab

p b
p a b a p a b a

v v v v v v vv c v v
v

v v v vc c

− − −
= −

− −
 (42) 

 
 
POINT-TO-POINT RELATIVITY OBSERVATIONS OF REMOTE POINT ACCELERATION 
 

Deriving point p acceleration relative to observation point a begins with the (41) equation for 
/p av , the /a bdt dt  equation in (39), and the acceleration definitions in (36).  The derivation will 

also assume that the original (5) – (6) premise of / /a b b av v= −  is valid under changing /b av .  
Taking the differential of (41) with /p bdv  terms grouped first and /b adv  terms second yields 

 

( )
( )

( )
( ) ( )

( )
( )

2 2 2
/ / / /

/ 2
/ /

2 2 2
/ / / / / / / / /

2 2 22 2 / // /

2
/ / / / /

22 2
/ /

2

1 / . /

1 . /

1 / . / . .

1 . /1 . /

1 . / .

1 . /

p b p b a b a bab ab
p a

p b a b

p b p b a b a b p b a bab ab p b a b a b

p b a b abp b a b

p b a b p b a b a bab

p b a b

ab

v v v vd dv c v
dv

v v c

v v v v v vd v v vdv c v

v v c vv v c c

v v v v vdv

v v c c

d

− −
=

−

− −
+ +

−−

−
−

−

+
( )

( )

( )
( )

( )

2
/ / / /

2 2 2 2
/ /

/ / / / / /2 2
2 2

/ / /
2 2

/ /

2 2 2 2
/ / / / / /

22
/ /

. /

2 1 / 1 . /

. .
1 /

. /

1 . /

1 / . / . /

1 . /

p b p b a b a b ab

p b a bab

p b a b a b p b a b a b
ab

p b a b a bab ab

p b a b ab

p b p b a b a b p b a bab ab

p b a b

v v v vv v

v vv c c c

v v v v v vd d
v c

v v vdv v

v v c v

v v v v v vdv c v c

v v c

−

− −

+⎛ ⎞
⎜ ⎟−
⎜ ⎟−⎝ ⎠−

−

− −
+

−

( )
( )

( )

( )
( )

( )

22
/ / // / /

2 4 2
/ / / /

2
/ / / / // / /

22 2 2 2/ / / /

1 . /.

1 . / 1 . /

1 . / ..

1 . / 1 . /

p b a b a babp b a b a bab

p b a b p b a bab

p b a b p b a b a babp b a b a b

p b a b ab p b a b

v v vdv v v vdv

v v v vc v c

v v v v vdv v vd v

v v c v v v c c

−
− −

− −

−
+ −

− −

 (43) 
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The 2
abdv  term in (43) is obtained from  

 

 
2 2

/ / / / / / / /. . 2 . 2 .b a b a a b a b b a b a a b a bab ab d dv v v v v v v vdv v= = → = =  (44) 
 
Substituting 2

/ /2 .a b a bab dv vdv =  from (44) in (43) gives 
 

( )
( )

( )
( ) ( )

( )
( )

2 2 2
/ / / /

/ 2
/ /

2 2 2
/ / / / / / / / /

2 2 22 2 / // /

2
/ / / / /

22 2
/ /

/

1 / . /

1 . /

1 / . / . .

1 . /1 . /

1 . / .

1 . /

p b p b a b a bab ab
p a

p b a b

p b p b a b a b p b a bab ab p b a b a b

p b a b abp b a b

p b a b p b a b a bab

p b a b

a b

v v v vd dv c v
dv

v v c

v v v v v vd v v vdv c v

v v c vv v c c

v v v v vdv

v v c c

v

− −
=

−

− −
+ +

−−

−
−

−

+
( )

( )
2

/ / / / /

2 2 2 2
/ /

. . /

1 / 1 . /

a b p b p b a b a b ab

p b a bab

dv v v v v v

v vv c c c

−

− −   

 ( )

/ / / / / /2 2
2

/ / / / /
2 2

/ /

. .
1 /

2 . . /

1 . /

p b a b a b p b a b a b
ab

a b a b p b a b a b ab

p b a b ab

v v v v v vd d
v c

dv v v v v v

v v c v

+⎛ ⎞
⎜ ⎟−
⎜ ⎟−⎝ ⎠−

−
 (45) 

 

( )
( )

( )
( )

( )

( )
( )

2 2 2
/ / / / / /

22 2
/ /

2
/ / // / / / /

2 4 2
/ / / /

2
/ / / // / /

2 2
/ /

1 / . . /

1 . /

1 . /2 . .

1 . / 1 . /

1 . / ..

1 . /

p b a b p b p b a b a bab ab

p b a b

p b a b a baba b a b p b a b a b

p b a b p b a bab

p b a b p b a b aabp b a b a b

p b a b ab

v v v v v vdv c v

v v c c

v v vddv v v v v v

v v v vc v c

v v v vdv v vd v

v v c v

− −
+

−

−
− −

− −

−
+ −

− ( )
/

22 2
/ /1 . /

b

p b a b

v

v v c c−

 

 
The third and fourth terms in (45) combine as 
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( )
( )

( )

( )
( ) ( )

( )

2
/ / / / // / /

22 2 2 2/ / / /

2 2
/ / / // / /

2 2 22 // /

/ / /
2 2 22

/ /

1 . / ..

1 . / 1 . /

1 . / 1 . /.

1 . /

. 1 1

1 . /

p b a b p b a b a babp b a b a b

p b a b ab p b a b

p b a b p b a b abp b a b a b

a bp b a b

p b a b a b

abp b a b

v v v v vdv v vd v

v v c v v v c c

v v v vv v vd c v

v cv v c

v v vd

v cv v c

−
−

− −

⎡ ⎤− −
⎢ ⎥= −
⎢ ⎥

− ⎣ ⎦

⎛ ⎞
= −⎜⎜

⎝−

( )
( )

2 2
/ / /

22 2
/ /

1 / .

1 . /

p b a b a bab

p b a b ab

v v vdv c

v v c v

−
=⎟⎟

⎠ −

 (46) 

 
The last two terms in (45) combine similarly: 
 

 
( )

( )
( )

( )
( )

2
/ / / / // / /

22 2 2 2/ / / /

2 2
/ / /

22 2
/ /

1 . / ..

1 . / 1 . /

1 / .

1 . /

p b a b p b a b a babp b a b a b

p b a b ab p b a b

p b a b a bab

p b a b ab

v v v v vdv v vd v

v v c v v v c c

v v vdv c

v v c v

−
−

− −

−
=

−

 (47) 

 
With (46) and (47), (45) becomes 
 

( )
( )

( )
( )

( )
( )

( )

2 2 22 2
/ / / // / /

/ 2 22 2 / // / /

2 2 2
/ / / / / /

22 2
/ /

2
/ / / / / /

2 2

1 / . /1 / .

1 . /1 . /

1 / . . /

1 . /

. . /

1 /

p b p b a b a bab abp b a b a bab
p a

p b a bp b a b a b

p b a b p b p b a b a bab ab

p b a b

a b a b p b p b a b a b ab

ab

v v v vd dv v vd v c vv c
dv

v v cv v c v

v v v v v vdv c v

v v c c

dv v v v v v v

v

− −−
= +

−−

− −
+

−

−
+

− ( )

( )

2 2
/ /

/ / / / / /2 2
2

/ / / / /
2 2

/ /

1 . /

. .
1 /

2 . . /

1 . /

p b a b

p b a b a b p b a b a b
ab

a b a b p b a b a b ab

p b a b ab

v vc c c

v v v v v vd d
v c

dv v v v v v

v v c v

−

+⎛ ⎞
⎜ ⎟−
⎜ ⎟−⎝ ⎠−

−

 (48) 

 
Continued 
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( )
( )

( )
( )

( )
( )

( )

2 2 2
/ / / / / //

22 2
/ /

2
/ / // / / / /

2 4 2
/ / / /

2 2
/ / /

22 2
/ /

1 / . . /

1 . /

1 . /2 . .

1 . / 1 . /

1 / .

1 . /

p b a b p b p b a b a ba b ab

p b a b

p b a b a baba b a b p b a b a b

p b a b p b a bab

p b a b a bab

p b a b ab

v v v v v vdv c v

v v c c

v v vddv v v v v v

v v v vc v c

v v vdv c

v v c v

− −
+

−

−
− −

− −

−
+

−

 (48) Concluded 

 
Define 

 / / / /
/ / / /

p a p b b a a b
p a p b b a a b

a b a b

d dv v d dv v
a a a a

dt dt dt dt
≡ ≡ ≡ ≡  (49) 

 
where /p aa , /p ba  are point p accelerations observed at points a and b, /b aa  is point 

observation point b acceleration observed at point a, and /a ba is observation point a acceleration 
observed at point a.  Dividing (48) by adt  and applying (49) then gives 
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( )
( )

( )
( )

( )
( )

( )

2 2 22 2
/ / / // / /

2 22 2 / // /

2 2 2
/ / / / / /

22 2
/ /

2
/ / / / / /

2 2
/

/

1 / . /1 / .

1 . /1 . /

1 / . . /

1 . /

. . /

1 / 1

p b p b a b a bab abp b a b a bab

p b a bp b a b ab

p b a b p b p b a b a bab ab

p b a b

a b a b p b p b a b a b ab

p bab

p a

a a v va v v v c vv c

v v cv v c v

a v v v v vv c v

v v c c

v a v v v v v

vv c

a

− −−
+

−−

− −
+

−

−
+

− −

=

( )

( )
( )

( )

( )

2 2
/

/ / / / / /2 2
2

/ / / / /
2 2

/ /

2 2 2
/ / / / / /

22 2
/ /

/ / / / /
2

/ /

. /

. .
1 /

2 . . /

1 . /

1 / . . /

1 . /

2 . .

1 . /

a b

p b a b a b p b a b a b
ab

a b a b p b a b a b ab

p b a b ab

p b a b p b p b a b a bab ab

p b a b

a b a b p b a b a b

p b a b a

v c c

v a v v v a
v c

v a v v v v

v v c v

v a v v v vv c v

v v c c

v a v v v

v v c

+⎛ ⎞
⎜ ⎟−
⎜ ⎟−⎝ ⎠−

−

− −
+

−

−
−

( )
( )

( )
( )

2
/ / /

4 2
/ /

2 2
/ / /

22 2
/ /

/

1 . /

1 . /

1 / .

1 . /

a

b

p b a b a bab

p b a bb

p b a b a bab

p b a b ab

dt
dt

v v av

v vv c

v a vv c

v v c v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎛ ⎞⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎝ ⎠
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥−⎢ ⎥−⎢ ⎥
⎢ ⎥

−⎢ ⎥
+⎢ ⎥

⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (50) 

 
Substituting /a bdt dt  from (39) into (50) finally obtains 
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( )
( )

( )( )
( )

( ) ( )
( )

( )

3/2 2 2 22 2
/ / / // / /

/ 3 22 2 2
/ / / /

2 2 2
/ / / / / /

32 2
/ /

2
/ / / / / /

2
/ /

1 / . /1 / .

1 . / 1 . /

1 / . . /

1 . /

. . /

1 .

p b p b a b a bab abp b a b a bab
p a

p b a b p b a bab

p b a b p b p b a b a bab ab

p b a b

a b a b p b p b a b a b ab

p b a b

a a v va v v v c vv c
a

v v v vc v c

a v v v v vv c v

v v c c

v a v v v v v

v

− −−
= +

− −

− −
+

−

−
+

−( )
( )

( )
( ) ( )

( )
( )

( )

2 2

/ / / / / /2 2
2

/ / / / /
22 2

/ /

2 2 2
/ / / / / /

32 2
/ /

3/22 2
/ / /

32
/ /

/

. .
1 /

2 . . /

1 . /

1 / . . /

1 . /

1 / .

1 . /

p b a b a b p b a b a b
ab

a b a b p b a b a b ab

p b a b ab

p b a b p b p b a b a bab ab

p b a b

p b a b a bab

p b a b a

v c c

v a v v v a
v c

v a v v v v

v v c v

v a v v v vv c v

v v c c

v a vv c

v v c

+⎛ ⎞
⎜ ⎟−
⎜ ⎟−⎝ ⎠−

−

− −
+

−

−
+

−

( )
( )

( )

2 2 2
/ / //

22 2
/ /

2 2
/ / / / /

22 4
/ /

1 / 1 . /

1 . /

2 1 / . .

1 . /

p b a b a ba b ab

p b a bb

a b a b p b a b a bab

p b a b ab

v v av c v

v vv c

v a v v vv c

v v c v

− −
−

−

−
−

−

(51) 

 
Eq. (51) defines the acceleration of point p observed at point a as a function of p acceleration 

observed at point b and the relative velocity/acceleration between observation points a and b.  It 
is also to be noted that under constant relative velocity between points a and b ( i.e., constant 

/b av  or /b aa  = 0, the traditional assumption in classical Relativity theory), (51) reduces to 
    

( )
( )

( )( )
( )

( ) ( )
( )

3/2 2 2 22 2
/ / / // / /

/ 3 22 2 2
/ / / /

2 2 2
/ / / / / /

32 2
/ /

1 / . /1 / .

1 . / 1 . /

1 / . . /

1 . /

p b p b a b a bab abp b a b a bab
p a

p b a b p b a bab

p b a b p b p b a b a bab ab

p b a b

a a v va v v v c vv c
a

v v v vc v c

a v v v v vv c v

v v c c

− −−
= +

− −

− −
+

−

(52) 
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Substituting / /a b b av v= −  from (5) – (6), the (52) result is equivalent to what has been obtained 
previously based on traditional Special Relativity [1 Eq. (86) & 3 Eqs. (12-13)]. 
 

Results similar to (52) can be formulated for the acceleration of point p observed at point b as a 
function of p acceleration observed at point a and the relative velocity/acceleration between observation 
points a and b.  Starting with the (42) equation for /p bv , the bdt  equation in (35), and the acceleration 

definitions in (49), the final result is  
 

( )
( )

( )( )
( )

( ) ( )
( )

( )

3/2 2 2 22 2
/ / / // / /

/ 3 22 2 2
/ / / /

2 2 2
/ / / / / /

32 2
/ /

2
/ / / / / /

2
/ /

1 / . /1 / .

1 . / 1 . /

1 / . . /

1 . /

. . /

1 .

p a p a b a b aab abp a b a b aab
p b

p a b a p a b aab

p a b a p a p a b a b aab ab

p a b a

b a b a p a p a b a b a ab

p a b a

a a v va v v v c vv c
a

v v v vc v c

a v v v v vv c v

v v c c

v a v v v v v

v

− −−
= +

− −

− −
+

−

−
+

−( )
( )

( )
( ) ( )

( )
( )

( )

2 2

/ / / / / /2 2
2

/ / / / /
22 2

/ /

2 2 2
/ / / / / /

32 2
/ /

3/22 2
/ / /

32
/ /

/

. .
1 /

2 . . /

1 . /

1 / . . /

1 . /

1 / .

1 . /

p a b a b a p a b a b a
ab

b a b a p a b a b a ab

p a b a ab

p a b a p a p a b a b aab ab

p a b a

p a b a b aab

p a b a a

v c c

v a v v v a
v c

v a v v v v

v v c v

v a v v v vv c v

v v c c

v a vv c

v v c

+⎛ ⎞
⎜ ⎟−
⎜ ⎟−⎝ ⎠−

−

− −
+

−

−
+

−

( )
( )

( )

2 2 2
/ / //

22 2
/ /

2 2
/ / / / /

2 4
/ /

1 / 1 . /

1 . /

2 1 / . .

1 . /

p a b a b ab a ab

p a b ab

b a b a p a b a b aab

p a b a ab

v v av c v

v vv c

v a v v vv c

v v c v

− −
−

−

−
−

−

(53) 

 
Note the symmetry between (51) and (53), the expected result consistent with the basic premise 
of Relativity theory, and that can also be used as a validity check on the (53) derivation process. 
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DIFFERENTIAL POINT-TO-POINT FORMULAS FOR RELATIVE OBSERVER MOTION 
 

Previous developments have centered on point a compared to b observations of the kinematic 
motion of a remote point p (i.e., a three-point solution).  In this section we formulate a two-point 
kinematic solution by superimposing points b and p.  Then the motion of point p observed at 
point b will be zero, the motion of point p observed at point a will represent the relative motion 
between observation points a and b, and three-point solution Eqs. (35), (41), (42), (51), and (53) 
collapse at point b into the simplified forms: 

 

/ / /2 2 2 2

2 2
/ / / / / //

2 2
/ /

/ / / /

For Point  Located At Observation Point :

1 1

1 / 1 /

1 /

0 1 /

0 0

b a bp a b a a b
ab ab

p a b a a b p a b a a ba b

b ap b b b ab

p b b b p b b b

p b

d dx x v dt dt dt
v c v c

v v v a a av c

d dx x dt v c dt

v v a a

= = − =
− −

= = − = = − −

= = = −

= = = =

 (54) 

 
A two point solution can also be developed for observer b by assuming another point q to be 

at location a.  Then Eqs. (35), (41), (42), (51), and (53) (with p defined as q = a) collapse at point 
a into the simplified forms: 

 

 

/ / /2 2 2 2

2 2
/ / / / / //

2 2
/ /

/ / / /

For Point  Located At Observation Point :
1 1

1 / 1 /

1 /

0 1 /

0 0

a b aq b a b b a
ab ab

q b a b b a q b a b b aa b

a bq a a a ab

q a a a q a a a

q a 

d dx x v dt dt dt
v c v c

v v v a a av c

d dx x dt v c dt

v v a a

= = − =
− −

= = − = = − −

= = = −

= = = =

 (55) 

 
Note the symmetry between (54) and (55), consistent with the basic premise of Relativity theory.  
 
 
DIFFERENTIAL POINT-TO-POINT RELATIVITY TIME DILATION, 
 LENGTH CONTRACTION, AND PROPER TIME 
 

Two well-known consequences of traditional Relativity theory are the lengthening of time 
intervals (time dilation) and shorting of distances (distance contraction) predicted by Lorentz 
analytics [2 Chpt. 12, 3 pp. 517, 4 pp. 250, 5 Sect. 14 & 15].  In traditional Relativity, Lorentz 
analytics also defines a combined distance/time “proper time” parameter that has the same value 
when evaluated in reference frames translating relative to one-another [3 pp. 519, 5 Sect. 12].   
The same effects arise with Differential Point-to-Point Relativity. 
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Differential Point-To-Point Relativity Time Dilation 
 

Differential Point-to-Point Lorentz time dilation has already been demonstrated within the 
two-point solutions where events occurring at one observer were seen by the other observer.  
When point p differential position change occurred at observation point b, results in (54) showed 
that 2 2/ 1 /a b abdt dt v c= − , i.e., the time interval measured at point a during the spatial 
movement of point b, was longer than the same time interval measured at point b.  Similarly, 
when point q differential position change occurred at observation point a, results in (55) showed 
that 2 2/ 1 /b a abdt dt v c= − , i.e., the time interval measured at point b during the spatial 
movement of point q over the time, was longer than the same time interval measured at point a.  
The effect is known as Lorentz “time dilation”.  The results are equivalent to what has been 
obtained from traditional Relativity theory [2 Chpt. 12, 3 pp. 517, 4 pp. 248 - 250, 5 Sect. 15]. 

 
 

Differential Point-To-Point Length Contraction 
 

Differential Point-To-Point Lorentz distance contraction can be analytically demonstrated in 
general from (35) for simultaneous observation of the beginning and end points of p at point b 
(i.e., 0bdt = ) which finds 

 
 2

/ /. /a p a b ad x vdt c=  (56) 

 
Substituting (56) in the (35) /p bd x  expression then finds: 
 

( )

( )

2
/ / / / / / /2 2

2 2
/ / / / / / / /2 2

2
/ / / /

2
/ / / / / /2 2

1 1 . /
1 /

1. / . /
1 /

. /

1 . / .
1 /

a ap b p a b a p a b a b a b aab
ab

ap a p a b a b a p a b a b a b aab ab
ab

p a p a b a b a ab

p a b a b a b a p a bab
ab

d dx x v x v v vddt v dt
v c

d x x v v x v v vd dv v dt
v c

d x x v vd v

dx v v v xd v
v c

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟−⎝ ⎠

= − + −
−

= −

+ −
−

( )
( )

( )

2

2 2
2 2

/ / / / / / /2 2

2 2 2 2
/ / / / / / /

2 2 2
/ / / /

/

1 /
. / . /

1 /

. / 1 / . /

1 1 / . /

a

ab
p a p a b a b a p a b a b aab ab

ab

p a p a b a b a p a b a b aab ab ab

p a p a b a b aab ab

v c

v c
d x x v v x v vd dv v

v c

d x x v v x v vd dv v c v

d x x v vdv c v

−
= − +

−

= − + −

= − − −

 

(57) 
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Eq. (57) shows that /p bd x , the differential distance vector seen by observer b at a fixed time 

instant will equal the /p ad x  differential distance determined by observer a, but with the 

component parallel to /ab av  shortened by the factor 2 2 2 211 1 / /
2ab abv c v c− − ≈ .  The effect is 

known as “Lorentz distance contraction”. The result is equivalent to what has been obtained 
from traditional Relativity theory [2 Chpt. 12, 3 pp. 520 - 523, 4 pp. 248 - 250, 5 Sect. 15]. 
 
 
Differential Point-To-Point Proper Time 
 

In traditional Relativity theory, Lorentz “proper time” is a “time-like” parameter that is 
invariant in reference frames translating relative to one-another [3 pp. 519, 5 pp. Sect. 12].  The 
equivalent for Point-to-Point Relativity derives directly from (46).  To expedite the derivation 
process, it is convenient to reintroduce the vu terminology in (19) for the velocity vector 

/ abab a vv uv= .  Then with 2 21 /abv cα = −  from (34) and 2 2 21 /abv cα− =  from (33), the first 
two rows of (19) become 

 

( )

( )

/ / /2 2

2
/2 2

1 1 .
1 /

1 . /
1 /

ab b ab bp a p b v p b v v
ab

a b abp b v
ab

d x d x u d x u uv dt v dt
v c

d x udt dt v c
v c

⎛ ⎞
⎜ ⎟= + + − +
⎜ ⎟−⎝ ⎠

= +
−

 (58) 

 
As with traditional Relativity [3 pp. 519, 5 pp. Sect. 12], Differential Point-to-Point Relativity 
proper time is based on its squared value: 
 
 2 2 2. /p pd x d xd dt cτ ≡ −  (59) 

where 
 
 dτ  = Point-to-Point differential proper time interval. 
 

dt  = Differential time interval measured on a traditional local clock without particular 
observer specification ( adt  or bdt ). 

 
pd x = Differential changes in point p position vector over the dt  differential time 

interval without particular observer specification ( /p ad x  or /p bd x ). 

 
Note that (59) is similar to the equivalent for traditional Relativity in which proper time is 
defined as a differential time change function of differential changes in measured distance and 
time.  Similar to traditional Relativity, it will now be shown that Differential Point-to-Point 
proper time as defined in (59) is the same (i.e., invariant) between observers a and b translating 
relative to one another. 
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For observer a, proper time dτ  calculates from (59) as 
 
 2 2 2

/ /. /a p a p ad x d xd dt cτ = −  (60) 

 
The differential terms in (60) derive from (58).  For the derivation, it is first useful to expand 

/p ad x  and /p bd x  into components parallel and perpendicular to vu : 

 
 / // / / /v vp a p bp a p a p b p bd x d x d x d x d x d x

⊥ ⊥
= + = +  (61) 

 
where 
 
 / vp ad x , / vp bd x = Components of /p ad x , /p bd x  parallel to vu . 

 
 /pq ad x

⊥
, /p bd x

⊥
= Components of /p ad x , /p bd x  perpendicular to vu . 

 
With (61), (58) becomes 

 

 

( )
( )

/ / /2 2

2
/2 2

1

1 /

1 . /
1 /

v ab bp a vp b p b
ab

a b abvp b
ab

d x d x d x uv dt
v c

d x udt dt v c
v c υ

⊥
= + +

−

= +
−

 (62) 

 
Note also that from the definition of the (61) components: 
 

 
( ) ( )

/ // /

2 2
/ // / / /

. .

. . . .

v v

v v v v

p a v v p b v vp a p b

p a v p b vp a p a p b p b

d x d x u u d x d x u u

d x d x d x u d x d x d x u

= =

= =
 (63) 

 

 
/ / / / / /

/ / / / / /

. . .

. . .
v v

v v

p a p a p a p a p a p a

p b p b p b p b p b p b

d x d x d x d x d x d x

d x d x d x d x d x d x
⊥ ⊥

⊥ ⊥

= +

= +
 (64) 

 

The 2
adt  and / /.p a p ad x d x  terms in (60) are from (62) with (63) for ( )2

/ . vp bv
d x u : 
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( )

/ /

/ /

/ /

2 2 2 2

/ /
/ / 2 22 2

/

.

.1 1

1 / 1 /

.1.
2 .1 /

v v

v

v

p a p a

p b p b

p b pq b

ab b ab bv vab ab

p b p b
p b p b

ab bvp b ab bab

d x d x

d x d x

d x d x

u uv dt v dtv c v c

d x d x
d x d x

d x u v dt v dtv c

υ

⊥ ⊥

⊥ ⊥

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ +

⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥+ +− −⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥= +
⎢ ⎥+ +−
⎣ ⎦

 

  (65) 

 
( ) ( )

( ) ( )

2
2 2

/2 2

2
2 2 2 4

/ /2 2

1 . /
1 /

1 2 . / . /
1 /

a b abp bv
ab

ab bv vp b p bb ab
ab

d x udt dt v c
v c

d x u d x udt v dt c v c
v c υ

υ

υ

= +
−

⎡ ⎤
= + +⎢ ⎥

− ⎣ ⎦

 

 
Substituting (65) in (60) then finds for Differential Point-to-Point Relativity proper time: 
 

 

( )

( )

( ) ( ) ( )

2 2 2 2 4
// / /2 2

2
/ /

2 2 2
/ / /2 2

2 2 2 2 4 2
/ /2 2

1 2 . / . /
1 /

. /

1 . 2 . /
1 /

1 1 / ./ 1 /
1 /

v v v

v v v

v v

ab pq bvp b p b p bb ab
ab

p b p b

ab bvp b p b p b ab b
ab

p b p bab b ab
ab

d x u d x d xd dt v dt c v c
v c

d x d x c

d x d x d x u v dt v dt c
v c

d x d xv c dt v c c
v c

τ

⊥ ⊥

⎡ ⎤= + +⎢ ⎥⎣ ⎦−

−

⎡ ⎤− + +⎢ ⎥⎣ ⎦−

⎡ ⎤= − + −⎢ ⎥⎣ ⎦−

( )
2

/ /

2 2
/ / / /

. /

. . /
v v

p b p b

p b p b p b p bb

d x d x c

d x d x d x d xt c

⊥ ⊥

⊥ ⊥

−

= − −Δ

(66) 

 
or with (64) and (60): 
 
 2 2 2 2 2

/ / / /. / . /a p a p a p b p bbd x d x d x d xd dt c dt cτ = − = −  (67) 

 
Eq. (67) demonstrates the invariance of Differential Point-to-Point proper time formula (59) as 
determined by observer a or by observer b.  The (67) results are equivalent to what has been 
obtained with traditional Relativity theory [5 pp. 519, 5 Sect. 12]. 
 

Eq. (67) can also be used to show the relationship between proper time and the time 
differential measured on the point a and b clocks.  From (67), 
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 / /2 2 2 2 2
/ /. / 1 . /p a p a

a ap a p a
a a

d x d x
d x d xd dt c c dt

dt dt
τ

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 (68) 

 
Then, from (68), the point p velocity definitions in (38), and the equivalent for the observer b: 
 

 2 2
/ / / // 1 . / / 1 . /a bp a p a p b p bd dv v v vdt c dt cτ τ= − = −  (69) 

 
Eqs. (69) also show that: 
 

 
( )
( )

2
/ /

2
/ /

1 . /

1 . /
p b p ba

b p a p a

v v cdt
dt v v c

−
=

−
 (70) 

 
 
CONCLUSIONS 
 

Basing Point-To-Point Relativity kinematics on observations of differential remote point 
position change enables the relative acceleration between observation points to be analytically 
accommodated.  Although not specifically stated, the Point-To-Point Relativity vector formulas 
derived in this article are only valid in “inertially non-rotating systems” (as in traditional 
Relativity theory).  The differential form of the resulting equations will allow their direct 
expansion into Point-To-Point kinematics in rotating coordinate systems in a planned future 
article. 
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