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ABSTRACT 
 

Ring laser gyros (RLGs) and fiber optic gyros (FOGs) measure angular rotation by 
the phase difference generated between oppositely directed monochromatic light waves 
traversing a closed optical waveguide embedded in the gyro structure.  This article 
presents a comprehensive analytical development showing how the rotation induced 
phase difference is created at the gyro readout photo detector by two effects, 1} A 
wavelength difference between the oppositely directed waves caused by classical 
Newtonian/Euclidean geometrical effects (the same predicted by Special Relativity when 
rotation induced velocity of the waveguide is small compared to the speed of light), and 
2} The speed of light being the same relative to the rotating gyro as it is in non-rotating 
inertial space, an exclusive result of Relativity.  This contrasts with previous explanations 
attributing rotation induced phase shift to a difference in optical path length between the 
oppositely directed waves, or to a time difference for the oppositely directed waves to 
traverse the waveguide.  These explanations, however, were with respect to non-rotating 
space, not to the rotating gyro readout used for angular rotation measurements.  Relative 
to the readout (as in this development), it is shown that the time for each of the oppositely 
directed waves to traverse the waveguide is the same.  This article first derives a general 
equation describing how rotation induces a change in optical power when the oppositely 
directed beams are combined to illuminate the readout detector.  Applying the equation to 
an RLG shows how cyclic outputs are generated from the photo detector, each 
representing a known increment of angular rotation.  Application to a FOG shows how 
successive angular rotation increments are measured, each over the time for the waves to 
traverse the fiber coil.  Analysis of “closed-loop” FOG operations shows how to operate 
lithium–niobate crystals inserted in the fiber coil to balance rotation induced phase shift 
while generating angular rotation outputs. 

 
 
FOREWORD 
 

This article is a second revised version of its second publication [1], modified here for 
expanded and clarified derivations translating wavelength results into their impact on optical 
light wave interactions at the gyro pickoff.  Results and conclusions are unchanged from [1]. 
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INTRODUCTION 
 

Optical gyros (ring laser and fiber optic) have been in broad usage since the late 1970s.  
Curiously, however, their basic principle of operation has varied between designers and users.  
Optical gyros measure the change in phase induced by angular rotation in oppositely directed 
monochromatic light waves created within the gyro.  Some attribute the phase change to 
Relativity theory while others characterize it as a classical kinematic Doppler effect.  Many of 
these and other explanations have relied on heuristic reasoning to explain actual measured 
optical gyro operating characteristics.  The purpose of this article is to provide a rigorous 
comprehensive analytical derivation of equations governing the operation of optical gyros and in 
the process, identify those attributed to classical vector kinematics, and those uniquely 
contributed by Relativity.  The analysis is based on idealized optical gyro configurations in 
which oppositely directed light waves occupying the same physical space are independent from 
one-another, unaffected by imperfections in the closed waveguide directing their motion within 
the gyro, and having the same polarization direction when combined at the readout photo 
detector.  
 

Relativity theory relates the motion of a point in space as measured by two remote observers 
in motion relative to one-another.  When the velocity magnitude between observers is small 
compared to the speed of light, the observed motion forecasted by Special Relativity theory [2 
Part 1; 3 Chpt VI; 4] reduces to classical Newtonian/Galilean kinematic predictions [2 pp 37-38; 
3 Chpt III Sect 7; 5 Sect 12-1].  Such is the case for optical gyros when analyzing how angular 
rotation impacts each of two oppositely directed light waves travelling within the gyro along a 
common closed optical path.  Similar to the Doppler-like frequency shift observed in light waves 
emanating from receding stars, both Galilean and Relativistic kinematics predict an angular 
rotation induced wavelength shift in the optical gyro light waves, increasing for the wave 
travelling in the direction of rotation, decreasing for the oppositely directed wave.  Coupled with 
the wavelength shift, Relativity predicts that the propagation speed for each of the oppositely 
directed light waves will be the same “speed-of-light” relative to the rotating waveguide, the 
same as for light waves propagating through non-rotating inertial space.  Light wave frequencies 
equate to the speed-of-light constant divided by their wavelength, thus, decrease for waves 
travelling with rotation and conversely for oppositely directed waves, generating a frequency 
difference between the oppositely directed waves.  When the oppositely directed waves are 
mixed by the gyro readout, a combined beam power signal is generated whose intensity 
measures the rotation induced frequency difference.   The combined beam power illuminates a 
readout photo detector, thereby generating a measurement of angular rotation.  This is exactly 
what is produced in operating optical gyros under rotation, and what is predicted by the 
analytical development in this article.    

 
Beginning from classical vector geometry, this article first analytically describes the distance 

vector to the same remote point in space as measured by each of two observers.  Classical 
Newtonian kinematics then describes how the observed remote point location is impacted by 
relative motion between the observers.  The equivalent result is also derived in Appendix A 
based on Special Relativity theory, producing the same Galilean/Newtonian derived result when 
the relative velocity magnitude between observers is small compared to the speed of light. 
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Both the Galilean/Newtonian and Relativity results are derived in non-rotating coordinates.  
The article then derives the equivalent in rotating coordinates by projecting the relative position 
vector geometry onto two non-rotating coordinate frames, one rotated from the other by a small 
angular rotation.  The difference between the two projections is identified as the change that 
would be measured in a rotating coordinate frame undergoing the small angular rotation.  
Substituting the original non-rotating coordinate result, derives an equation relating the motion 
of the remote point as measured by one observer in non-rotating coordinates, in terms of the 
differential measurement taken by the other observer in rotating coordinates. 

 
The analytical development to this point in the article is general in nature.  Continued 

analysis specializes the two observation points to be fixed within a rigid body (a gyro), defining 
the observed point in motion to be a photon of light traversing a waveguide within the gyro, 
defining one of the observation points to be within the waveguide at the start of a photon’s 
motion, the other observation point at a reference “rotation center” external to the waveguide, 
with gyro rotation equated to that of the rotating coordinate frame.  In the process, the photon in 
motion is defined to be part of a travelling light wave whose wavelength relative to the rotating 
gyro is a function of the wavelength in non-rotating space, the distance from the reference point 
to the photon, and the gyro’s angular rotation during the time the photon traverses a wavelength 
of distance.  The wavelength solution is then used to obtain independent integral solutions for 
each of the oppositely directed light waves traversing the gyro waveguide. 

 
Combining the individual light wave solutions in the readout zone at the same instant of time 

(a common intersection in space/time) requires application of Relativity theory.  The method is 
to first recognize that in a non-rotating frame, the wave propagation speed at any point in the 
waveguide will be at the same speed-of-light constant as it is open-space.  Second, for the 
observer stationed in the rotating waveguide, the small movement of a passing photon, although 
rotated through a small amount, will (to first order in the rotation angle) be of the same 
magnitude as when measured in a non-rotating frame at the same location.  By joining these 
observations, it is analytically shown that relative to the rotating waveguide, the propagation rate 
for each of the oppositely directed beams will be at the same speed-of-light, hence, the time 
interval for each wave to traverse a given distance relative to the waveguide will also be the 
same.  Applying this finding to each of the oppositely directed waves allows them to be 
analytically summed (at a common space/time location) into a single equation defining the beam 
power that will illuminate the gyro readout photo detector(s).  The result equates the cumulative 
difference in phase between the individual waves to the integrated effect of angular rotation over 
a selected time interval.  For the remainder of the article, the combined beam power equation is 
used to explain the operating characteristics of fiber optic and ring laser optical gyros.  

 
Two types of ring laser gyro configurations are described, those in which the closed 

waveguide is constrained by reflecting mirror geometry to lie within a plane, and those in which 
the mirrors are angularly oriented to create a closed out-of-plane waveguide geometry.  The 
results for each analytically demonstrates how combining the oppositely directed waves at the 
gyro readout creates an optical interference pattern that moves across the photo detector(s) at a 
linear rate proportional to the gyro angular rate thus generating cyclic outputs, each representing 
a known increment of angular rotation. 
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The combined beam power equation is then used to analytically describe two types of fiber 
optic gyros, those classified as “open-loop” and those classified as “closed-loop”.  By injecting 
phase bias into the light waves with lithium-niobate (L/N) integrated-optics crystals inserted in 
the fiber coil, the closed-loop configuration provides control bias to the oppositely directed light 
beams that adds to the phase induced by angular rotation.  Using outputs from the gyro photo 
detector, L/N bias command equations are derived to balance the rotation induced phase, while 
simultaneously generating successive outputs of gyro angular rotation over the time for a light 
wave to traverse the fiber coil.  Included in the L/N bias equations are provisions to eliminate 
round-off error generated by three closed-loop electronics interface operations; 1) Digitally 
sampling photo detector analog measurements into the digital control loop processor, 2) Creating 
L/N analog bias control voltages from the digital control-loop processor, and 3) Converting 
angular rotation increments calculated in the control-loop processor for digital output format 
compatibility. 

 
FOG configurations can generally be categorized as of the interferometric or resonant type 

(IFOGs or RFOGs).  In all FOGs, radiation from an external light source is gated into a fiber 
optic coil to form overlapping oppositely directed light waves that span a fiber optical coil for 
eventual output sampling.  In an IFOG, the radiation traverses the fiber optical coil once.  To 
compensate for imperfections in their construction, resonant RFOG configurations have evolved 
in which the externally input light beam is recirculated several times before output sampling.  All 
FOG configurations described in this article are exclusively of the idealized (error free) 
interferometric type (IFOGs). 

 
 

NOTATION 
 

The following general notation is used in the article: 
 

V  =  Vector parameter having length and direction.  Vectors in this article are classified 
as “free vectors” having no preferred location in coordinate frames in which they 
are analytically described. 

 
/ i  =  Subscript denoting the vector parameter being observed (measured or calculated 

from measurements) at observation point i (i being point a or b). 
 
Observable Event = An event at a position location in space at a particular instant of time 

(e.g., a lightning strike, explosion, illumination by a radar pulse, or passage of the 
leading edge of a light wave across a point in space) that can be observed at a 
remote spatial location based on electro-magnetic wave propagation (e.g. light or 
radar) [2 pp 29, 36; 3 pp 28, 236-238; 6 pp 10]. 

 
:k t  = A particular location in space/time at spatial point k at time t.  
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DIFFERENTIAL POSITION MOTION IN NON-ROTATING COORDINATES 
 

In non-rotating coordinates, Fig. 1 illustrates the geometrical relationship between distance 
vectors from two observation points a and i to a remote point p at the same instant of time. 

 

 
 

Fig. 1 – Position Vector Relationships At The Same Instant Of Time 
In Non-Rotating Coordinates 

 
In Fig. 1, /p ax  is the distance vector to point p determined (observed) from point a, /p ix  is 

the distance vector to point p observed from point i, and /i ax  is the distance vector to point i 

determined at point a.  At two successive time points t1 and t2 (t2 following t1), the kinematic 
representation in Fig. 1 can be described analytically by  

 
 11 1 2 2/ / / / /p p p pia i a a ix x x x x x= + = + 2 /i a  (1) 

 
where subscripts 1 and 2 identify point locations at t1 and t2.  The changes in the Fig. 1 vector 
parameters between the t1 and t2 time instants are defined as 
 

2 12 1 2 1/ / / / / / / /p p p p i ip a a a p i i i i a a ax x x x x x x x x≡ − ≡ − ≡ −Δ Δ Δ /  (2) 

 
Taking the difference between the (1) equations and applying the (2) definitions finds 
 
 / /p a p i i a/x x x= +Δ Δ Δ  (3) 

 
 
IDENTIFYING COORDINATE FRAMES 
 

Eqs. (1) – (3) are valid in any non-rotating coordinate frame.  As in [7], let us now introduce 
non-rotating coordinate frames B1 and B2 defined as parallel to the instantaneous orientation of 
rotating coordinate frame B at successive time instants t1 and t2.  Because B1 and B2 are non-
rotating relative to a common non-rotating space, the angular orientation of B2 relative to B1 will 
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be constant.  For clarity, the /p ixΔ  and /i axΔ  definitions in (2) are now rewritten in B1 

coordinates as     
 
 1 1 1 1 1

2 12 1/ // /
B B B B B B

p p i ip i i a a ai i
1

/ /x x x x x x= − = −ΔΔ  (4) 

 
where the B1 superscripts identify the B1 non-rotating coordinate frame in which the vector 
components are projected (e.g., as elements of a column matrix).  The constituents of 1

/
B
p ixΔ  and 

1
/

B
i axΔ   in (4) can now be related to distance vector measurements taken in B2 non-rotating 

coordinates coupled with the angular orientation relating the  B1 and B2 coordinate frames: 
 

 

( )
( )

( )
( )

1 1 1 1 2 1 1 2
2 22 1 2 12 1

2 1 1 2
22 1 2

1 1 1 1 2 1 1 2 1
2 1 2 1 2 12 2

2 1 1 2
2 1 22

/ / / / / / /

/ / /

/ / / / / /

/ / /

B B B B B B B B B
p p p pp pp i i i i i iB B

B B B B
p p pi i iB

B B B B B B B B B
i i i i i ii a a a a a a aB B

B B B B
i i ia a aB

I Ix x x x x x xC C

Ix x xC

I Ix x x x x x xC C

Ix x xC

= − = − = − + −Δ

= − + −

= − = − = − + −Δ

= − + −

1

/

i

 (5) 

 
where superscript B2 identifies vector component projections on B2 coordinate axes, I  is the 
identity matrix, and  is a direction cosine matrix that transforms vector components from 

their values in non-rotating (inertial) coordinates B2 to their values in inertial coordinates B1. 

1
2

B
BC

 
Since non-rotating frames B1 and B2 are defined as aligned with the rotating B frame at time 

instants 1 and 2, we can calculate the change in B frame values of a vector during the t1 to t2 
time interval as the difference between the B1 and B2 projected values.  Thus, for particular 
terms in (5), 
 
 2 1 2 1

2 12 1 / // / /
BB B B B

p p i ia ai i /
B

p ix x x x i aχ χ− ≡ Δ − ≡ Δ  (6) 

 
where from t1 to t2 , /

B
p iχΔ  is the change in the distance vector from observation point i to point 

p in the rotating B frame (superscript), and /
B
i aχΔ  is the change in the distance vector from 

observation point a to point i as measured at point a  in the rotating B frame.  We also note that 
1
2

B
B IC −  in (5) represents the change in the direction cosine matrix from its identity value at 

t1 (when B = B1) to its  value at t2.  For the angular rotation over t1 to t2, 

1B
BC

1
2

B
BC 1

2
B
B IC −  can be 
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equated to the equivalent rotation angle vector B
IBθΔ which for small angular rotations 

approximates as in [8 Sect 3.5.2 ]: 
 
 (1

2
BB
IBB IC θ− ≈ Δ ×)  (7) 

 
where the IB subscript indicates the angular rotation of frame B from its orientation parallel to 
non-rotating inertial frame B1 to its orientation parallel to non-rotating inertial frame B2.  
Substituting (6) and (7) in (5) obtains  
 
 1 2 1

22/ /// /
B BB BB B B

p iIB IB
2
/

B
p i i aip i i ax x xχ χθ θΔ = Δ + Δ × Δ = Δ + Δ × ax  (8) 

 
We then let the Δ  changes become very small so that during the  to time interval, Eq. 

(8) vector projections in the 
1t 2t

1B  and 2B  frames can be approximated by their projections in the B 
frame in general, and the positions of points p and i at time instant t  can be approximated by 

their positions in general: 
2

2
2/

B
p i /

B
p ix x→ , 2

2 //
BB

i i aax x→ , 1
/

B
/

B
p ix p i xΔ → , Δ 1

//
BB
i ai ax xΔ → Δ .  Thus, 

(8) becomes 
 

 / / // /
B BB B B B B

p i IB p i i a IB i ap i i a /
Bx x xχ χθΔ = Δ + Δ × Δ = Δ + Δ × xθ  (9) 

 
Finally, since all vectors in (9) are now defined in B frame coordinates, we can dispense with the 
superscript notation to obtain the simplified form 
 
 / / //p i p i i a i ap i i a //x x xχ χθΔ = Δ + × Δ = Δ + ×Δ xθΔ  (10) 

 
where θΔ  is the angular rotation of the body relative to non-rotating coordinates, and where 

during the θΔ  rotation, /p iχΔ  is the position change of point p observed at point i in rotating 

coordinates, /p ixΔ is the position change of point p observed at point i in a non-rotating 

coordinate frame that is instantaneously aligned with the rotating frame, /i aχΔ is the position 

change of point i observed at point a in rotating coordinates, and /i axΔ  is the position change of 
point i observed at point a in a non-rotating coordinate frame that is instantaneously aligned with 
the rotating frame.  Substituting /p ixΔ  and /i axΔ  from (10) into (3) then obtains the general 

result: 
 / // /p a p i i ap i i a /x xχ χθΔ = Δ + × + Δ + ×Δ Δ xθ  (11) 

 
Relativity theory deals with variations from traditional Galilean kinematics when 

observations of distant events are made by observers travelling relative to one another [3 Chpt 
V1 Sect 2; 4; 9].  In the current development, (3) fits into this category because it involves 
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kinematic measurements made at point a (i.e., of distant events /p axΔ  and /i axΔ ) and their 

relationship with a measurement made at point i (i.e., /p ixΔ ), point i being in motion relative to 

point a.  But, Appendix A shows that (3) is identical to what would be obtained from Relativity 
theory when the distance travelled by observation point i relative to observation point a (i.e.,

/i axΔ ) is small compared to the distance a photon would travel (at the speed of light) over the 

time interval for the /i axΔ  motion.  On the other hand, Relativity theory does not apply for each 
of the /p ixΔ  and /i axΔ  expressions in (10) substituted in (3) because each is derived from 

measurements made separately at either the a or i observation points.  Thus, under normal 
operating conditions, (11) derived from (10) and (3), is generally compatible with both 
Galilean/Newtonian and Relativity kinematic theory. 
 
 
APPLICATION TO A RIGID BODY AND SELECTION OF A PARTICULAR 

OBSERVATION POINT 
 

Anticipating its application to optical gyros, we first specialize observation point i  to be 
located at the starting point of the small /p ixΔ  motion, hence, 

 
 / 0p ix ≈  (12) 

 
Thus (11) and the /p ixΔ  expression in (10) simplify to  

 
 / // / /p i p a i ap i p i i a /x xχ χ χ θΔ = Δ Δ = Δ + Δ + ×Δ x  (13) 

 
For a rigid rotating body, there is no movement between points fixed within the body.  Thus, if 
we now define points a and i to be fixed within the rotating body, / 0i aχΔ = , and (13) reduces to 
 

 / // /p i p a i ap i p i /x xχ χ θΔ = Δ Δ = Δ + ×Δ x  (14) 

 
Eqs. (14) are fundamental relationships describing position changes /p ixΔ , /p axΔ  of an 

arbitrary point p that would be measured in non-rotating coordinates at points i and a within the 
body, as functions of /p iχΔ , the p motion that would be measured in rotating coordinates at 

point i within the body, the differential angular rotation θΔ  of the body relative to inertial space 
during the p motion, and the distance vector /i ax  from point a to point i.  Since (14) was derived 
from (12) and (10), it is also compatible with traditional vector kinematic theory, and under 
normal operating conditions, Relativity theory. 
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The relationship between /p axΔ  and /p iχΔ  magnitudes will be subsequently useful, and 

derives from the dot product of /p axΔ  in (14) with itself: 

 

( ) ( )
( ) ( ) ( )

( )

/ / / // /

/ // / /

// / /

. .

. . .2

. .2

p a p a i a i ap i p i

i a i a i ap i p i p i

i ap i p i p i

x x x x

x x

x

χ χθ θ

χ χ χ θ θ θ

χ χ χ θ

Δ Δ = Δ Δ+ +× ×Δ Δ

= Δ Δ + Δ +× × ×Δ Δ Δ

≈ Δ Δ + Δ ×Δ

/x  (15) 

 

Dividing (15) by / .p i p i/χ χΔ Δ  finds 
 

 
( )// / /

/ / / /

..
1 2

. .
i ap a p a p i

p i p i p i p i

xx x χ θ
χ χ χ χ

Δ ×Δ Δ Δ
= +

Δ Δ Δ Δ
 (16) 

 
Recognizing that the magnitudes of /p axΔ  and /p iχΔ  are the square roots of / /.p a p ax xΔ Δ  

and / .p i p i/χ χΔ Δ  then obtains for the square root of (16): 
 

( ) ( )/// // / /
2/ // / / /

...
1 1

.
i ai ap a p ip a p a p i

p i p ip i p i p i p i

xxx x x χχ θθ
χ χχ χ χ χ

× ΔΔΔ Δ×Δ Δ Δ
= ≈ + = +

Δ ΔΔ Δ Δ Δ
 (17) 

 
 
WAVELENGTH EQUIVALENCE 
 

Now consider that p represents a point in a monochromatic light wave travelling past point i, 
and that in the rotating frame, /p iχΔ  represents the distance between successive waves passing 

by i.  Then // p i ip i uχ λΔ =  where  is the length of the p light wave (i.e., the “wavelength”) 

at point i, 

/p iλ

/p iu  is a unit vector along the p wave travel direction at point i, and // p ip iχ λΔ = .  

Thus, (17) is equivalently: 
 

 

( )

( ) ( )

// // /
2/ //

/ /
/ /

/ /

.
1

.
1 1

p ii a p ip a p a

p i p ip i

i a p i
i a p i

p i p i

x ux x

x u
x u

λ θ

λ λχ

θ θ
λ λ

⎡ ⎤×Δ Δ Δ⎣ ⎦= = +
Δ

× Δ Δ= + = + × .

 (18) 
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Note, however, that the /p axΔ  measurement is independent of rotation (i.e., relative to point i 

motion), hence, it would be the same no matter the value of θΔ .  Thus, if we define  as the 

value of  under zero 

0 pλ

/p iλ θΔ , we see from (18) that / pp ax λΔ = 0 , and (18) becomes: 

 ( )0
/ /

/ /
1p

i a p i
p i p i

x u
λ θ
λ λ

Δ= + × .  (19) 

  
We also define /p itΔ  as the time interval for a p wave at point i to translate through a 

wavelength of distance // p ip iχ λΔ =  relative to the rotating rigid body.  The p wave speed 

/p iV  relative to the rotating body at point i would then be // / p ip i tχΔ Δ  or equivalently,

// /p i pp i V tχΔ = Δ i .  Hence, / // /p i p i pp i V tχ λΔ = = Δ i , and substitution in (19) finds 

 

 

( )

( ) ( )

0
/ /

/ /

/ /
/ /

/ / /

/ //

1 .

1 . 1

where    /

p
i a p i

p i p i

i a p i
i a p i

p i p i p i p i

p i p ip i

x u

x u
x u

V t V t

V t

λ θ
λ λ

θ

χ

Δ= + ×

×Δ= + × = +
Δ Δ

≡ Δ Δ

/
. θΔ  (20) 

 
 
DIFFERENTIAL FORMS 
 

The remainder of the article will deal with equivalent differential forms for which the small
changes in (14) and (20) become infinitesimally small.  Thus: Δ

 

( )
/ // / // /

0 / /

/ / /

/

1 .p

p i p ip i p a i ap i p i p i

i a p i

p i p i p i

dx x xd dd d d V d

x u d
V dt

χ χ χθ

λ θ
λ

= = ≡+ ×

×
= +

/ t

 (21) 

 
where during the  differential time interval,  is the instantaneous speed of the p wave 
relative to the rotating body at point i, 

/p idt /p iV
dθ  is the differential angular rotation of the body relative 

to non-rotating space, /p ixd , /p axd  are differential distance vector movements of point p as 

viewed from points i and a in non-rotating inertial coordinates, and /p id χ  is the differential 

distance vector movement of point p as viewed from point i in rotating body coordinates. 
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THE EFFECT OF RELATIVITY 
 

The derivations leading to (21) have been based on classical Euclidean vector geometry.  To 
continue, we now incorporate a basic precept of Relativity theory: that the speed of light is the 
same constant when measured at any point in non-rotating inertial space [2 Part 1 Chpt 11].  
Thus, since /p ixd  is the differential distance movement of p in non-rotating space at point i, and 

since /p ixd  occurs over differential time interval , it follows that the speed of p over 

will be the speed of light c, i.e., 

/p idt /p idt

// / p ip i cxd dt = .  But from (21), / /p i p ixd d χ= , hence, 

// p ip i xdd χ = , and / // / //p i p ip ip id d xdt dtχ = .  We also know from (21) that 

/ / / /p i p idV χ≡ p idt .  It follows then that / / /p i p ip id xV dt= / c= .  Thus, relative to the 

rotating body, the magnitude of the p velocity at point i will also be the speed of light c.  This 
finding is the fundamental basis for optical gyros being able to measure angular rotation relative 
to non-rotating inertial space.  For  redefined to be a specified differential time increment 

dt (

/p idt

relative to the rotating body), the finding directly links /p id χ  to dt.  Then /p id χ  and 

 in (21) with  gives the important result: /0 /p p iλ λ /p i cV =

 

 
( )/ /

/
/ 0

1 1 1 .
p

i a p i
p i

p i

x u dd c dt
c d

θχ ω ω
λ λ

⎡ ⎤×
⎢ ⎥= = +
⎢ ⎥
⎢ ⎥⎣ ⎦

t
≡  (22) 

 
where ω  is the instantaneous angular rate, and because angular rotation dθ has been defined to 
be relative to non-rotating inertial space, ω is also relative to non-rotating inertial space.  Eq. 
(22) is now in a convenient form for optical gyro application.  
 
 
APPLICATION TO OPTICAL GYROS 
 

Optical gyros create two oppositely directed but superimposed monochromatic light waves 
that traverse a closed-optical path, one (as before) identified as a p wave viewed from a point i in 
the waveguide, the oppositely directed wave as q viewed from a point j in the waveguide.  The 
direction for p wave travel in the waveguide at point i  is then defined /p iu  (as before), and 

similarly, /q ju  is defined as a unit vector in the q wave travel direction at point j in the 

waveguide.  To distinguish the opposite travel directions of the waves, we then designate iu  as a 
general waveguide direction unit vector defined to be parallel to the p wave travel vector /p iu  at 

point i (i.e., /i pu u≡ i ).  If the p wave was at point j in the waveguide, ju  would represent the  p 

wave direction /p ju  (i.e., /j pu u= j ).  Then, to represent the opposite direction of q wave travel 
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at point j, we assign /q j ju = − u .  Finally, as will be justified subsequently for particular optical 

gyro configurations, the p and q wavelengths under zero angular change will be the same  
value  (i.e., ).  Based on these observations, general Eqs. (22) then give for the p 

and q waves: 

0λ
00 0q pλ λ λ= =

 

( )

( )

/

/ 0

/

/ 0

1 1 1 .

1 1 1 .

i a i

p i

j a j

q j

x u
d dL

c

x u
d dL

c

χ ω
λ λ

χ ω
λ λ

⎡ ⎤×
⎢

/

/

pp i

qq j

c dt d s

c dt d s

⎥= = +== ⎢ ⎥
⎢ ⎥⎣ ⎦  (23) 
⎡ ⎤×
⎢ ⎥= = −== ⎢ ⎥
⎣ ⎦

 
where ,  are dL  the distance moved by the p, q waves (pd s qd s relative to the rotating 
waveguide) during the infinitesimal dt time interval (relative to the rotating waveguide.   Note in 
(23) that by virtue of the p and q waves both travelling at the speed of light c relative to the 
rotating gyro, the d , 

 
motion over the same time interval dt equal the same distance in 

magnitude, even though they represent p, q wave movement at different i,  j locations in the 
waveguide.       

p ds qs dL

 
The difference in p, q wave wavelengths in (23) is the mechanism for measuring angular 

change in optical gyros.  To understand how, the light wave structure and means for 
measurement will now be addressed. 
 
 
LIGHT WAVE EQUIVALENCE 
 

Consider common point l where the “clockwise” p wave and “counterclockwise” q wave first 
enter the waveguide (at past time τ = 0).  Further, consider point m in the “readout zone” on the 
waveguide at current time τ = T where the p and q waves combine to generate an output 
measurement. 

 
For the p wave, the phase at point m compared with the phase along the wave at another 

point l would be at the same instant of time: 
 

 
0

2( , ) ( , )
p

pp

Ls

p
ss

p m p l ds
πφ φ

λ

=

=
= + ∫  (24) 

 
where psλ is the wave length at distance from point l, ps ( , )p lφ and ( , )p mφ are the wave phases 

at point l and m, and L is the linear wave path distance from l to m.  For a sinusoidal p wave, the 
corresponding wave “height” at points l and m would be 
 
 ( , ) sin ( , ) ( , ) sin ( , )g p l B p l g p m B p mφ φ= =  (25) 
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where B is the p wave amplitude.  For constant angular rate ω  (relative to non-rotating inertial 
space), substitution for psλ from (23) in (24) then finds 

 

 
( )/

0 0

2( , ) ( , ) 1 .
p

p

s L
i a i

p
s

x u
p m p l d s

c
πφ φ ω

λ

=

=

⎡ ⎤×
= + +⎢∫

⎢ ⎥⎣ ⎦
⎥  (26) 

 
where /i ax , iu  are the (23) values at distance from l.  For the q wave, the equivalent of (25) – 
(26) would be 

ps

( )/

0 0

2( , ) ( , ) 1 .

( , ) sin ( , ) ( , ) sin ( , )

q

q

s L j a j
q

s

x u
q m q l d s

c

g q l B q l g q m B q m

πφ φ ω
λ

φ φ

=

=

⎡ ⎤×
⎢ ⎥= + −∫ ⎢
⎣ ⎦

= =

⎥  (27) 

  
Eqs. (26) with (25) and (27) are based on constant angular rate ω , hence, the ( , )p mφ , 

( , )q mφ integrals are a function of /i ax  locations along the light wave between points l and m.  
Alternatively, the (25) and (27) integrals can be performed in steps at points along the wave path 
that a wave front would move (at the speed of light) from point l.  As an example, for a p wave 
front that has moved a distance over time interval τ from point l (i.e., ), the p wave 
phase would be 

1ps 1ps τ= c

 
( )/

1
0 0

2( , ) ( , ) 1 .
p

p

cs i a i
pp

s

x u
p p l ss

c

τπφ φ ω
λ

=

=

⎡ ⎤×
⎢= + +∫ ⎢
⎢ ⎥⎣ ⎦

d⎥
⎥

 (28) 

    
At another point ahead of by time interval dτ, the phase would be 2ps 1ps
 
 

( )

( ) ( )

( )

( ) /
2

0 0

( ) //

0 00

( /
1

0

2( , ) ( , ) 1 .

2 2( , ) 1 . 1 .

2( , ) 1 .

p

p

p p

p p

p

p

c ds i a i
pp

s

c c ds s i a ii a i
p p

cs s

cs i a i
pp

cs

x u
p p l d ss

c

x ux u
p l d ds s

c c

x u
p d ss

c

τ τ

τ τ τ

τ

τ

πφ φ ω
λ

π πφ ω
λ λ

πφ ω
λ

= +

=

= = +

= =

=

=

⎡ ⎤×
⎢ ⎥= + +∫ ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤×⎡ ⎤× ⎢ ⎥= + + + +⎢ ⎥∫ ∫ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤×
⎢ ⎥= + +
⎢ ⎥
⎢ ⎥⎣ ⎦

ω

( )

( )

) /
1

0

1 /
0

2( , ) 1 .

2( , ) .

d i a i

p i a i

x u
p cds

c

p cd dx us

τ τ πφ ω τ
λ

πφ τ ω τ
λ

+ ⎡ ⎤×
⎢ ⎥≈ + +∫ ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= + + ×
⎣ ⎦

(29) 
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With rearrangement and generalization, (29) becomes 
 

 { }2 1 /
0

2( ) ( , ) ( ( , ) .( ) ( )p p p i a id p p c x us s s
π dφ φ φ τ τ ω

λ
⎡ ⎤≡ − = + ×⎣ ⎦ τ  (30) 

 
where ( )pd sφ is the p wave differential phase change (relative to point l) incurred as the wave 
front moved at light speed c over distance  from point to  over the dτ time 
interval, and where 

pd cds τ= 1ps 2ps

/ ( )i ax τ , ( )iu τ
 
are /i ax , iu  at distance cτ along the wave path where the p 

wave front has moved at the speed of light (over time interval τ) from point l.  Then the 
cumulative phase of (30) at point m and at time would be Tτ =
 

 / /
0 0

2( , ) ( ) ( ) .( )
T

p m i a ip l cT dx uT
τ

τ

πφ τ τ ωφ
λ

=

=

⎧ ⎫⎪ ⎪⎡ ⎤= + + ×∫⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭
τ  (31) 

 
where T is the time interval for the wave front to move from point l to point m over distance L at 
the speed of light (i.e., ), and L cT= /( ) p mTφ  is the p wave phase at readout zone point m at 

current time T.  Similarly from (23), for q wave front movement to point m along its wave path 
over the same distance L (from past time τ = 0 to current time ): Tτ =
 

 / /
0 0

2( , ) ( ) ( ) .( )
T

q m j a jq l cT dx uT
τ

τ

πφ τ τ ωφ
λ

=

=

⎧ ⎫⎪ ⎪⎡ ⎤= + − ×∫⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭
τ  (32) 

 
The interesting thing about (30) - (32) is that they would also be true if ω  varied with time, 

equaling the value at time where the wave front had travelled the distance cτ from point l on 
the wave path.  Thus, we can also use (31) and (32) to represent p and q wave phases for a time 
varying 

τ

ω .  With (31) and (32) substituted in (25) - (27), the p and q wave phases at readout 
zone point m at current time T would then become for time varying ω : 

 

 

/ /
0 0

/ /
0 0

2( , ) ( ) ( ) . ( )( )

2( , ) ( ) ( ) . ( )( )

T
p m i a i

T
q m j a j

p l cT dx uT

q l cT dx uT

τ

τ
τ

τ

πφ τ τ ω τ τφ
λ

πφ τ τ ω τφ
λ

=

=
=

=

⎧ ⎫⎪ ⎪⎡ ⎤= + + ×∫⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪⎡ ⎤= + − ×∫⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

τ
 (33) 

 
where the angular rate time dependence has now been more clearly delineated as ( )ω τ .  Under 
accumulating differential rotation, (33) shows that the p wave phase will increase by 

14 
 



/
0 0

2 ( ) ( ) . ( )
T

i a i dx u
τ

τ

π τ τ ω τ
λ

=

=
⎡ ⎤×∫ ⎣ ⎦ τ , and the q wave phase will decrease by

/
0 0

2 ( ) ( ) . ( )
T

j a j dx u
τ

τ

π τ τ ω τ
λ

=

=
⎡ ⎤×∫ ⎣ ⎦ τ .  The resulting phase difference at time T in the gyro 

“readout zone” provides the measurement of angular rotation for output. 
 
 
INPUT AXIS DEFINITION 
 

The integral terms in Eqs. (33) show that /( ) p mTφ  and /( )q mTφ  measure the integrated 

component of ( )tω  along the / ( ) ( )u τ⎡ ⎤
⎣ ⎦i a ix τ ×  and /j ax τ( ) ( )juτ⎡ ⎤×⎣ ⎦  vectors.  We define the 

( )ω τ  input axis at points i and j as unit vectors ( )
iInptu τ , ( )

jInptu τ  along / ( ) ( )i a ix uτ τ⎡ ⎤×⎣ ⎦ ,

/ ( ) ( )j a jx uτ τ⎡ ⎤×⎣ ⎦ : 

 
/

/ / / /
/

/
/ // /

/

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

i i

j j

i a i
i a i a i i a i i aInpt Inpt

i a i

j a j
j a j aj a j j a jInpt Inpt

j a j

x u
tu x u x ux x

x u

x u
tu x u x ux x

x u

τ τ
τ τ τ τ τ τ

τ τ

τ τ
τ τ τ τ τ

τ τ

⊥ ⊥

⊥ ⊥

×
≡ ≡ × → × =

×

×
≡ ≡ × → × =

×

u

u τ
 (34) 

 
where ,  are components of/ ( )i ax τ⊥ / ( )j ax τ

⊥ / ( )i ax τ , / ( )j ax τ  perpendicular to the waveguide 

direction vectors at points i,  j.  Then (33) becomes 
 

 
/ /

0 0

//
0 0

2( , ) ( ) ( ) . ( )( )

2( , ) ( ) ( ) . ( )( )

i

j

T
p m i a Inpt

T
j aq m Inpt

p l cT duT x

q l cT duT x

τ

τ
τ

τ

πφ τ τ ω τφ
λ

π

τ

φ τ τ ω τφ
λ

⊥

⊥

=

=
=

=

⎡ ⎤
= + + ∫⎢ ⎥

⎣ ⎦
⎡ ⎤

= + − ∫⎢ ⎥
⎣ ⎦

τ
 (35) 

 
 
COMBINED OPPOSITELY DIRECTED WAVES IN THE READOUT ZONE 
 

Now consider the wave height at point m at time , a small time variation from time . 
As both the p and q waves pass by point m, they then will generate sinusoidal outputs at point m 
of the form 

τΔ Tτ =

 

/ / /
2 2sin sin( ) ( ) ( ) ( )p m p m q m q m

m m
B c B cg T T g T T

π πτ ττ φ τ
λ λ
⎡ ⎤ ⎡

= Δ + = Δ ++Δ +Δ⎢ ⎥ ⎢
⎣ ⎦ ⎣

/φ
⎤
⎥
⎦

 (36) 
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with /( ) p mTφ  and /( )q mTφ  as defined in (35).  Note: Eqs. (36) are based on the very good 

approximation that  is very small, thus, angular rate can be considered constant, and  will 
also be constant  - see (23) and note the very small dependence of  on 

τΔ mλ
mλ ( )ω τ . 

 
Because the p and q waves occupy the same space in the waveguide at point m, their (36) 

wave functions at common “readout zone” point m will add at time  to form Tτ = + Δτ
 

 

/ /

/ /

( ) ( ) ( )

2 2sin sin( ) ( )

m p m q m

p m q m
m m

h T g T g T

B c B cT T

τ τ τ

π πτ τφ φ
λ λ

≡ ++Δ +Δ +Δ

⎡ ⎤ ⎡
= Δ + + Δ +⎢ ⎥ ⎢

⎣ ⎦ ⎣

⎤
⎥
⎦

 (37) 

 
 or with (33): 

 
/

0 0

/
0 0

2 2sin ( , ) ( ) ( ) . ( )( )

2 2sin ( , ) ( ) ( ) . ( )

T
m i a

m

T
j a j

m

B c p l cT dx uh T

B c q l cT dx u

τ

τ

τ

τ

π πτ iφ τ τ ω τ ττ
λ λ

π πτ φ τ τ ω τ τ
λ λ

=

=

=

=

⎧ ⎫⎪ ⎪⎡ ⎤= Δ + + + ×+Δ ∫⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪⎡ ⎤+ Δ + + − ×∫⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

 

 

/
0 0

/
0 0

/
0 0

2 2( , ) ( ) ( ) . ( )
12 sin
2 2 2( , ) ( ) ( ) . ( )

2 2( , ) ( ) ( ) . ( )
1cos
2

T
i a i

m
T

j a j
m

T
i a i

m

c p l cT dx u

B

c q l cT dx u

c p l cT dx u

τ

τ
τ

τ

τ

τ

π πτ φ τ τ ω τ τ
λ λ

π πτ φ τ τ ω τ τ
λ λ

π πτ φ τ τ ω τ τ
λ λ

=

=
=

=

=

=

⎧ ⎫⎪ ⎪⎡ ⎤Δ + + + ×∫⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭= ×
⎧ ⎫⎪ ⎪⎡ ⎤+ Δ + + − ×∫⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎡ ⎤Δ + + + ×∫⎨ ⎣ ⎦⎪⎩

/
0 0

2 2( , ) ( ) ( ) . ( )
T

j a j
m

c q l cT dx u
τ

τ

π πτ φ τ τ ω τ τ
λ λ

=

=

⎪
⎬
⎪⎭

⎧ ⎫⎪ ⎪⎡ ⎤− Δ − − − ×∫⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

(38) 

 

0

//
0 0

//
0 0

2 2 ( , ) ( , )
2

2 sin
( ) ( ) ( ) ( ) . ( )

( , ) ( , )cos ( ) ( ) ( ) ( ) . ( )
2

i j

i j

m
T

j ai a Inpt Inpt

T
j ai a Inpt Inpt

c c p l q lT

B
du ux x

p l q l du ux x

τ

τ
τ

τ

π π φ φτ
λ λ

π τ τ τ τ ω τ τ
λ

φ φ π τ τ τ τ ω τ
λ

⊥ ⊥

⊥ ⊥

=

=
=

=

+⎧ ⎫Δ + +⎪ ⎪
⎪ ⎪= ×⎨ ⎬

⎡ ⎤⎪ ⎪+ −∫ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫−⎪ ⎪⎡ ⎤+ +∫⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

τ

)

 

 
where  is a combined p and q wave function at point m in the readout zone at time

.  (Note: Eq. (38) assumes that the  and  functions lie in 

the same plane around the waveguide at the same instant of time and space, so that they add 

( mh T τ+Δ
τ= + ΔTτ /( ) p mg T τ+Δ /( )q mg T τ+Δ
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algebraically as shown.  An important part of optical gyro design is based on meeting this 
requirement.) 
 

The normalized power  in the combined (38) optical beam signal is proportional 
to the square of  in (38): 

( mW T τ+Δ
)m

)
(h T τ+Δ

 

2

2

02

//
0 0

2
//

0

( )
( )

2 2 ( , ) ( , )
2

sin4
( ) ( ) ( ) ( ) . ( )

( , ) ( , ) ( ) ( ) ( ) ( ) . ( )cos
2

i j

i j

m
m

m
T

j ai a Inpt Inpt

j ai a Inpt Inpt

h T
W T

B
c c p l q lT

du ux x

p l q l du ux x

τ

τ

τ

τ
τ

π π φ φτ
λ λ

π τ τ τ τ ω τ τ
λ

φ φ π τ τ τ τ ω τ
λ

⊥ ⊥

⊥ ⊥

=

=

+Δ
≡+Δ

+⎧ ⎫Δ + +⎪ ⎪
⎪ ⎪= ×⎨ ⎬

⎡ ⎤⎪ ⎪+ −∫ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

− ⎡ ⎤+ +⎢ ⎥⎣ ⎦0

Tτ =

=

⎧ ⎫⎪ ⎪
∫⎨ ⎬

⎪ ⎪⎩ ⎭
τ

 (39) 

 
or with trigonometric expansion, 
 

( )
0

//
0 0

//
0 0

( )

4 4 ( , ) ( , )

1 cos
2 ( ) ( ) ( ) ( ) . ( )

21 cos ( , ) ( , ) ( ) ( ) ( ) ( ) . ( )

i j

i j

m

m
T

j ai a Inpt Inpt

T
j ai a Inpt Inpt

W T

c c T p l q l

du ux x

p l q l du ux x

τ

τ

τ

τ

τ

π πτ φ φ
λ λ

π τ τ τ τ ω τ τ
λ

πφ φ τ τ τ τ ω τ τ
λ

⊥ ⊥

⊥ ⊥

=

=

=

=

+Δ

⎧ ⎫Δ + + +⎪ ⎪
⎪ ⎪= − ×⎨ ⎬

⎡ ⎤⎪ ⎪+ −∫ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧⎪ ⎡ ⎤+ − + +∫⎨ ⎢ ⎥⎣ ⎦⎪⎩

⎫⎪
⎬
⎪⎭

 (40) 

 
Eq. (40) describes the power that would be measured by a photo detector located at point m 

in the waveguide at time , being simultaneously illuminated by the p, q light beams. The 
power magnitude is modulated at high frequency by the first cosine term.  For a typical optical 
gyro wavelength  of 0.63 microns (for a ring laser gyro), the modulation frequency 

 in the (40) cosine term is high enough (2 × 3.0e8 / 0.63e-6 = 9.52 e14 Hz) to be 
eliminated by attenuation in the photo-detector/readout electronics.  Thus, (40) simplifies to 

T τ+ Δ

0λmλ ≈
2 / mc λ

 

 //
0 0

( , ) ( , )
1 cos( ) 2 ( ) ( ) ( ) ( ) . ( )

i j

T
m

j ai a Inpt Inpt

p l q l
W T

du ux x
τ

τ

φ φ
π τ τ τ τ ω τ

λ ⊥ ⊥

=

=

−⎧ ⎫
⎪ ⎪= + ⎨ ⎬⎡ ⎤+ +∫⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

τ

)

 (41) 

 
where  is at time (when ).  ( )mW T ( mW T τ+Δ Tτ = 0τΔ =
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Eq. (41) is the basis for the design of both ring laser and fiber optic gyros.  It demonstrates 
that optical gyros are integrating instruments whose combined optical beam power  
measures the integral of gyro input angular rate relative to non-rotating inertial space. 

( )mW T

 
 
PLANAR WAVEGUIDES 
 

For optical gyros having waveguides that lie in a single plane, ( )
iInptu τ and ( )

jInptu τ are 

parallel, both perpendicular to the waveguide plane, hence, ( ) ( )
i j InptInpt Inptu u uτ τ= = where 

Inptu  is a unit vector normal to the plane and is the gyro input axis for both the p and q waves.  

Then the integral term in (41) becomes 
 

 

//
0 0

//
0 0

//
0 0

//
0 0

2 ( ) ( ) ( ) ( ) . ( )

2 ( ) ( ) . ( )

2 ( ) ( ) . ( )

2 ( ) ( ) ( )

i j

T
j ai a Inpt Inpt

T
j ai a Inpt Inpt

T
j ai a Inpt

T
j a Inpti a

du ux x

du ux x

dux x

dx x

τ

τ
τ

τ
τ

τ
τ

τ

π τ τ τ τ ω τ
λ

π τ τ ω τ
λ

π τ τ ω τ τ
λ

π τ τ τω τ
λ

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

=

=
=

=
=

=
=

=

⎡ ⎤+∫ ⎢ ⎥⎣ ⎦

⎡ ⎤= +∫ ⎣ ⎦

⎡ ⎤= +∫ ⎣ ⎦

⎡ ⎤= +∫ ⎣ ⎦

τ

τ
 (42) 

 
where  is the component of ( )Inptω τ ω  along the gyro Inptu  input axis. 

 
For the most common situation when the waveguide is in the shape of a regular polygon, a 

circle can be inscribed within the waveguide that is tangent to each side of the polygon.    Then, 
the perpendicular distance from the center of the inscribed circle (the “centroid”) to any side 
equals the radius of the inscribed circle .  From [10 Eq. 36], the relationship between 

 and the length S of any side is given by 
inscrbr

inscrbr
 

 
( )2tan /inscrb
S

r
nπ

=  (43) 

 
where n is the number of sides in the polygon.  Thus, for a regular polygon or circular shaped 
waveguide, and if reference point a  in (42) is defined to be at the waveguide centroid, both 

 and equate to , and (42) with (43) becomes / ( )i ax τ⊥ / ( )j ax τ
⊥ inscrbr
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( )

//
0 0

//
0 00 0

0 0

2 ( ) ( ) ( ) ( ) . ( )

2 4( ) ( ) ( ) ( )

2
( )

tan /

i j

inscrb

T
j ai a Inpt Inpt

T T
j a Inpt Inpti a

T
Inpt

du ux x

rd dtx x

S d
n

τ

τ
τ τ

τ τ
τ

τ

π τ τ τ τ ω τ τ
λ

π πτ τ τω τ ω
λ λ

π τω τ
πλ

⊥ ⊥

⊥ ⊥

=

=
= =

= =
=

=

⎡ ⎤+∫ ⎢ ⎥⎣ ⎦

⎡ ⎤= + =∫ ∫⎣ ⎦

= ∫

t  (44) 

 
Substituting (44) in (41) then obtains for an optical gyro with a regular polygon shaped 
waveguide: 

 
( )0 0

21 cos ( , ) ( ,( ) ( )
tan /

T
m I

Sp l q l dW T
n

τ

τ

π
nptφ φ τω τ

πλ

=

=

⎡ ⎤
= + − + ∫⎢ ⎥

⎢ ⎥⎣ ⎦
 (45) 

 
Note, that a circular waveguide of radius  can also be classified as a regular polygon having 
an infinite number of infinitesimal length sides.  Then n S is the circumference  of the 

circle,

crclr
2 crclrπ

( )
2 2 r

π
=

tan / /
crcl

crcl
S S n S r

n n
π

π π π
≈ = = , and substitution in (45) finds 

 

 
0 0

41 cos ( , ) ( , )( ) ( )
Tcrcl

m Inpt
rp l q l dW T

τ

τ

πφ φ τω τ
λ

=

=

⎛ ⎞
= + − + ∫⎜ ⎟

⎝ ⎠
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A circle of radius  can also be inscribed in any triangle as given by [10 Eq. 63]: inscrbr
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where a, b, and c are the lengths of the triangle sides.  As for the regular polygon, both  

and 
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 equate to , and the first part of (44) with (47) becomes inscrbr
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Substituting (48) in (41) then obtains for a triangular waveguide shaped optical gyro: 
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NON-PLANAR WAVEGUIDES 
 

Up to this point in the analysis, the only approximation we have made is that (3) is the same 
as predicted by Relativity theory in (A-1) of the Appendix when  is negligibly small 

compared to , where  is the velocity of point i relative to point a as measured in non-

rotating inertial space (i.e., 

2
aiv

2c aiv

// /ai i ai axv t≡ Δ Δ ) and  is the time interval for the /i atΔ /i axΔ  
motion as measured on a point a located clock.  To derive the equivalent of (45) for optical gyros 
having non-planar waveguides now requires approximations for ( )ω τ  variations during the (41)

 to  time interval.  Toward this end, first recognize that depending on the optical gyro 
configuration, the p, q waves may traverse the closed waveguide once or multiple times.  In 
general then, the integral term in (41) can be divided into successive segments, each representing 
a single traversal of the waveguide: 

0τ = Tτ =
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 (50) 

 
where is the time for each k wave traversal at the speed of light c around the waveguide, and 

 is the time interval measured on a k cycle timer reinitialized to zero for each traversal.  Note: 
To assure that the last k cycle will be a complete traversal around the waveguide, the first  
may only be a partial traversal to match the  lower limit of the full integrals in (50). 
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We define the average angular rate over each k cycle as 
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Approximating angular rate as being constant during each k cycle at Avgk

ω  sets (50) with (51) to 
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 Now recognize that the integrals of / ( ) (

ik ki a Inptux τ τ⊥  and / ( ) ( )
jkj a Inptux τ⊥ kτ  along the 

waveguide from  to  will be equal.  Thus, (52) simplifies to 0kτ = k kTτ =
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where kL  is the total distance around the closed waveguide (and as discussed previously for , 
may be a partial loop distance for the first k cycle),  is the differential distance moved by the 
p wave past point i over time interval , and  is the distance moved by the p wave during 
time interval . 
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Lastly we define the average of / ( ) ( )

iki a Inptu kx l⊥ l   in (53) along the closed waveguide as 
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Substituting (54) in (53) with (51) and the result into (41), then gives the final form for the non-
planar waveguide shaped optical gyro: 
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(55) 

 
 
RING LASER GYROS 
 

A ring laser gyro (RLG) creates two oppositely directed beams of monochromatic light that 
traverse a closed optical path formed by three or more reflecting mirrors [11; 12].  The beams 
occupy the same physical space (“optical cavity”) and are constrained to travel along a fixed 
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“waveguide” relative to the gyro by an aperture and curved surface mirror(s). The concept is 
depicted in Fig. 2 for a 3-mirror RLG configuration, the individual laser beams identified as 
travelling in the clockwise (cw) and counter-clockwise (ccw) directions. 

 

DIELECTRIC MIRROR

DIELECTRIC MIRROR

DIELECTRIC MIRROR

READOUT PRISM

PHOTODIODES

LASER BEAMS 
(CLOCKWISE AND 

COUNTERCLOCKWISE

GAS
DISCHARGE

 
 

Fig. 2 - Ring Laser Gyro Operating Elements 
 
The RLG light beams in Fig. 2 are sustained by the lasing action of a helium-neon gas 

discharge within the optical cavity.  The reflecting surfaces are dielectric mirrors designed to 
selectively reflect the frequency associated with the particular helium-neon transition being used 
(typically of 0.63 micron wavelength).  A small fraction of each beam escapes the cavity at the 
readout, one reflected through a corner prism, then recombined with the other on readout photo 
detectors.  The corner prism is designed to produce a small angle between the recombining 
beams, thereby creating optical interference fringes on the photo detectors, each illuminated by a 
different portion of the fringe pattern.  The fringe pattern is stationary under zero angular rotation 
of the cavity.  Under cavity rotation, the fringes move across the photo detectors, generating a 
sinusoidal output at a frequency proportional to the gyro angular rate around its input axis 
(perpendicular to the plane of the Fig. 2 diagram).  Photo detector readout logic converts the 
sinusoidal output into a digital square wave for each fringe passage.  The rise and fall of the 
square wave edges generate output pulses, each representing an angular rotation through a 
known angular increment (the gyro output pulse scale factor).  Two photo detectors are used, 
separated from each other by one quarter of a photo-detector-sensed fringe so that resulting 
sinusoidal outputs are 90 deg phase separated.  Comparison between photo detector  generated 
square wave outputs determines the direction of rotation, positive or negative, depending on 
whether one square wave is leading or lagging the other. 

 

22 
 



Beam power losses in an RLG are compensated by amplification within the helium/neon 
plasma, adding photons at the same wavelength and in phase with returning photons (i.e., 
through Light Amplification by the Stimulated Emission of Radiation – LASER [11; 12]).  When 
lasing is achieved, a returning wave at the same point in the waveguide will be in phase with 
itself, and the total length of the closed wave path will contain an integral number of 
wavelengths.  To sustain maximum beam power (average of the cw and ccw beams), the wave 
path is continuously adjusted through path length control (PLC), a closed-loop piezoelectric 
driven micro-movement of one of the RLG mirrors normal to its surface.  Average beam power 
is measured for the PLC control loop by a separate photo detector mounted on one of the mirror 
substrates. 

 
The amplification factor (“gain”) in a laser is a narrow Gaussian distribution function of light 

wave frequency (the “atomic gain curve”) centered at the nominal wavelength being excited by 
the Fig. 2 gas discharge (e.g., 0.63 microns for an RLG).  An important part of RLG operation is 
control of the wavelength so that it coincides with the peak of the gain curve.  (Operation away 
from the gain curve peak can produce complex deleterious performance effects that are beyond 
the scope of this article to explain. For very small RLGs, the impact can be large enough that 
there is insufficient gain for lasing.)  When lasing frequency is at the gain curve peak, beam 
power is also maximized.  Thus, PLC control to maximize beam power implicitly maintains 
operation at the gain curve peak, thereby stabilizing performance.  An added benefit is 
maximizing illumination of the readout photo detectors, hence, improving output signal-to-noise 
ratio. 

 
Under zero angular rotation, the RLG He-Ne stimulated emission process provides photons 

at the clockwise and counterclockwise beam wavelengths, thus assuring that , 
the basic assumption in (23) leading to general optical gyro combined beam power Eq. (41) for 
RLG application.  Under non-zero angular rotation, “Doppler broadening” within the He-Ne 
transition process [12] provides the mechanism for adding in-phase photons to returning p, q 
waves at their (23) shifted ,  wavelengths embedded in (41). 

/0 /0 0q pλ λ= = λ

/p iλ /q jλ
 
RLG Analytical Model 
 

The RLG He-Ne transition process generates new p and q oppositely travelling photons at the 
same phase and frequency as returning photons.  This creates the illusion that each photon is 
repeatedly traversing the wave path.  The result can be analytically represented by (41), a 
combined beam power input to the RLG photo detectors representing the integral of angular rate 
from the first time since laser ignition (at running time ) that the cw and ccw waves 
simultaneously appear in the waveguide in the point l “readout zone” (where the photo diode 
readout detectors are located in Fg. 2).  In (41), 

0τ =

) (q( , , )p l lφ φ−
0=

 represents the difference in 
phase between the Fig. 2 cw and ccw light beams at , and running time  represents 
the current time in the readout zone (at point m, the same as point l, but at a later time). 

τ Tτ =

 
A fundamental distinction between an RLG and a FOG (to be described subsequently) is that 

in a FOG, represents a “computer controlled” time instant when an integrated angular rate 
output increment measurement begins, current time  represents the time the output 

0τ =
Tτ =
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measurement is made, and  also represents the time instant when the next angular 
incremental measurement begins.  Sequential non-overlapping incremental measurements 
follow, each of duration T, the time for a wave front to travel along the fiber optic wave path 
from the input light emitting diode source to the output photo detector. 

Tτ =

0τ =
 
In contrast, for an RLG, represents the first time since laser ignition that the light beam 

wave fronts (cw and ccw) appear simultaneously in the readout zone, while  represents any 
time since  that the laser beams are combining continuously in the readout zone.  To 
distinguish this difference, we will equate T to any general time interval t since  so that (41) 
becomes the revised form 
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τ =
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The effect of (56) is to generate an optical interference pattern (“fringes”) across the readout zone 
photo diodes (Fig. 2).  This can be analytically represented by first defining another point  
located in the readout zone, displaced from m by a small distance s “ahead” of m in the cw beam 
direction.  At arbitrary time t, the phase 
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Eqs. (57) shows that the  displacement creates the equivalent of a shift in the initial phase of 

the laser beams by 

sΔ
2

m
sΔπ

λ
, positive for the cw beam, and negative for the ccw beam.  The result is 

the revised equivalent of the (56) combined beam power equation for point : 'm
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Eq. (58) shows that at any general time t, the beam power  will repeat cyclically with 
location  across the readout zone as the cosine of 2π times the fraction of over half the 
local light beam wavelength .  This is an analytical representation of the optical interference 
“fringes” (light and dark bands) generated across the readout zone by the combined energy in the 
cw and ccw laser beams. 

'( )mW t
sΔ sΔ

mλ

 
More importantly, for an RLG, (56) and (58) also shows that the fringes will translate across 

the readout zone by the integral of angular rate ( )ω τ  as time t progresses into the future, 
repeating itself in time each time the ( )ω τ weighted integral generates a specific integrated 

angular rate increment, i.e., when //
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where  is the time increment when the previous equality is true.  Thus, for an optical 
photodiode pickoff located in the readout zone, angular rotation will generate a sinusoidal cyclic 
output, repeating each time the integrated angular rate accumulates that specific integrated 
angular rate increment (the fundamental measurement “pulse size”). 

tΔ

 
Counting the output cycles would digitally measure the integrated angular rate around the 

gyro input axis.  The output digitization process is implemented by first converting the analog 
sinusoidal pickoff output signal to an equivalent square wave, each change (minus to plus or plus 
to minus) indicating a gyro angular rotation of half the fundamental pulse size.  The sign (plus or 
minus) of the rotation measurement is determined by adding a second photodiode at point '  in 
the readout zone, displaced from the one a point m by linear distance to generate a phase shift 
from the m photodiode by 90 deg (π/2).  The length of is analytically found from (58) by 

specifying

m
sΔ

sΔ

2
/ 2m

sπ
λ

Δ = / 2π which finds . / 8ms λΔ =

 
  Generating a square wave from the  diode creates a square wave that is 90 deg phase 

shifted from the m diode created square wave, the '  “states” (plus or minus) overlapping the 
state changes from the m square wave.  Digital logic assigns a plus to the m sensed rotation when 
the m square wave state change finds a plus state on the '  square wave.  Conversely, the 
rotation is negative when the m state change is accompanied by a negative '  state.  Once the m 
and '  square wave measurements are implemented, the capability then exists to generate 
outputs not only for the m square wave state changes, but also for the 'm  square wave state 
changes.  The method duplicates what was described for the m wave measurements, with the  
wave state change now used to indicate the rotation occurrence.  Thus, 4 rotation occurrence 
outputs would be generated for each cycle of the photodiode outputs, 2 from the m wave, 2 from 
the '  wave, all spaced one quarter of a wavelength apart, the equivalent of reducing the output 
“pulse size” by a factor of 4.                
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m

m
m

m

m

'm

 
Eq. (56) or (58) can also be used to assess the RLG output scale factor for a particular 

waveguide geometry; triangle, regular polygon, or general out-of-plane shape as in (45), (49), 
and (55) for the point m photo detector.  For example, for a regular polygon, (45) (with T t ) 
shows that the normalized power at a point m located photo detector will cyclically repeat each 

≡
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⎥  radians change in integrated angular change input  per photo 

detector output cycle.  For an equilateral triangular RLG (i.e., n = 3) with S = 4.2 inches per side 
(0.35 ft ) and the commonly used visible RLG wavelength  of 0.63 micron (2.02 e-6 ft), the 
photo detector output scale factor will be 
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6 arc sec per output c .  

By triggering two output pulses (one at each photo detector output half cycle) from each of the 
two photo detectors (being position phased in “quadrature” - 90 degrees apart as described 
previously), the combined output pulse scale factor would be 2.06 / 4 = 0.515 arc sec per pulse. 
 

A square RLG configuration would have n = 4.  For a scale factor equivalent to the 
previously described 4.2 inch per side triangular RLG, the square RLG would have 
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−  for which 

0.202 ft = 2.42 inches = 6.15 centimeters,S = corresponding to a perimeter of 24.6 centimeters.   
 
 
FIBER-OPTIC GYROS 
 

A fiber optic gyro (FOG) consists of a circular coil of optical fiber, the ends optically spliced 
together with fiber-optic couplers that route near monochromatic light from a super-luminescent 
diode (e.g., gallium arsenide) into and out of the coil [13 pp 186-190; 14; 15].  The concept is 
depicted in Fig. 3. 

 
 

Fig. 3 - Fiber Optic Gyro (FOG) Concept 
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The light beam from the photo diode light source in Fig. 3 passes through a first coupler, then 
into the fiber-coil through a second coupler where it splits into two beams, one into the p branch, 
the other oppositely directed into the q branch.  After traversing the coil, the beams recombine in 
the second coupler, and are gated through the first coupler to a readout photo detector.  Under 
rotation, the p and q branch beams experience a relative phase shift, generating a change in the 
combined beam power illuminating the photo detector.  Readout electronics convert the photo 
detector output into a measurement of angular rotation that created the phase shift. 
  
Fundamental FOG Analytical Model 
 

As with the RLG, the fundamental operation of a FOG can be represented by (41), describing 
the continuous light wave emitted from the diode light source in Fig. 3.  The basic difference in 
fiber optic and ring laser gyro operation is that for a FOG, each light beam wave front traverses 
the waveguide once for sampling from its closed optical path entry at the photo-diode light 
source to the pickoff.  In contrast, light waves in an RLG traverse the waveguide continually 
(being continuously reinforced in phase and wavelength by the He-Ne stimulated emission 
process).  Thus, in an RLG, the  to  time interval (where T  in (41) represents the 
current time since laser ignition whereas in a FOG,  to  represents the time interval 
for a wave front to reach the pickoff after once traversing the optical fiber beam path.  Since the 
counter-travelling photons in a FOG originate from the same monochromatic light source, they 
have the same wavelength under zero angular change, hence,  in (23), the effect 

embedded in (41).  Additionally, since the counter-travelling photons enter the waveguide at the 
same phase, 

0τ = tτ = t≡

0 0q pλ λ=

0τ = Tτ =

0λ=

( , ) ( , )p l q lφ φ− in (41) is zero.  Thus, for the Fig. 3 FOG configuration, the general 
(41) analytical power model simplifies to 
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where T is the time interval for a photon to traverse the fiber coil from the light source to the 
pickoff. 
 

The optical fiber winding process for a FOG generates a waveguide configuration that is 
inherently non-planar (but approximately planar).  Eq. (55) with ( , ) ( , )p l q lφ φ−  equal to zero 
describes the equivalent non-planar FOG version of (59): 
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For a fiber length of 1000 meters, the time for a photon to traverse the fiber coil at the speed of 
light (3 e8 meters/sec) would be T = 1000 / 3 e8 = 3.33 e-6 sec. 
 

If the fiber coil is approximated as a connected set of n parallel overlapping circular 
segments, the discussion preceding and following (46) shows that  in (60) equals , the 
radius of each circular segment, and 

/i ax ⊥ crclr

Inpti
u  is the gyro input unit vector Inptu  perpendicular to 

the plane of the concentric circles (i.e.,  / i
crcli a InptInpt ru ux ⊥ = ).  Thus, for a FOG, (60) 

approximates as 
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  (61) 

or equivalently, 
 

 
0 0

41 cos ( ) ( )( )
Tcrcl

Inpt Inpt Inptm
r T TW T

τ

τ

π τθ θ ω
λ

=

=

⎛ ⎞
= + ≡Δ Δ ∫⎜ ⎟

⎝ ⎠
d  (62) 

 
where  is the output signal from the FOG photodiode output detector at point m (the end 
of the fiber coil) at time interval T, the time for a wave front to traverse the fiber coil at the speed 
of light (over fiber coil length L) from the FOG light emitting diode at point l (at the start of the 
fiber coil) to the optical pickoff at point m (at the end of the fiber coil), is the radius of each 
circular element in the fiber coil, and  is the integral over time period T of the angular 
rate component along the FOG input axis 

( )mW T

crclr
( )Inpt TθΔ

Inptu  (perpendicular to the fiber coil plane).  If each 

circular segment has a 3 inch diameter (1.5 inch radius) and the light source wavelength  is 
0.82 microns (typical for a FOG gallium-arsenide photo-diode light source), under an average 
angular rate 

0λ

Inptω  of 7 rad/sec (approximately 400 deg/sec), the bracketed phase angle in (62) 
induced at the FOG pickoff would be 
 

0

4 4( ) 1.5 0.0254 7 3.33 6 13.6 rad
0.82 6

crcl
Inpt

r T e
e

π π
θ

λ
= × × × × − =Δ

−
. 

 
To be useful for computing angular orientation in system applications, it is important that the 

FOG output  measurements of  in (62) represent successive increments of ( )mW T ( )Inpt TθΔ
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angular change (for each successive T interval).  Then, using simultaneous outputs from three 
orthogonally mounted FOGs, they can be used effectively in an appropriate algorithm for 
repetitive three-dimensional attitude computation updating.  Since each measurement of  
in (62) represents an attitude change  over T, this means that the  
measurements must be sampled and output at a frequency of 1 / T.  For T = 3.33 e-6 sec in the 
previous example, this translates into a  measurement/sampling rate of 1 / 3.33 e-6 = 0.3 
mega-Hz. 

( )mW T
( )Inpt TθΔ

( )mW T

( )mW T

 
“Closed-Loop” FOG Configuration 
 

A significant difference between the RLG and FOG arises in the complexity of the readout 
implementation.  Most high accuracy mechanical gyros have been implemented in the past using 
narrow angle pickoffs designed to operate over a small angular input range (e.g., 1 milli-rad).  
The purpose is to minimize the effect of pickoff scale factor error on device performance. It is 
typically achieved by controlling the pickoff output in servo feedback fashion to dynamically 
maintain the pickoff output (hence, pickoff input) at zero (null).  This has been achieved by 
either mechanically controlling the base to which the gyro is mounted (i.e., with a mechanical 
gimbaled platform), or by using electrical “closed-loop” rebalance whereby an electrical signal is 
generated from the pickoff output to provide angular rate bias feedback within the gyro to 
maintain pickoff null [16].  A closed-loop gyro output would then be generated within the 
rebalance loop from the biasing signal required to maintain pickoff null, thereby becoming equal 
but opposite to the gyro dynamic angular input. 
 

Eq. (62) illustrates the fundamental difficulty of measuring the scaled angular increment 
 with an “open-loop” FOG; the lack of sensitivity in power for small
, the inverse cosine function in  becoming indeterminate at zero , 

and prone to significant scale factor error (from pickoff output non-linearity characteristics) at 
non-zero angular increments.  For a closed-loop FOG, the goal is to create closed-loop electrical 
bias that maintains  at a known value with high sensitivity for any value of .  
Thus, means must be introduced to enable measuring deviations from a specified   beam 
power, and providing “closed loop” feedback to maintain at its specified value under all 
dynamic angular rate conditions. 

( )Inpt TθΔ
( )Inpt TθΔ

( )m

Δ

W T
1m −( )W T (Inpt Tθ

( )T

m

( , )p l

)Δ

Inpt

( )
( )mW T θ

W T
( )mW T

 
For a closed–loop FOG, the equivalent to (62) also derives from (55), but having φ  and 

( , )q lφ  include additional bias introduced within the fiber coil to enable closed-loop operation 
and  determination under any input condition.  Thus in (55), ( )Inpt TθΔ ( , )p l pφ α β= + Δ  and 

( , )q l qφ α β= + Δ  where  is the phase of the light beam entering the coil (splitting into p and q 

branches as in Fig. 3), and 

α

pβΔ , qβΔ  represent additional phase biases intentionally introduced 

in the p, q branches within the coil.  The closed-loop equivalent to (62) then derives from (55) 
using the same rationale that led to (62): 
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 (63)  

 
with as defined in (61).  Then, using the approximation that the fiber coils are circular 

and parallel, the analysis leading to (62) has (63) becoming with condensed notation 
InptAvg kω

 

 
( )

0 0

1 cos ( )( )

4 ( )

SF Inptp qm

T
crclSF Inpt Inpt

TW T k

T dk r
τ

τ

φ φβ β θ

π τθ ω
λ

=

=

⎡ ⎤= + + − ≡Δ ΔΔ Δ⎣ ⎦

≡ ≡Δ ∫

Δ

 (64) 

 
where is the nominal wavelength of the FOG laser light (at zero input rate),  is the radius 
of each fiber coil, T is the total time for a FOG light wave front to traverse the fiber coil from the 
beginning (at coil entry point l) to the end (at coil exit point m), and  is the integrated 
angular rate

0λ crclr

)(Inpt TθΔ

Inptω  over T along the FOG input axis (perpendicular to the fiber coil plane).  The 

FOG scale factor  in (64) shows that there will be a SFk
0

4 crclrπ
λ

shift in phase φΔ

θΔ

crcl

 between light 

waves reaching the readout photo detector per radian of inertial angular rotation  
during time interval T for a light beam wave front to traverse the fiber coil.   For comparison, 
(46) applied to a hypothetical RLG with circular shaped waveguide of radius shows that 

there would be a 

( )Inpt T

r

0

4

Δ

crclr
π

λ
( )Inpt Tθ

 phase shift  between light waves reaching the readout per radian 

angular change  in inertial angular rotation.  Thus, both the FOG and RLG measure 
angular rotation changes by the same scale factor. 
 

In modern day FOGs, integrated optics inserts are used to generate the pβΔ  and qβΔ  

applied phase shifts in (64), based on the use of active electro-optic crystals that change the 
index of refraction of light passing through.  With this approach, the integrated optics insert is 
constructed from a crystal of lithium-niobate using titanium strips diffused on the surface to gate 
light waves through the crystal [13 pp 189-190].  Voltage applied across the crystal changes the 
index of refraction of light passing through, changing the speed of light waves propagating 
through the crystal, thereby adding phase shift. 
 

For a given applied voltage, the same phase shift will be added to waves entering from either 
side of the crystal, i.e., from the p or q wave directions in a FOG fiber coil.  Achieving a net 
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phase difference in (64) relies on the crystal being inserted at one end of the fiber to take 
advantage of the time interval difference for a p wave (for example) to reach the readout photo 
detector compared to the q wave.  Thus, imagine a crystal inserted at the end of the coil where 
the p wave begins its journey.  Then a voltage  (corresponding to a 1V 1β  phase shift) applied to 
the crystal at current time  will shift the p wave phase by 1t 1pβ β=Δ

1t

2

, but this shift will not 

appear on the photo detector until p completes its passage around the coil at a later time .  
Now consider a q wave that entered the coil with p at time , but travelling in the opposite 
direction from p around the coil, did not pass through the crystal until time .  If  is being 
applied to the crystal at time  (with corresponding phase shift 

2t

2t 2V
2t β ), the q wave will be phase 

shifted by 2qβ β=Δ  when it reaches the photo detector at .   The net result is that at time , 

the p and q waves with phase shifts 
2t 2t

pβΔ  and qβΔ  will combine on the photo detector to 

generate a phase shift difference 1 2p qβ β β β− = −

2V

Δ Δ  in the (64) beam power, depending on 

the logic used in setting V  and .  An example of applying this concept is depicted in Fig. 4, a 
closed-loop FOG version of Fig. 3. 

1

 
 

Fig. 4 – Closed-Loop FOG Configuration 
 

A general goal in the design of inertial components is to provide symmetry to minimize the 
likelihood of asymmetric anomalous error generation.  For a FOG, a symmetric design approach 
would use two lithium-niobate (L/N) crystals symmetrically placed in the p and q photon light 
paths at equal distances from the fiber coil junction, one located in the p branch, the other in the 
q branch.  The symmetric configuration in Fig. 4 shows how the photo detector output would 
then be applied in feedback fashion through the Closed Loop Control computation block to 
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generate ςΔ , ξΔ  phase shifts in the p, q waves through Vς , Vξ  voltages applied to the two  
L/N crystals.  (The analog Negative Bias signal applied to the Analog-to-Digital (A/D) Converter 
input in Fig. 4 will be discussed later.)  In conjunction with generating the ςΔ , ξΔ  phase shift 
commands, Closed Loop Control in Fig. 4 also computes  angular increment 
measurements for output. 

(Inpt T )θΔ

 
From (64) at time , the combined p and q beam power illuminating the photo detector in 

Fig. 4 would be .  The 

it

= + ( )1 cos
ii i p qW φ β β⎡ ⎤+ −Δ ΔΔ⎢ ⎥⎣ ⎦i ipβΔ and 

iqβΔ  phase shifts induced 

in  as a function of the applied iW ςΔ , ξΔ  commands can be determined from Fig. 5 by 
following the progress of the  p and q waves as they enter and leave the fiber coil. 
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q (α  + Δξi -1+ Δζi )
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To Photo 
Detector

Fig. 5 – Closed-Loop FOG Signal Flow 
 

At time , a light wave at phase  from the Optical Light Source passes through the first 
coupler in Fig. 5, is gated into the fiber coil by the second coupler, then splits into p and q 
branches, each with phase as denoted by  and .  The p branch crystal imparts 

it α

α ( )p α ( )q α iςΔ  
additional phase to the p wave at time , generating it iα ς+ Δ  phase on the p output, denoted in 
Fig. 5 as ( ip )α ς+ Δ .  Simultaneously at time , a returning q wave at it 1( )iq α ξ −+ Δ  (i.e., 
previously phase shifted by 1iξ −

i

Δ  at  by the q branch crystal) enters the p branch crystal, 
leaves at 

1it −

1i(q )α ξ ς−+ Δ + Δ , and is gated by the coupler to the readout Photo Detector.  Thus, 

iqβΔ

iq

 in (64), the shift in q wave phase from its  value at coil entry, will be α

1i iβ ξ ς−Δ = + ΔΔ . 
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Similarly, the q branch crystal will impart iξΔ  additional phase to the q wave at time , 
generating 

it
( iq α )ξ+ Δ

1)i

for the q output in Fig. 5.  Simultaneously at time , a returning p wave 
at 

it
(p α ς −+ Δ  enters the q branch crystal, leaves at 1( ip α )iς ξ−+ + ΔΔ , and is gated by the 

coupler to the readout photo detector.  Thus, 
ipβΔ

i i

 in (64), the shift in p wave phase from its  

value at coil entry, will be 

α

1ipβ ς ξ−Δ = +Δ Δ . 

 
The net result is that at time , the p and q waves will recombine as in (64) to have a total 

beam power input to the Fig. 5 photo detector of 
it
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1 cos
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 (65) 

 
The  photo detector measurement of (65) would be saved by the Fig. 4 Closed Loop Control 
at time .  The 

iW
it 1iς −Δ  and 1iξ −Δ

1i−

 values in (65) would have been previously set during the time 
interval between  to , thus, generating the equivalent of (65) at time  of 2it − t 1it −
 
  (66) ( ) (1 11 21 cosi ii iiW ςςφ ξ− −− −−

⎡ ⎤Δ −Δ= + − + Δ − ΔΔ⎣ ⎦)1 2iξ −

 
The  photo detector measurement of (66) would have been saved in the Fig. 4 Closed Loop 
Control block at time . 

1iW −

1it −
 

Between times  and , the  readout from (65) (stored at time ) would be combined 
with  from (66) (stored at time ) to calculate 

it 1it + iW
1it −

it
1iW − iφΔ  for output (between  and ) and 

to maintain closed-loop control.  The closed-loop control method selected depends on the 
analytical approach used in setting the 

it 1it +

ςΔ s and ξΔ s in (65) and (66).  Examples are described 
next. 
 
Examples of Closed-Loop FOG Control 
 

Consider having the cosine function in (65) controlled to zero.  Then the corresponding 
control law would be 

 
 ( ) ( )11 / 2 2 ii i i ii nςς πξ ξ φ−−Δ −Δ − Δ − = ± +Δ Δ π  (67) 

 
where iφΔ  is the control loop estimate for iφΔ  in (65) and  is an arbitrary integer (to be 
subsequently chosen based on other considerations).  With (67), and assuming that closed-loop 
operations maintain 

in

i iφ φ≈Δ Δ  , (65) becomes for cycle i : 
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 (68) 

In principle, (68) can be used to calculate iφΔ  using .  This could 
be implemented for example, by applying the minus “1” as the Negative Bias signal in Fig. 4 to 
the photo detector output before sampling by the D/A converter.  The problem with this approach 
is that the “1” in (68) assumes accurate knowledge of normalizing scale factor  in the (39) 

definition of normalized power W.  To eliminate this error source, the minus option for the −+  
polarity in (68) is used for the  measurement, and the plus option for the previous  
measurement.  Then, similar to the (68) derivation from (66), the  and  measurements 
would become: 
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  (69) 
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Taking the difference between  and  cancels the “1”, yielding iW 1iW −
 

( ) ( ) ( ) ( )33
1 1 1 1 1/ 6 / 6i i i i i i i i i iW W φ φ φ φ φ φ φ φ− − − − −− = − + − − − − +−Δ Δ Δ Δ Δ Δ Δ Δ  (70) 

 
which permits iφΔ  determination without “1” scale factor accuracy dependence:  
 

( ) ( ) ( )33
11 1 1 1/ 6 / 6i ii i i i i i i iW Wφ φ φ φ φ φ φ φ−− − − −= − + + − + − + +−Δ Δ Δ Δ Δ Δ Δ Δ  (71) 

 
(Note in Fig. 4 that analog negative bias is applied to the photo detector output before sampling 
by the D/A converter.  This generates a bias on the measured  and  signals in (71) 
which cancels when calculating , including cancellation of error that may be present in 
the applied analog bias signal.  This characteristic will be used subsequently to eliminate round-
off error in closed-loop control operations.) 

iW 1iW −

1i iW W −−
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Finally, we assume that the φΔ  increments will have very little change over the time interval 
for a photon to traverse the fiber coil so that 1i iφ φ −≈Δ Δ  and 1i 2iφ φ− ≈Δ Δ − .  We can, 

therefore, set the iφΔ , 1iφ −Δ  estimates to 
 
 1 1i i i i 2φ φ φ φ− −= =Δ Δ Δ Δ −  (72) 
 

Additionally, we assume that using iφΔ  from (72), the ( 3
i i)φ φ−Δ Δ term in (71) will change 

very slowly from cycle to cycle so that 
 

  (73) ( ) ( ) (3 3
1 1i i i i i iφ φ φ φ φ φ− −− ≈ − ≈ −Δ Δ Δ Δ Δ Δ )3

2−

2iξ −

iξ ⎦

2−

 
With (72) and (73), Eqs. (69), (70), and (71) become 
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  (74) 
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  ( ) ( )3
12 1 / 3i ii i i iW Wφ φ φ φ−− −= + − + −Δ Δ Δ Δ

 
The identical process would be used during the next cycle to calculate 1iφ +Δ  from  and 

 power measurements using  from (74), 
1iW +

iW iW iφΔ  from the (72) control law, (73) for the cubic 

term approximation, and their , 1iW + 1iφ +Δ  equivalents at : 1it +
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Note the difference in polarity for (  in (75) compared with (  in (74).  The 
variation is caused by the difference in  term polarities in the (75)  sequence 
compared with the W  sequence in (74).  Thus, recursive computations for sequential 

)i )

W

1iW W+ −
/ 2π

i

1i iW W −−

1i iW W +→

1i− →

φΔ  determination must account for alternating signs on both the  and , 

 terms in (74) and (75). 

/ 2π ( )1i−iW W−

( 1iW W+ − )i
 

It remains to define settings for the ςΔ s and ξΔ s that satisfy (74) (and its next cycle (75) 
equivalent): 
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A potential solution for the ςΔ s and ξΔ s in (76) might be to assign the alternating  
operations to the 

/ 2π
ξΔ s, with the remaining 12 2 ii n πφ −− +Δ  and 1 2 ii n πφ − +Δ  control 

operations assigned to the ςΔ s.  Another solution might be to set the ξΔ s to zero (i.e., equating 

1 0i iξ ξ −Δ − =Δ  and 1i 2 0iξ ξ−Δ − Δ − = ), and assign all operations in (76) to the ςΔ s.  In effect, 
this would represent a single L/N crystal biasing approach, implemented in Fig. 4 by maintaining 
the ξΔ  crystal presence (for component symmetry), but setting the V ξ  voltage to zero.  This 
would also allow a lower manufacturing cost option by eliminating the ξΔ  crystal entirely, i.e., 
an unsymmetrical single crystal approach.  Appendix C discusses the single crystal approach in 
detail. 

 
Another, but fully symmetric solution (and the one discussed for the remainder of this 

section), derives by first equating  to in in n iς ξ+ , and  to  where 1in − 1in nς ξ− + 1i− inς , inξ , 

1inς − ,  are integers.  Thus, (76) becomes 1inξ −
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Dividing (77) into symmetrical ςΔ  and ξΔ  portions obtains 
 

  
( )

( )
1

1

1 2 2

1 2 2

/ 2 / 4 2

/ 2 / 4 2
i

i

i i i

i i i

n

n

ς

ξ

π πς ς φ

π πξ ξ φ
−

−

− − −

− − −

Δ − Δ = − +Δ

Δ − =− + −Δ Δ
  (78) 

  
( )

( )
11

1 1

/ 2 / 4 2

/ 2 / 4 2
i

i

i ii

i i i

n

n

ς

ξ

ςς π πφ

π πξ ξ φ
−−

− −

Δ −Δ = + +Δ

Δ − = − − −Δ Δ

36 
 



Note that (77) equals the difference between the ςΔ  and ξΔ  expressions in (78).  The recursive 
equivalent for the ςΔ s and ξΔ s in (78) then becomes 
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   (79) 
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Eqs. (79) with the  output fromθΔ φΔ

W

 in (64) are the basis for the symmetric closed-loop 
FOG computations shown in Fig. 6.  The  and  signals in Fig. 6 represent the A/D 

Converter outputs in Fig. 4 including the negative bias (that is eliminated by the  
subtraction process), i.e., 

*
1i−

*
iW

* *
1i iW W −−

 

 . (80) 
* *

1 1
* *

1 1

i i Bias i i Bias

i i i i

W W W W W W

W W W W
− −

− −

= − = −

− = −
 
where  is the negative bias in Fig. 4 applied to the photo detector output.  Then from (74) 
with (80), 

BiasW

  (81) 
( ) ( )

( ) ( )

3
12 1

3* *
12 1

/ 3

/ 3

i ii i i i

i ii i

W W

W W

φ φ φ φ

φ φ φ

−− −

−− −

= + − + −Δ Δ Δ Δ

= + − + −Δ Δ Δ

2

2i

−

−

 
which is used in Fig. 6 with (B-8) from Appendix B when calculating  for output. θΔ
 

The  term in the Sgn iςΔ , iξΔ  computations of Fig. 6 accounts for alternating polarities in 
 compared with next cycle equivalents in (79).  The Sgn term is also used in the / 4π iφΔ  

computation of Fig. 6 to account for alternating polarities in (  compared with next 
cycle equivalents in (74) and (75).  The 

)1i iW W −−
2 nς π , 2 nξ π  terms in (79) are used to assure that ςΔ , 

ξΔ

O

 values applied to the lithium-niobate (L/N) crystals in Fig. 4 remain positive (greater than 

ffSetβΔ ) and within a specified range for proper operation.  This is achieved by logic 

statements in Fig. 6 that apply successive plus or minus  changes to 2π ςΔ , ξΔ  until they 
satisfy the specified criteria. 
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t t
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Δ ≤ Δ + Δ > Δ + Δ = Δ −

Δ ≥ Δ Δ < Δ Δ = Δ +

Δ = − −Δ Δ
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Sgn W W
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Fig. 6 – Dual Crystal Closed-Loop FOG Symmetrical Computation Flow 
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The D/A Round operations in Fig. 6 round the computed ςΔ , ξΔ  values to ςΔ , ξΔ  at the 
same bit level as the Fig. 4 D/A converters, thereby eliminating round-off error that would occur 
in the D/A conversion process if ςΔ , ξΔ  were applied as computed (with uncertain round-off 

error then imposed on the L/N crystals in the D/A conversion process).  Having  in 

Fig. 6 computed based on applying rounded 

( )*
1i−

*
iW W−

ςΔ , ξΔ  to the crystals would create error in 

calculating iφΔ  and the resulting  output.  However, the iθΔ ςΔ , ξΔ  error is known 
(calculated as δ ςΔ  and δ ξΔ  in Fig. 6), hence, eliminated in Fig. 6 by correcting the 

 value used in the ( *
iW W −− )*

1i iφΔ  calculation.  A derivation of the δ ςΔ  and δ ξΔ correction 

process is provided in Appendix B.  
 
Additional round-off error can be generated when digitally outputting  due to limited 

word length in the D/D (Digital-to-Digital) conversion function.  This error is eliminated using a 
D/D Round function in Fig. 6, by computing 

iθΔ

θΔ  (a rounded  version of ), for output at the 
D/D function word length. The 

θΔ
θΔ  output is designed in Fig. 6 to assure that the sum of 

transmitted rounded θΔ
ΔΣ

s equals the sum of the correct s by cyclically controlling their 
summed difference  to remain small.  The result is a bounded error on the sum (integral) of 
the 

θΔ

θΔ s that varies randomly with magnitude of the lowest bit level in θΔ . 
 
Lastly, we address the round-off error generated in Fig. 6 when reading the  and  

measurements through the A/D Converter in Fig. 4.  This error is minimized by setting the 
analog negative bias signal in Fig. 4 to correspond with the expected unity value of the 
normalized photo detector  power measurement under closed-loop control.  The result is an 
A/D converter input signal that is nominally zero, being only offset by the uncertainty in the 
photo detector output, the error in the analog bias, and the small dynamic lag in closed loop 
control operations.  This enables scaling of the A/D converter so that the magnitude of the least 
significant bit (the effective round-off error) becomes negligible in the Fig. 6 calculations. 

*
1iW −

*
iW

iW

 
 
CONCLUSIONS 
 

Optical gyros generate oppositely directed monochromatic light waves travelling in a closed-
circuit waveguide to measure angular rotation relative to non-rotating inertial space.  Based on 
classical Galilean/Newtonian kinematics and Relativity theory (under normal operating 
conditions), the wavelength of light waves in the waveguide will change due to angular rotation, 
increasing for waves travelling with rotation, decreasing for waves travelling against rotation.  
Due to Relativity theory, the velocity of the waves will remain constant (at the speed of light) 
relative to any point on the waveguide.  As a result, relative to the readout device in the 
waveguide, the frequency will decrease for waves travelling with rotation, and increase for 
waves travelling against rotation.  Additionally, relative to any point on the waveguide during 
rotation, the time increment for a wave to traverse a given distance increment will be the same, 
independent of its motion relative to the rotation direction.  A corollary is that relative to the 
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waveguide, the time interval for a wave to traverse a given distance will be the same for waves 
travelling in either direction. 

 
Ring laser gyros (RLGs) and fiber optic gyros (FOGs) are integrating angular change sensing 

inertial instruments, both measuring increments of gyro angular rotation relative to non-rotating 
inertial space.  The analytics describing RLG and FOG operations emanate from the same 
fundamental equation.  RLGs and FOGs differ analytically in the method used to extract 
incremental angular data measurements for output.  Application of the fundamental equation for 
each depends on the total travel time for a light wave to traverse the waveguide. 

 
Due to the RLG He-Ne stimulated-emission process, a light wave in an RLG will continue to 

traverse the waveguide from lasing ignition.  The result is a pair of continuous counter-travelling 
light waves that combine at the readout, generating an optical interference pattern across the 
readout zone.  The interference pattern moves across readout photo detectors at a rate 
proportional to the frequency difference between the counter-travelling light waves.  The 
frequency difference is proportional to angular rate.  The RLG output measures the occurrence of 
each interference pattern traversal, each representing a known increment of angular rotation 
relative to non-rotating inertial space. 

 
In contrast, each light wave in a FOG only traverses the waveguide once from the time it 

leaves the FOG photo diode light source until it arrives at the readout photo detector.  In a FOG, 
rotation generates a phase difference at the readout between the counter-travelling light waves.  
The phase difference is proportional to the increment of angular rotation during the time for a 
wave to traverse the waveguide.  When the counter-travelling waves combine at the readout, the 
phase difference generates a change in the combined wave optical power illuminating the photo 
detector.  Suitable closed-loop electronics convert photo detector optical power measurements 
into angular increments for output, while generating commands to lithium-niobate biasing crystal 
inserts in the gyro wave path for closed-loop control. 

 
 

APPENDIX A 
 

DERIVATION OF EQ. (3) BASED ON RELATIVITY THEORY 
 

The equivalent to (3) based on Relativity theory [5 Eq. (12-5); 6 Eq. (10.31)-(10.32)] is in its 
equivalent point-to-point differential form [4 Eq. (35)]: 

  

( )2
/ / / / / / /2 2

1 1 . /
1 /

a aaip i p a i a p a i a i a i a
ai

d dx x v x v v vddt v dt
v c

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟−⎝ ⎠

 (A-1) 

 
where /i av  is the instantaneous velocity of point i as observed at point a,  is the magnitude ofaiv

/i av ,  is the differential time interval for a differential change adt /p ad x  in the position location 

of a point p that would be measured at point a, and /p id x   is the differential change in the point 
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p location that be measured at point i during .  The peculiar adt 21 /aiv c− 2  term in (A-1) is a 
unique contribution from Relativity theory [4; 7 Appendix A] that assures that if point p is 
travelling at the speed of light c, the magnitude of p velocity relative to observation points a or i 
will be the same c constant: 
 

 
( ) ( )
( ) ( )

/ / /

/ / /

/ / . /

/ / . /

aa app a p a p a

i i ip i p i p i

d d dx x xdt dt dt

d d d cx x xdt dt dt

=

= = =
 (A-2) 

 
where  is the time interval for the idt /p id x  differential motion that would be measured on a 

clock located at point i. 
 

Eq. (A-1) is also based on /a iv  (the velocity of point a observed at point i) being of equal 
magnitude but oppositely directed from /i av  (the velocity of point i observed at point ), a 
fundamental premise of both classical Newtonian kinematics and Relativity theory [3 pp 236-
238; 6 pp 30]: 
 

 / /
/ / / / /

i a a i
aii a a i a i i a i a a i

a i

d dx x
v v v v vv

dt dt
≡ ≡ = − ≡ /v=

c

 (A-3) 

 

For the commonly encountered situations when , the aiv 21 /aiv c− 2  Relativity 
coefficient in (A-1) approximates as unity and (A-1) simplifies to 

 
 / / / ap i p a i ad dx x v dt= −  (A-4) 

 
Substituting / ai a i adv dt = /x  from (A-3) into (A-4) obtains with rearrangement 
 
 / /p a p i i ad d d /x x x= +  (A-5) 

 
With the differentials in (A-5) approximated as small finite Δ  changes, (A-5) becomes (3) in the 
main text derived using classical Galilean/Newtonian kinematic theory: 
 
 / /p a p i i a/x x x= +Δ Δ Δ  (A-6) 
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APPENDIX B 
 

DERIVING ROUND-OFF ERROR CORRECTIONS TO FOG LITHIUM-NIOBATE 
CRYSTAL COMMAND VOLTAGES 

 
This appendix derives the iφΔ  equation in Fig. 6 used to correct the error generated using 

rounded ςΔ , ξΔ  data for biasing the L/N crystals in Fig. 4.  The derivation begins with 

definitions for ςΔ , ξΔ  in terms of non-rounded ςΔ , ξΔ  and the δ ςΔ , δ ξΔ round-off errors in 
Fig. 6: 

 

 

1 1 1 2 2

1 1 1 2 2

1 1 1

1 1 1

i i i i i i

i i i i i

i i i i i i

i i i i i i

δ δς ς ς ς ς ς

δ δ
2

2iξ ξ ξ ξ ξ ξ

δ δς ς ς ς ς ς

δ δξ ξ ξ ξ ξ ξ

− − − − −

− − − − −

− − −

− − −

Δ = Δ + Δ Δ = Δ + Δ

Δ = Δ + Δ Δ = Δ + Δ

Δ = Δ + Δ Δ = Δ + Δ

Δ = Δ + Δ Δ = Δ + Δ

−

−  (B-1) 

 
Use of rounded L/N input produces combined power values W  having the same form as (65) – 
(66), but with ςΔ , ξΔ  replaced by ςΔ , ξΔ : 
 

 
( ) ( )
( ) ( )

1 1 1 2 1

1 1

1 cos

1 cos

i i i i i i

i i i i i i

W

W

φ ς ς ξ ξ

φ ς ς ξ ξ

− − − − − −

− −

⎡ ⎤= + − Δ − Δ + Δ − ΔΔ⎣ ⎦
⎡ ⎤= + − Δ − Δ + Δ − ΔΔ⎣ ⎦

2
 (B-2) 

 
Substituting (B-1) into (B-2) obtains 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 1 1 2 1 2

1 1 1 2 2

1 1 2 2

1 1 2 1 2

1 2 1 2

1 cos

1 cos

1 cos

1

i i i i i i

i i i i i

i i i i

i i i i i

i i i i

i

W

W

φ ς ς ξ ξ

δ δφ ς ς ς ς

δ δξ ξ ξ ξ

φ ς ς ξ ξ

δ δ δς ς ξ δ ξ

− − − − − −

− − − − −

− − − −

− − − − −

− − − −

⎡ ⎤= + − Δ − Δ + Δ − ΔΔ⎣ ⎦
⎧ ⎫⎡ ⎤− Δ + Δ − Δ + ΔΔ⎪ ⎣ ⎦⎪= + ⎨ ⎬

⎡ ⎤+ Δ + Δ − Δ + Δ⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤− Δ − Δ + Δ − ΔΔ
⎢ ⎥= +
⎢ ⎥− Δ − Δ + Δ − Δ⎣ ⎦

= + ( ) ( )
( ) ( ) ( ) ({ }

( ) ( ) ( ) ( )

1 1

1 1 1 1

1 11 1

cos

1 cos

1 cos

i i i i i

i i i i i i i i i

i ii i i ii i

φ ς ς ξ ξ

δ δ δ δφ ς ς ς ς ξ ξ ξ ξ

ς δ δ ςς ς δφ ξ ξ ξ δ

− −

− − − −

− −− −

⎡ ⎤− Δ − Δ + Δ − ΔΔ⎣ ⎦

⎡ ⎤ ⎡= + − Δ + Δ − Δ + Δ + Δ + Δ − Δ + ΔΔ ⎣ ⎦ ⎣

⎡ ⎤Δ −Δ Δ − Δ= + − + Δ − − + Δ −Δ ΔΔ⎣ ⎦

)
iξ

⎤⎦

(B-3) 
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The unrounded ( ) , ( ) , ( ) , ( )  terms in 

(B-3) are from (78): 
1 2i iς ς− −Δ − Δ 1 2i iξ ξ− −Δ − Δ 1i iςς −Δ −Δ 1i iξ ξ −Δ − Δ

 

  (B-4) 

( )
( )

( )
( )

1

1

1 2 2

1 2 2

11

1 1

/ 2 / 4 2

/ 2 / 4 2

/ 2 / 4 2

/ 2 / 4 2

i

i

i

i

i i i

i i i

i ii

i i i

n

n

n

n

ς

ξ

ς

ξ

π πς ς φ

π πξ ξ φ

ςς π πφ

π πξ ξ φ

−

−

− − −

− − −

−−

− −

Δ − Δ = − +Δ

Δ − =− + −Δ Δ

Δ −Δ = + +Δ

Δ − = − − −Δ Δ
 

Substituting (B-4) into (B-3) then gives 
 

( )
( ) ( )

( ) ( )
( ) ( )
( )
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1

1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2
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1 sin

1
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δ δ δφ φ ς ς
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−
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− − − −
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⎢ ⎥− Δ − Δ + Δ − Δ⎣ ⎦

⎡ ⎤= − − − Δ − Δ + Δ − ΔΔ Δ⎣ ⎦
⎡ ⎤≈ − − − Δ − Δ + Δ − ΔΔ Δ⎣ ⎦

= − + + Δ − Δ −Δ Δ ( )

( ) ( ) ( )
( ) ( )

( ) ( )

1 2
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1 cos / 2 2

1 sin

1

i i

i i

i ii i i ii

ii i i ii

ii i i ii

n nW ς ξ

ξ δ ξ

δ δ ςςπ π δφ φ ξ δ ξ

δ δ ςς δφ φ ξ δ ξ

δ δ ςς δφ φ ξ δ ξ

− −

− −−

− −−

− −−

Δ − Δ

⎡ ⎤Δ − Δ= + − − − + − + Δ − ΔΔ Δ⎢ ⎥⎣ ⎦
⎡ ⎤Δ − Δ= + − − + Δ − ΔΔ Δ⎣ ⎦

Δ − Δ≈ + − − + Δ − ΔΔ Δ

 (B-5) 

 
Subtracting  from  in (B-5) obtains 1iW − iW
 

  (B-6) 

( ) ( )
( ) (

( ) (

1 1 11

1 2 1 2 1 2

2 2

i i ii i i ii

i i i i i i

i i i i i i

W W δ δ ςς δφ φ ξ δ ξ

δ δ δφ φ ς ς ξ δ ξ
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)
)2

)2−

 
from which 
 
  (B-7) ( ) ( ) (12 2i ii i i i i iW W δ δ δφ φ ς ς ξ δ ξ−− −= + − + Δ − Δ − Δ − ΔΔ Δ
 

The identical procedure for the next cycle finds 
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( ) ( ) ( ) ( )
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Subtracting  in (B-5) from  in (B-8) obtains iW 1iW +
 

 

( ) ( ) ( )
( ) ( )
( ) (

1 11 1

1 11

1 1 1 1 1 1

i i ii i ii

ii i i ii
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)
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 (B-9) 

 
from which, 
 
  (B-10) ( ) ( ) (11 1 1 1 1i ii i i i i iW W δ δ δφ φ ς ς ξ δ ξ++ − + − += − − + Δ − Δ − Δ − ΔΔ Δ )1−

)
)

2

1

−

−

 
Thus, for two successive cycles, (B-7) and (B-10) show that 

 

  (B-11) 
( ) ( ) (

( ) ( ) (
12 2

11 1 1 1 1

i ii i i i i i

i ii i i i i i

W W

W W

δ δ δφ φ ς ς ξ δ ξ

δ δ δφ φ ς ς ξ δ ξ
−− −

++ − + − +

= + − + Δ − Δ − Δ − ΔΔ Δ

= − − + Δ − Δ − Δ − ΔΔ Δ
 
The (B-11) expressions are identical except for the difference in polarity for the W power 
difference term in 1iφ +Δ  compared with its equivalent in iφΔ .  A common formula for both can 
be defined as 
 
  (B-12) ( ) ( ) (2 1 2i i i i i i i iSgn W Wφ φ δ δ δς ς ξ δ ξ− − −=Δ Δ + − + Δ − Δ − Δ − Δ )2−
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where Sgn is unity in magnitude and alternating in polarity from i cycle to i cycle.  Eq. (B-12) is 
what is shown with (81) in Fig. 6, with from (B-1): 
  

 1 1 1 2 2

1 1 1 2 2

i i i i i i

i i i i i

δ δς ς ς ς ς ς

δ δ
2

2iξ ξ ξ ξ ξ ξ
− − − − −

− − − − −

Δ = Δ − Δ Δ = Δ − Δ

Δ = Δ − Δ Δ = Δ − Δ
−

−

 (B-13)   

 
 

APPENDIX C 
 

SINGLE CRYSTAL CLOSED LOOP CONTROL 
 

A single lithium-niobate crystal biasing approach can be used for closed-loop FOG 
operations by setting the ξΔ s in Fig. 4 to zero so that the recursive form of (77) becomes 
 

 11 2 2

1 1

/ 2 2

/ 2 2
i

i

i i i

i i i

n

n

ς

ς

π πς ς φ

π πς ς φ
−− − −

− −

Δ = Δ + − +Δ

Δ = Δ + + +Δ
  (C-1) 

 
Eqs. (C-1) with (81) for iφΔ   and  output fromθΔ φΔ  in (64), are the basis for the single crystal 
closed-loop FOG computation operations shown in Fig. 7. 
 

In Fig. 7, the  and  signals represent the A/D Converter output in Fig. 4 including 
the negative bias applied to the photo detector output.  The  term in Fig. 7 accounts for  
and (  alternating polarities in (74) compared with their next cycle equivalents in (75).  
The 

*
1iW −

)

*
iW

Sgn / 2π

1i iW W −−
2 nς π  term in (C-1) is used to assure that the ςΔ

Of

 value applied to the lithium-niobate 
(L/N) cell in Fig. 4 remains positive (greater than fSetβΔ ) and within a specified range for 

proper operation.  This is achieved by logic statements in Fig. 7 that apply successive plus or 
minus  changes to 2π ςΔ  until it satisfies the specified criteria. 
 

The D/A Round operations in Fig. 7 round the computed ςΔ  values to ςΔ  for output at the 
same bit level as the Fig. 4 ςΔ  D/A converter, thereby eliminating round-off error that would 
occur in the D/A conversion process if ςΔ  were applied as computed (with uncertain round-off 
error then imposed on the L/N crystals in the D/A conversion process).  Having  in 

Fig. 7 computed based on applying rounded 

* *
1i iW W −−

ςΔ  to the crystal would create error in calculating 

iφΔ  and the resulting  output.  However, the iθΔ ςΔ  error is known (calculated as δ ςΔ

i

 in Fig. 

7), thus, eliminated in Fig. 7 by correcting the (  value used in the )*
iW W− *

1i− φΔ  calculation.  A 

derivation of the δ ςΔ  correction process is provided in Appendix B.  
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Fig. 7 – Single Crystal Closed-Loop FOG Computation Flow 

 
Additional round-off error can be generated when digitally outputting  due to limited 

word length in the D/D (Digital-to-Digital) conversion function.  This error is eliminated using a 
iθΔ
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D/D Round function in Fig. 7, by generating θΔ  (a rounded version of ), for output at the 
D/D function word length. The 

θΔ
θΔ  output is designed in Fig. 7 to assure that the sum of 

transmitted rounded θΔ
ΔΣ

s equals the sum of the correct s by cyclically controlling their 
summed difference  to remain small.  The result is a bounded error on the sum (integral) of 
the 

θΔ

θΔ s that varies randomly at the magnitude of the lowest bit level in θΔ . 
 
Finally, we address the round-off error generated in Fig. 7 when reading the  and  

measurements through the A/D Converter in Fig. 4.  This error is minimized by setting the 
analog negative bias signal in Fig. 4 to correspond to the expected unity value of the normalized 
photo detector  power measurement under closed-loop control.  The result is an A/D 
converter input signal that is nominally zero, being only offset by the uncertainty in the photo 
detector output, the error in the analog bias, and the small dynamic lag in closed loop control 
operations.  This enables scaling of the A/D converter so that the magnitude of the least 
significant bit (the effective round-off error) becomes negligible in the Fig. 7 calculations. 

*
1iW −

*
iW

iW
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