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ABSTRACT 

 
A question has arisen in some inertial engineering circles as to why optical 

gyros (based on Einstein’s constant-speed-of-light Relativity principle) measure 
the same angular rate as mechanical gyros (based on Newton’s dynamic law of 
mass response to applied force).  This article shows that the answer stems from 
both gyro types being based on the same fundamental Coriolis kinematic rotation 
equation relating vector component measurements in coordinate frames at rotation 
relative to one-another.  The Relativity laws of Einstein and Dynamics laws of 
Newton are valid in inertially non-rotating coordinates, not in coordinates affixed 
to a rotating gyro where the gyro readout mechanism is located.  Using the 
Coriolis rotation equation for gyro implementation (based either on Relativity or 
Newtonian Dynamics) provides the means for translating these laws from non-
rotating inertial space (in which they are valid) into rotating gyro coordinate 
output axes.  Beginning with the fundamental Coriolis kinematic rotation 
equation, this article analytically derives the input/output expressions for optical 
ring laser gyros, optical fiber optic gyros, mechanical MEMS (Micro-machined 
Electro-Mechanical System) gyros, and for mechanical spinning rotor gyros, 
demonstrating that each measures angular rotation relative to non-rotating inertial 
space.     

 
NOTATION 
 
V = Vector without specific coordinate frame designation.  A vector is a parameter that has 

length and direction.  Vectors used in the paper are classified as “free vectors”, hence, have 
no preferred location in coordinate frames in which they are analytically described. 

 
AV  = Column matrix with elements equal to the projection of V on Coordinate Frame A axes.  

The projection of V on each Frame A axis equals the dot product of V with the coordinate 
Frame A axis unit vector. 

 

( )   =  AV × Skew symmetric (or cross-product) form of AV  represented by the square 
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A  in which , ,XA YA ZAV V V  are the components of AV .  The 

matrix product of ( )AV ×  with another A Frame vector equals the cross-product of ( )AV ×  

with the vector in the A Frame, i.e., ( )A A AV W V W× = × A . 
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A
AC  = Direction cosine matrix that transforms a vector from its Coordinate Frame A2 projection 

form to its Coordinate Frame A1 projection form. 
 

1 2A Aω  = Angular rate of Coordinate Frame A2 relative to Coordinate Frame A1.  When A1 is 

non-rotating, 
1 2A Aω is the angular rate that would be measured by angular rate sensors 

mounted on Frame A2. 
 

INTRODUCTION 
 

Both optical and mechanical gyros measure angular rotation relative to non-rotating inertial 
space.  Optical gyros are based on Einstein’s Theory of Relativity while mechanical gyros are 
based on Newton’s laws of dynamics.  Based on such different theories, why do optical and 
mechanical gyros measure the same angular rotation?  The elusive answer is surprising simple: 
Because both gyro types are based on the same kinematic relation (Eq. (A-10) derived in 
Appendix A), relating the differential change in a vector’s components as projected onto non-
rotating and rotating coordinate frames: 
 

d d dψξ ξΞ= + ×  (1) 
 
 
where dψ  is a differential angular rotation of the rotating frame relative to non-rotating inertial 
space, ξ  is an arbitrary vector, dξ  is the differential change in vector ξ  as measured in the non-
rotating frame during the dψ  rotation, and d Ξ  is the equivalent to dξ  that would be measured 

in the rotating frame during the dψ  rotation.  Eq. (1) is the basis for the design of optical ring 
laser gyros (RLGs), optical fiber optic gyros (FOGs), MEMS (Micro-machined Electro-
Mechanical Systems) mechanical gyros, and spinning rotor mechanical gyros.  The equivalency 
of (1) to each gyro type is described next. 
 

For an optical gyro (RLG or FOG), dψ  in (1) represents a differential angular rotation of the 
gyro relative to non-rotating inertial space (and the angular increment being sensed).  Two 
vectors within the gyro are each represented by ξ  in (1), each from a fixed point to a photon 
within a gyro generated mono-chromatic light wave.  The photons travel in opposite directions, 
both within a closed waveguide built into the gyro.  The dξ , d Ξ  parameters in (1) represent 

2 
 



differential changes in ξ  for the counter-travelling photons that would be measured in non-
rotating space ( dξ ) and in the rotating gyro ( d Ξ ).   Angular rotation induces a Doppler-like 
shift in the light beam wavelengths, positive for the beam travelling in the direction of rotation, 
negative for the beam travelling opposite to the opposite.  From Einstein’s law of Special 
Relativity, the velocity of each light wave will be the same (speed of light), thereby transforming 
the wavelength shift into a corresponding frequency shift between the counter-travelling waves.  
Readout detectors built into the gyro sense the frequency difference between the counter-
travelling waves, converting it into the angular rotation that produced it. 

 
For a common MEMS type mechanical gyro, dψ  in (1) represents a differential angular 

rotation of the gyro relative to non-rotating inertial space (and the angular increment being 
sensed); ξ  in (1) represents the distance vector in the gyro between two separate linearly 
vibrating masses micro-machined into the MEMS silicon substrate, and dξ , d Ξ  in (1) 
represent differential changes in ξ  that would be measured in non-rotating space ( dξ ) and in the 

rotating gyro ( d Ξ ) during the dψ rotation.  Angular rotation produces Coriolis accelerations 
(changes within dξ , d Ξ  ) which, through Newton’s laws of dynamic motion, generate reaction 
forces measured by sensors (accelerometers) micro-machined into the vibrating masses.  
Subtracting the accelerometer outputs eliminates their response to linear acceleration, leaving an 
angular rotation induced measurement for output. 

 
For a spinning rotor type mechanical gyro, dψ  in (1) represents an infinitesimally small 

angular rotation relative to non-rotating inertial space of a housing containing the gyro rotor, ξ  
in (1) represents an angular momentum vector generated by the composite motion of all mass 
points within the gyro housing, and dξ , d Ξ  in (1) represent differential changes in the angular 
momentum vector during the dψ  rotation as measured in non-rotating coordinates ( dξ ) and in 
coordinates that rotate with the gyro housing ( d Ξ ). 

 
This article analytically shows how Eq. (1) leads to the input/output relationship for each of 

these gyro types. 
 
OPTICAL GYROS 
 

Optical gyros contain a closed-optical path containing two overlapping beams of 
monochromatic light (a “p” wave and a “q”) traveling in opposite directions [1], [2].  Optical 
gyros implement four versions of (1): two for the p wave and two for the q wave.  For the p 
wave, the two versions of ξ  are denoted as /p ix  and /p ax  where a and i are fixed points within 

the rotating body (point i located within the p beam wave-path), p designates a photon travelling 
with the p beam, /p ix  is the linear distance vector from point i to photon p, and /p ax  is the 

linear distance vector from point a to photon p.  For the change in ξ  relative to non-rotating 
space ( ξΔ ), the analogous inertial frame changes in /p ix , /p ax  are /p ixΔ ,  /p axΔ  . 
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For the change in ξ  relative to rotating space (i.e.,
 
d Ξ ) we define /p iχΔ , /p aχΔ  as the 

corresponding changes in /p ix , /p ix  relative to the rotating body.  For the small angular change 

in rotating space ψΔ  corresponding to the infinitesimal dψ  in (1), we define θΔ  as the small 
incremental angular rotation of the p, q optical paths during the /p ixΔ ,  /p axΔ , /p iχΔ , /p aχΔ  

position change time interval.  
 
Applying (1) to the previous definitions finds 
 

 / / // /p i p i i a i ap i i a /x x x xχ χθΔ = Δ + × Δ = Δ + ×Δ θΔ  (2) 

  
Based on the definition of points a and i being fixed within the rotating body and p 
approximately overlapping i: 

 
 / /0p i i ax χ≈ Δ = 0  (3)  

 
Then (2) simplifies to 
 
 / //p i i a i ap i /x xχ θΔ = Δ Δ = ×Δ x  (4)  

 
We now define /p ax  as the distance vector from point a to photon p such that  

 
 / / / / /p a p i i a p a p i i a/x x x x x x= + Δ = Δ + Δ∴  (5)  

 
Substituting (4) in (5) obtains 
 
 / // /p i p a i ap i p i /x xχ χ θΔ = Δ Δ = Δ + ×Δ x  (6)  

 
Further analysis of (6) shows that 
 

 
( ) ( )/// // / /

2/ // / / /

1 1
...

.
i ai ap a p ip a p a p i

p i p ip i p i p i p i

xxx x x χχ θθ
χ χχ χ χ χ

× ΔΔΔ Δ×Δ Δ Δ
= ≈ + = +

Δ ΔΔ Δ Δ Δ
 (7)  

 
For /p iχΔ  then specialized to represent a wavelength distance  of the p light wave 

measured at point a on the rotating body (i.e., 
/p iλ

/ // p i p ip i uχ λΔ =  where /p iu is a unit vector in 

the direction of the p wave at point a), [2] shows that (7) leads to 
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( ) ( )

( ) ( )

// /0/
/ /2/ ///

/ / / /

/ / / /

1 1

1 1

.
.

. .

p p ii a p ip a
i a p i

p i p ip ip i

i a p i i a p i

p i p i p i p i

x ux
x u

x u x u d
V t V dt

λ θλ θ
λ λλχ

θ θ

⎡ ⎤×Δ Δ Δ⎣ ⎦= = + = + ×
Δ

× ×Δ= + ≈ +
Δ

 (8) 

 
where 0 pλ

/p iV

 is the p light wavelength that would be measured at point a in non-rotating inertial 

space,  is the p wave velocity that would be measured at point a on the rotating body (i.e., 

/ /p iV tΔ //p i p ip iχ λ= Δ = ), and the differential d has been substituted for the small but finite Δ 

change. 
    

Thus far, the derivations leading to (8) have been based on classical Euclidean vector 
geometry.  To continue the analysis for optical gyros, we now incorporate a basic precept of 
Relativity theory: that the speed of light is the same constant when measured at any point in non-
rotating inertial space [3 Part 1 Chapter 11].  Hence, since /p ixd  is the differential distance 

movement of p in non-rotating space at point i, and since /p ixd  occurs over differential time 

interval /p idt , it follows that the speed of p over /p idt will be the speed of light c, i.e., 

// p idt/p i cxd = .  But from (6), / /p i p iχxd d= , and therefore, // / p ip i cd dtχ = .  It follows 

then, that / / / /p ip i cdtχ≡ =p iV d .  Thus, relative to the rotating body, the magnitude of the p 

wave velocity at point i will also be the speed of light c.  This finding is the fundamental basis 
for optical gyros being able to measure angular rotation relative to non-rotating inertial space.  
For /p idt redefined to be a specified differential time increment dt (relative to the rotating body), 

the finding directly links /p id χ  to dt.  Then, with  and , (8) gives the 

important result: 
/p iV c= /p i dtdt =

 

 
( )/ /

/ 0

1 1 1
p

i a p i

p i

x u d
c d

θ
λ λ

⎡ ⎤×
⎢= +
⎢
⎢ ⎥⎣ ⎦

.
t
⎥
⎥  (9) 

 
To distinguish the opposite travel directions of the p and q waves, we designate iu  as a 

general wave path direction unit vector parallel to the p wave travel direction /p iu  at point i (i.e., 

/i pu u≡ i ).  Thus, (9) becomes 
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( )/

/ 0

1 1 1
p

i a i

p i

x u d
c d

θ
λ λ

⎡ ⎤×
⎢= +
⎢
⎢ ⎥⎣ ⎦

.
t
⎥
⎥  (10)   

 
A similar derivation applies for the q wave.  Because the q wave is defined to travel oppositely 
from the p wave along the same wave path, /q j ju = − u , where ju  is the direction of the p wave 

as it passes point j in the wave path.  Then the q wave equivalent to (10) becomes 
 

 
( )/

/ 0

1 1 1
j

j a j

q j

x u d
c d

θ
λ λ

⎡ ⎤×
⎢= −
⎢
⎣ ⎦

.
t
⎥
⎥

λ

 (11) 

 
Finally, because the p and q waves in an optical gyro emanate from the same monochromatic 
light source (the helium-neon plasma in a ring laser gyro or a super luminescent diode in a fiber 
optic gyro – described subsequently), , where  is the characteristic wavelength 

of each monochromatic light beam under zero rotation rate.  Then (10) and (11) become the final 
forms 

00 0p jλ λ= = 0λ

 
( ) ( )/ /

/ 0 / 0

1 1 1 11 . 1i a i j a j

p i q j

x u x ud d
c dt c d

θ θ
λ λ λ λ

⎡ ⎤
.

t

⎡ ⎤× ×
⎢ ⎥ ⎢ ⎥= + = −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (12) 

     
Eqs. (12) show that the wavelength of the p and q beams will differ at points i or j along their 
respective wave paths in proportion to the angular rate of the gyro relative to non-rotating inertial 
space /d dθ t .  The wavelength difference between the counter-rotating beams provides the 
means for measuring angular rate. 
 

Because both light beams in an optical gyro traverse the same wave-path (in opposite 
directions), during each closed circuit (relative to the rotating gyro), the total distance L traveled 
around the circuit will be the same for each beam.  Thus, since the oppositely directed beams 
travel at the same speed of light c through the same distance L,  the transit time T around the 
closed-circuit will be the same: T = L / c.  (Note: The previously stated same distance premise 
may not be obvious to some readers because, as is commonly known by optical gyro designers, 
angular rate will cause the closed circuit distance traveled by the beams to differ, but relative to 
non-rotating inertial space.  However, if one can imagine a measuring tape graduated in both 
directions being attached along the closed wave-path, it should be clear that the distance 
measured along the tape will be the same for either measurement direction because for each, it is 
the same physical tape being used for the measurement.) 

In the absence of rotation, (12) shows that the wavelengths of both beams will be equal, and 
upon completing a closed-circuit (each traveling the closed distance L over time interval T), the 
number of waves filling the wave-path (i.e., the total cumulative phase in wavelengths from 
entry to exit) will be the same. (Note: The total phase angle from peak-to-peak of a light wave 
can be represented as one cycle or as 2 π radians).  Thus, without rotation, the cumulative phase 
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between the beams at exit time T will be the same, and the phase difference will be zero.  Under 
rotation, however, (12) shows that the wavelength of the beam traveling with rotation will 
become longer (and conversely for the beam traveling in the opposite direction), hence, the 
cumulative phase over L will be less for the beam traveling with rotation.  The result is that at T, 
the phase difference between the beams will differ from what it was when the closed-path 
journey began.  The phase difference is proportional to the inertial angular rate around the gyro 
input axis, and is optically measured at T to determine the gyro output.  The means for 
generating the output depends on whether the optical instrument is a fiber optic gyro or a ring 
laser gyro. 

Ring Laser Gyros  

In a ring laser gyro (RLG), the closed wave-path is implemented using reflecting mirrors 
(typically 3 or 4) that reflect monochromatic light around a closed optical cavity path [1], [2].  
The concept is depicted in Fig. 1. 
 

DIELECTRIC 
MIRROR 

SUBSTRATE

CORNER 
PRISM

READOUT 
PHOTODIODES

 
CLOCKWISE AND 

COUNTERCLOCKWISE 
LASER BEAMS

HE  /  NE GAS
DISCHARGE

DIELECTRIC 
MIRROR 

SUBSTRATE

DIELECTRIC 
MIRROR 

SUBSTRATE

MIRROR 
COATINGS

WAVE LENGTH SHIFT 
BETWEEN CLOCKWISE AND 

COUNTERCLOCKWISE LASER 
BEAMS PROPORTIONAL TO 

ANGULAR RATE.  SENSED AS 
MOVING INTERERENCE FRINGES 

ON READOUT PHOTODIODES.

 
Fig. 1 - Ring Laser Gyro Operating Elements 

 
The monochromatic light in the Fig. 1 light beams is generated by the lasing action of a helium-
neon gas laser resident within the closed gyro cavity.  As the beams complete each closed circuit 
between the reflecting mirrors, they collide with the helium-neon lasing plasma, generating new 
photons in phase and at the same wavelength as the returning photons.  The added photons 
replace those lost during the closed-circuit, creating two oppositely directed never-ending re-
circulating beam that begin at gyro turn-on.  Consequently, as time increases, the effective beam 
path length (the total closed-distance traveled by the leading wave since creation at turn-on) 
becomes progressively longer, and a phase comparison between the oppositely directed beams 
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thereby represents the total angular rotation (integrated angular rate) experienced since turn-on.  
Suitable optics built into the RLG combine the counter-rotating beams onto a photo-detector to 
generate a signal representing the sine of the integrated input angular rate.  Each photo-diode 
output wave thereby signifies rotation through a known angular rotation increment, the basic 
form of the RLG output. 

 
Fiber Optic Gyros 

In a fiber optic gyro (FOG), the closed wave-path is implemented using optical fiber of total 
length L wrapped in several concentric coils, with optical splicing technology used to close, 
enter, and leave the fiber coil [2].  The concept is depicted in Fig. 2. 

 
 

LIGHT 
SOURCE

PHOTODETECTOR

FIBER-OPTIC 
COUPLERS

FIBER-OPTIC 
COIL

q BRANCH

pB
RANCH

Fig. 2 - Fiber Optic Gyro (FOG) Concept 
 

Monochromatic light within the FOG is generated external to the coil by a super-luminescent 
diode, and gated through fiber splices into the coil where it splits into the oppositely directed 
beams (the p and q branches).  When the beams complete the closed-circuit around the coil at T, 
they are gated out of the coil through fiber splices and combined on a photo-detector to measure 
the angular rotation rate as represented by the sine of the resulting phase difference between the 
beams.  In common practice, the Fig. 2 configuration is augmented by feedback implemented 
using electro-optic crystals inserted in the fiber circular beam path that change the index of 
refraction of light passing through [2].  By regulating the refraction indices with electronic 
feedback commands, the FOG can be operated near pickoff null, thereby eliminating pickoff 
scale factor errors.  Angular rates are then generated from the feedback control loops.  Ref. [2] 
describes the closed-loop FOG concept in detail.  

 
MECHANICAL GYROS 
 

Mechanical gyros implement Newton’s basic law of dynamic motion: An applied force to a 
mass will accelerate the mass in proportion to the force.  Original angular rotation sensors were 
based on the dynamic properties of mechanical gyroscopic instruments, a spinning mass 
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generating reaction torque to applied inertial rotation.  The term “gyro” (for “gyroscope”) was 
used to describe these instruments, a term that has continued to describe forth-coming angular 
rate sensors based on non-gyroscopic principles.  A class of newer technology mechanical 
angular rate sensors use MEMS (Micro-machined Electro-Mechanical Systems) technology to 
measure mass reaction forces from vibrating masses generated within a single electronic semi-
conductor micro-chip.  Each of these mechanical gyro types is described next, showing how they 
both are based on the same fundamental Eq. (1) kinematic Coriolis principle for sensing angular 
rotation relative to non-rotating inertial space. 

 
MEMS Type Mechanical Gyros 
 

For a common class of MEMS mechanical gyros, rotating coordinates are affixed to the gyro, 
dψ  in (1) represents a differential angular rotation dθ  of the gyro relative to non-rotating 
inertial space (and the angular increment being sensed); ξ  in (1) represents a distance vector 
from linearly vibrating mass q to linearly vibrating mass p within the gyro, both micro-machined 
into the MEMS silicon substrate, and dξ , d Ξ  represent differential changes in ξ that would be 
measured in non-rotating space ( dξ ) and in the rotating gyro ( d Ξ ) during the dψ rotation.  
Angular rotation produces Coriolis acceleration changes within dξ , d Ξ , which, through 
Newton’s law of dynamic motion, generate reaction forces measured by p and q  acceleration 
sensors (accelerometers) micro-machined into the vibrating masses.  Subtracting the p, q 
accelerometer outputs eliminates their response to linear acceleration, providing an isolated 
angular rotation induced measurement for output.  The associated analytics follows. 

 
Based on the previous discussion, the analytical equivalent of (1) for a MEMS gyro is given by 
 

 / /p q p qp q dxd d χ θ= + × /x  (13) 

 
where dθ  is the differential angular rotation of the gyro relative to non-rotating inertial space 
(and the angular increment being sensed), /p qx is distance vector from point q to point p in the 

MEMS substrate, each undergoing MEMS generated linear oscillatory motion, /p qxd  is the 

vibration induced change in /q ax  in non-rotating coordinates during the dθ  rotation, and /p qd χ   

is the equivalent of /p qxd that would be measured in rotating gyro coordinates during the dθ  

rotation.  For more specificity in the following development, (13) is rewritten as in (A-9): 
 
 ( )/ /

BI I
B /

B B
p q Ip q dxd dC χ θ= + ×B p qx  (14) 

 
where the superscript denotes the projection of the associated vector on “inertial” (I) non-rotating 
coordinates or “body” (B) rotating coordinates, B

IBdθ  is the small angular rotation of the B frame 
relative to the non-rotating I frame (IB subscript) as projected on B frame axes (superscript), and 
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I
BC  is the direction cosine matrix that transforms vectors from the B frame to the I frame.  

Dividing (14) by the small time interval dt for the B
IBdθ  rotation finds 

 

 / /
/

BI B
p q p q BIBI

B p q
dxd d

xC
dt dt dt

χ θ⎛ ⎞
⎜= + ×⎜⎜ ⎟
⎝ ⎠

⎟
⎟  (15) 

 
or equivalently, 
 

 (/
/

I
p q B B BI

B )/p q IB p q
xd

VC
dt

ω= + × x  (16) 

  
where /

B
p qV is the linear velocity of points p relative to point q in rotating B frame coordinates, 

and B
IBω  is the angular velocity of the B frame relative to the non-rotating I frame. 

 
Taking the time derivative of (16) using the previous /

B
p qV  definition obtains 

 

 
( )

( )
2d / /

/ / / /2

I B BIp q p qB B B B B BB IBI
Bp q IB p q p q IB p q

dx V ddC V x x VC
dt dt dtdt

ω
ω ω

⎛ ⎞
⎜ ⎟= + × + + × + ×
⎜ ⎟
⎝ ⎠

 (17) 

 

From [4, Eq. (3.3.2-6)], (I
BB I

B IB
dC

C
dt

ω= )× , for which (17) becomes 

 

 
( )

( )
2

/ /
/ / /2 2

I BB
p q p qB B B B B BIBI

B IB IB p q p q IB p q
dx Vd d

x x VC
dt dtdt

ω
ω ω ω
⎡ ⎤
⎢ ⎥= × × + × + × +
⎢ ⎥
⎣ ⎦

 (18) 

 
Ref. [5, Eqs. (15) - (16)] shows that 
 

 
( )

2
/
2 p q

I
p q I II I

pSF SF
xd

g ga a
dt

= − + − q  (19) 

 
where 

p
I
SFa , 

q
I
SFa are the non-gravitational specific force accelerations at points p and q (i.e., the 

accelerations that would be measured by p and q located accelerometers), and I
pg , I

qg  are the 

gravitational accelerations at these points.  Accelerometers implement Newton’s first and second 
laws of motion: 1) Every action is accompanied by an equal and opposite reaction, and 2) Applied 
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force to a mass generates a mass acceleration proportional to the mass.  For masses fixed to points 
p and q, the reaction to the p, q motion on the p, q masses are forces proportional to the masses.  
Accelerometers measure the generated p, q forces, hence, measure 

p
I
SFa , 

q
I
SFa in (19). 

 
Substituting (19) in (18) while assuming that points p and q are sufficiently close that 

I I
qg g≈ p  yields 

( ) /
/ / /2

p q

BB
p qI I B B B B B BIBI

B IB IB p q p q IB p qSF SF

dVd
a a x x VC

dt dt
ω

ω ω ω
⎡ ⎤
⎢ ⎥− = × × + × + × +
⎢ ⎥
⎣ ⎦

 (20) 

 
 
Lastly, multiplying (20) by the I

BC  inverse obtains 
 

 ( ) /
/ / /2

p q

BB
p qB B B B B B B BIB

IB IB p q p q IB p qSF SF

dVd
a a x x V

dt dt
ω

ω ω ω− = × × + × + × +  (21) 

 
Since all vectors in (21) are in B frame coordinates, a simplified form of (9) is 
 

 ( ) /
/ / /2

p q
p q

p q p q p qSF SF

dVd
a a x x V

dt dt
ωω ω ω− = × × + × + × +  (22) 

 
in which all vectors are evaluated in a coordinate frame that rotates with the body and ω  is the 
body angular rate relative to non-rotating inertial space. 
 

Eq. (22) represents a general form applicable to MEMS gyros having points p and q 
separated by distance vector /p qx , each driven into linear oscillation at /p qV relative velocity (p 

relative to q), 
pSFa  and 

qSFa  are specific forces at points p and q measured by MEMS 

accelerometers at these locations, and ω  is the inertial angular rate to be measured.  The MEMS 
p, q accelerometers are configured to have parallel input axes perpendicular to /p qx .   

 
For a typical MEMS gyro configuration, points  p and q (and their associated accelerometers) 

are driven in opposite directions into linear oscillation along the /p qx  line, a line that is fixed 

within the rotating gyro.  We then define a set of mutually orthogonal unit vectors as 
 

 
/ // / / / / /

/

  , i.e., toParallel

 Accelerometers Input Axis Gyro Input Axis
p q p qp q p q p q p q p q p q

aInpt Inpt p q aInpt

u x x u V ux V
u u u uω

≡ = =

≡ ≡ ×

∴
=

 (23) 
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where /p qu  is fixed within the rotating gyro in the direction of /p qx , /p qx  is the magnitude of 

/p qx , /p qV  is parallel to /p qx ,  is the signed magnitude of V , and /p qV /p q Inptuω  is the gyro 

input axis.   With these definitions we now take the dot product of (22) with aInptu  to obtain 

 

 

( ) ( )

( )
( ) ( )
( )

( )( )

/ /

/
/

2
/ // / /

/
/ / /

/ /

.

2

.

2

. .

. .

. .

. .

. .

p qaInpt aInpt p q aInpt p qSF SF

p q
aInpt p q aInpt

p q p qaInpt p q p q p q aInpt

p q
p q p q aInpt aInpt p q

p q aInpt p q I

d
u a a u x u x

dt
dV

u V u
dt

d
u u u u ux x

dt
dV

u u u uV
dt

u ux ω

ωω ω

ω

ωω ω ω

ω

ω ω

⎛ ⎞⎡ ⎤− = × × + ×⎜ ⎟⎣ ⎦ ⎝ ⎠

+ × +

⎡ ⎤= − + ×
⎣ ⎦

+ × +

= + /2. .p qnpt Inpt
d

u uV
dt ω
ω

ω
⎡ ⎤ +⎢ ⎥⎣ ⎦

(24) 

 
where  is the magnitude of ω ω .  If the MEMS generated signed  velocity is a sine function 
of time, the 

/p qV

/p qx  value in (24) will be a small cosine oscillation (i.e., in quadrature with  ) 

plus a constant.  For 

/p qV

(. paInpt SF SFu a a− )q
 sampled with a phase sensitive demodulator 

synchronized with ,  the /p qV ( )( )/. . .
dt
ω⎡ ⎤

⎢ ⎥⎣ ⎦aInpt p q Inpt
d

u u uωω ω +  coefficient in (24) will be 

eliminated and the demodulated output will be 
 

 /2. p qaInpt InptSF SFp q demod
u a a uV ω ω⎡ ⎤⎛ ⎞− =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

.  (25) 

 
where /p qV  is the unsigned magnitude of /p qV .  The resulting MEMS gyro output will then be 

 

 ( /. / 2. p qInpt aInpt SF SFp q demod
u u a a Vω ω ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

)  (26) 

 
Fig. 3 depicts a MEMS gyro designed at the Charles Stark Draper Laboratory to implement 

(26).  A version of the unit is in production at Honeywell Minneapolis.  The Fig. 3 configuration 
is but one of several silicon MEMS devices developed for angular rate sensing.  The same 
fundamental principal of operation for each is represented by (21): Angular rate is sensed 
through kinematic generated Coriolis acceleration producing a reaction force on driven vibrating 
mass.  The configurations differ in their physical structure and mechanism for creating the 
vibration and for sensing the Coriolis reaction force. 
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Fig. 3 – Representative MEMS Gyro Configuration 

The Fig. 3 MEMS gyro configuration consists of a silicon structure mounted to a glass 
substrate with deposited metallization for sensor interfacing.  The silicon structure is micro-
machined to contain two masses suspended by a sequence of beams anchored to the substrate in 
an arrangement characterized as a double ended tuning fork.  By applying oscillatory voltages to 
the outer motor drives, the two masses are electro-statically forced through a comb structure into 
lateral in-plane velocity oscillations V.  The comb structure provides added surface area to 
magnify the electrostatic driving force. 

Each motor drive control loop is a self-drive oscillator using proof mass position feedback to 
sustain constant proof mass motion amplitude.  The linear proof mass motion creates oscillating 
in-plane linear momentum that rotates under applied input axis angular rate Ω.  Rotation of the 
oscillating linear momentum vectors generates oscillating reaction forces (F1 and F2) through the 
Coriolis effect (i.e., rotating a linear momentum vector requires applied force perpendicular to 
the momentum and rotation rate vectors).  The oscillating Coriolis reaction forces are equal but 
opposite for each mass (because the linear momentum of each is opposite the other) which 
produces out of plane differential oscillations of the masses with amplitude directly proportional 
to applied angular rate and inversely proportional to the silicon suspension stiffness. 

The out-of-plane oscillation is measured by capacitor plate pickoffs under each of the two 
masses, generating an oscillatory electrical signal proportional to applied angular rate.  The 
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oscillatory angular rate signal is then demodulated for output using a reference voltage generated 
in the motor drive control loop.  For improved accuracy, electrostatic oscillatory closed-loop 
control can be employed to maintain the masses at null, thereby reducing the effect of pickoff 
scale factor and silicon structure stiffness uncertainty as error sources.  The closed-loop control 
voltage amplitude would then be used as the measured angular rate signal. 
 
Momentum Wheel Type Mechanical Gyros 
 

A classical momentum wheel gyro consists of a spinning rotor "wheel" contained within a 
closed housing [1].  The housing is mounted within the gyro case using a suspension mechanism 
that allows only known torques (differential equal magnitude forces operating at opposite ends of 
a lever arm) to be applied to the housing, perpendicular to axes for which case angular rate is to 
be measured.  The governing equation for the gyro is (1) for which dψ  represents an 
infinitesimally small angular change in the housing angular orientation relative to non-rotating 
inertial space, ξ  represents the angular momentum of the housing including that of the enclosed 
spinning rotor, dξ represents, the change in angular momentum components during the dψ  
rotation that would be measured in non-rotating inertial space, and d Ξ  represents the change in 
angular momentum components during the dψ  rotation that would be measured in a coordinate 
frame rotating with the rotor housing.  For more specificity, the momentum wheel gyro 
equivalent to (1) can be rewritten as in (A-9) of Appendix A: 

 
 ( )//

BB BI
hsng rtr a hsng rtr aBhsng rtr a IBd d dh H HC θ++ = + ×Ι

/+  (27) 

 
where the superscripts represent the coordinate frame in which the vector components are being 
measured,  I for the inertially non-rotating frame, B for the frame that rotates with the gyro rotor 
housing, the IB subscript denotes rotation of the B frame relative to the I frame, I

BC is the 
direction cosine matrix that transforms vector projections from the B frame to the I frame, and 
subscript denotes the angular momentum of the gyro rotor housing (including the 

rotor) around its center of mass point a.  Dividing (27) by the time interval dt for the 

/hsng rtr a+
B
IBdθ  

rotation obtains the differential equation 
 

 / /
/

B
hsng rtr a hsng rtr a B BI

hsng rtr aB IB
d dh H

HC
dt dt

ω+ +
+

⎛ ⎞
⎜ ⎟= + ×
⎜ ⎟
⎝ ⎠

Ι

 (28) 

where B
IBω  is the angular rate of the rotor housing relative to non-rotating inertial space, i.e.,

/B
IBω B

IB dtdθ≡ . 

Eq. (B-10) in Appendix B shows that /hsng rtr ad h

dt
+

Ι

 in (28) equals the composite of k 

external torques I
kΤ  applied to the rotor housing: 
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 hsng rtr I
k

k

d h

dt
Τ+ = ∑

Ι

 (29) 

 
Appendix B, Eq. (B-2) shows that the rotor housing plus rotor angular momentum around its 
center of mass (point a) is defined in I frame coordinates as 
 

 /
//

I
I i a

ii ahsng rtr a
d r

dvh ri dt
ρ+

⎛ ⎞
⎜ ⎟= ×
⎜ ⎟
⎝ ⎠

∫Ι  (30) 

 
where /

I
i ar is the distance from the housing+rotor center of mass point a to point i in the 

housing+rotor, iρ is the mass density at point i, and dv is a differential volume at point i.  The 

angular momentum vector in B frame coordinates /
B
hsng rtr aH +  equals /hsng rtr ah +

Ι  in (30) 

transformed to the B frame: 
 

 

( )

/
/ //

/ /
/ /

I
B I i aB B

ihsng rtr a i aI Ihsng rtr a

I I
I Bi a i aB I B B

i ii a i aI B I I

d r
dvhH rC C i dt

d dr r
dv dvr rC C C Ci idt dt

ρ

ρ ρ

+ +
⎛ ⎞
⎜ ⎟= = ×
⎜ ⎟
⎝ ⎠

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟= = ×

⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

∫

∫ ∫

Ι

⎤
⎥
⎥⎦

 (31) 

 

Ref. [4, Eq. (3.4-6)] transformed to the B frame finds for the /
I
i aB

I
d r

C
dt

⎛ ⎞
⎜
⎜
⎝ ⎠

⎟
⎟

 term in (31): 

 / /
/

I B
B Bi a i aB

i aI IB
d dr r

rC
dt dt

ω
⎛ ⎞
⎜ ⎟ = + ×
⎜ ⎟
⎝ ⎠

 (32) 

 
Substituting (32) in (31) obtains 
 

 

( )

( ) ( )

( ) ( ){ } ( )

/
/ / /

/
/ / /

/
/ / /

B
BB B Bi a

ihsng rtr a i a i aIB

B
BB B B i a

i ii a i a i aIB

B
BB B B i a

i ii a i a i aIB

dr
dvH r ri dt

d r
dv dvr r ri i dt

d r
dv dvr r ri i dt

ω ρ

ω ρ ρ

ωρ ρ

+

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= × + ×

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤

⎡ ⎤= × × + ⎢ × ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤

⎡ ⎤= − × × + ⎢ × ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

∫

∫ ∫

∫ ∫

 (33) 
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For the i points located in the rigid housing (i.e., not in the rotor), /
B
i ar  is constant, hence, the 

second integral in (33) for these points is zero.  For the remaining i points (i.e., those in the 
rotor), identify them as j points so that (33) becomes 
 

 
( ) ( ){ } ( ) /

/ / / /

B
j aBB B B B

i jhsng rtr a i a i a j aIB j

d r
dv dvH r r ri dt

ωρ ρ+

⎡ ⎤
⎡ ⎤ ⎢ ⎥= − × × + ×⎢ ⎥⎣ ⎦ ⎢ ⎥

⎣ ⎦
∫ ∫  (34) 

Define 
 
 / /

B B B
j a b a j br r r= + /  (35) 

 
where /

B
b ar  is the distance vector from point a (the housing+rotor center of mass) to the rotor 

center of mass at point b, and /
B
j br  is the distance vector from point b to point j in the rotor.  For 

a symmetrical rotor, the rotor center of mass location b will be fixed in the housing.  Then /
B
b ar  

will be constant so that the integrand in the second (34) integral becomes 
 

 ( ) ( )/ / /
/ / / / /

B B B
/

B
j a j b j bB B B B B

j a b a j b b a j b
d d dr r r

r r r r r
dt dt dt dt

⎡ ⎤× = + × = × + ×⎢ ⎥⎣ ⎦
j bd r

 (36) 

 
Now identify another coordinate frame R that rotates with the spinning rotor.  Recognizing 

that /
R
j br  is constant in the R frame, the general Coriolis relationship [4, Eq. (3.4-6)] shows that 

 

 / /
/

B R
j b j b B BBB

/
B

j bR BR BR
d dr r

rC
dt dt

ω ω= + × = × j br  (37) 

 
where B

BRω  is the angular rate of the rotor fixed R frame relative to the rotating B frame.  
Substituting (37) in (36) obtains 
   

 ( ) ( ) ( )
( )( ) ( )( )

/
/ / / /

/ / / /

B
j a B BB B B B

j a b a j b j b j bBR BR

B BB B B B
b a j b j b j bBR BR

dr
r r r r

dt

r r r r

ω ω

ω ω

× = × × + × ×

= × × − × ×

/
Br

 (38) 

 
With (38), the second integral term in (34) becomes 
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( )
( )( ) ( )( )

( )( ) ( )( )

/
/

/ / / /

/ / / /

B
j aB

jj aj

B BB B B B
j jb a j b j b j bBR BRj j

B BB B B B
j jb a j b j b j bBR BRj j

d r
dvr

dt

dv dvr r r r

dv dvr r r r

ρ

ω ωρ ρ

ω ωρ ρ

⎡ ⎤
⎢ ⎥×
⎢ ⎥
⎣ ⎦

= × × − × ×

⎡ ⎤= × × − × ×⎢ ⎥⎣ ⎦

∫

∫ ∫

∫ ∫

 (39) 

 
Since point b was defined as the rotor center of mass, / 0B

jj bj dvr ρ =∫ , and (39) simplifies to 

 ( ) ( )( )/
/ / /

B
j a BB B B

j jj a j b j b BRj j

d r
dv dvr r r

dt
ωρ

⎡ ⎤
⎡ ⎤⎢ ⎥× = − × ×⎢ ⎥⎣ ⎦⎢ ⎥

⎣ ⎦
∫ ∫ ρ  (40) 

 
Then with (40), (34) becomes 
 

 
( ) ( ) ( )( )/ / / / /

B BB B B B B
i jhsng rtr a i a i a j b j bIB Bjdv dvH r r r ri ω ωρ ρ+

⎡ ⎤⎡ ⎤= − × × − × ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ R  (41) 

 
Define  
 
 ( ) ( ) ( )( )/ / / // /

B B B BB B
i ji a i a j b j bhsng rtr a rtr b jdv dvr r r rJ Ji ρ ρ+ ≡ − × × ≡ − × ×∫ ∫  (42) 

 
where  is the moment of inertia tensor of the housing+rotor assembly about its 

center-of-mass point a as measured in B frame coordinates, and  is the B frame measured 
moment of inertia tensor of the rotor about its center-of-mass point b.  With the (42) definitions, 
(41) assumes the simpler form 

/
B
hsng rtr aJ +

/
B
rtr bJ

 
 / / /

BB B B
hsng rtr a

B
IBhsng rtr a rtr bH J Jω+ += + BRω  (43) 

 
For the derivative of (43) in (28), assume that the rotor speed B

BRω  is maintained constant by 

the synchronous hysteresis spin-motor drive so that 0
B
BRd

dt
ω

= .  Additionally, assuming a 

symmetrical rotor,  and  will be constant, hence  /
B
hsng rtr aJ + /

B
rtr bJ

 

 /
/

B B
hsng rtr a IBB

hsng rtr a
d H d

J
dt dt

ω+
+=  (44) 

 
Lastly, substitute (43), (44), and (29) in (28), and transform to the B frame for the final result: 
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 ( ) ( )/ /

B
B B BB IBB B B

k /
B

IB BR IBrtr b hsng rtr a hsng rtr a
k

d
J J J

dt
ω

ω ω ωΤ + += × + + ×∑ IBω  (45) 

 
Eq. (45) is a general result applicable to several momentum wheel gyro configurations.  As a 

particular example of (45), the remainder of this section will describe the single-degree-of-
freedom (SDOF) floated rate-integrating gyro as described pictorially in Fig. 4. 
 

 
 

TORQUE 
GENERATOR

ROTOR (SPIN-MOTOR)

SPIN AXIS
SPIN REFERENCE AXIS 

(CASE FIXED)

OUTPUT 
AXIS

PIVOT FOR JEWEL-RING 
OR MAGNETIC CENTERING 

OF ROTOR ASSEMBLY 

VISCOUS FLUID FULLY SUPPORTS 
CILINDRICAL ROTOR ASSEMBLY AT 

NEUTRAL BUOYANCY AND PROVIDES 
DAMPING ABOUT OUTPUT AXIS

HERMETICALLY SEALED 
CYLINDRICAL ROTOR 

ASSEMBLY (OR FLOAT)

INPUT AXIS 
(CASE FIXED)

PICKOFF ANGLE 
PROPORTIONAL TO  INTEGRAL  

OF  INPUT AXIS RATE MINUS 
TORQUER BIAS RATE

Fig. 4 – Single Degree of Freedom Inertial Rate Integrating Gyro 
 
The SDOF gyro configuration depicted in Fig. 4 consists of a cylindrical hermetically sealed 
momentum-wheel/spin-motor assembly (float) contained in a cylindrical hermetically sealed 
case.  The float is interfaced to the case by a precision suspension assembly that is laterally rigid 
(normal to the cylinder case) but allows "frictionless" angular movement of the float relative to 
the case about the cylinder axis.  The cavity between the case and float is filled with a fluid that 
serves the dual purpose of suspending the float at neutral buoyancy, and providing viscous 
damping to resist relative float-case angular motion about the suspension axis (output axis). 

  
A ball-bearing or gas-bearing synchronous-hysteresis spin-motor is utilized in the float to 

maintain constant rotor spin-speed, hence constant float angular momentum.  An electrical 
pickoff assembly provides an electrical output signal from the gyro proportional to the angular 
displacement of the float relative to the case.  An electrical torque generator (typically a torquer 
coil on the float and a permanent magnet on the case) provides the capability for applying known 
torques to the float about the suspension axis proportional to an applied electrical input current.  
Delicate flex leads are used to transmit electrical signals and power between the case and float.  

Under applied angular rates about the input axis, the gyro float develops a precessional rate 
about the output axis (rotation rate of the angle sensed by the pick-off).  The pick-off angle rate 
generates viscous torque on the float about the output axis (due to the damping fluid) which sums 
with the electrically applied torque-generator torque to precess the float about the input axis at 
the gyro input rate.  The pick-off angle rate thereby becomes proportional to the difference 
between the input rate and the torque generator precessional rate; hence, the pickoff angle 
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becomes proportional to the integral of the difference between the input and torque-generator 
rates (thus, the name rate-integrating gyro).  

To operate the gyro in a gimbaled application, three gyros are mounted (with input axes 
orthogonal to one-another) on a “platform” that is physically supported by gimbals which are 
electro-mechanically controlled by “gimbal torque motors” positioned around the gimbal axes. 
The drive signals to the gimbal torquers are designed to maintain the gyro pickoff angles at null.  
Desired rotation rates of the platform (as specified by the inertial system computer) are used as 
“gyro torque generator” inputs.  By maintaining the gyro outputs at null (i.e., the integrated 
difference between the computer command rates and actual platform rotation rates), the platform 
rate is forced to balance the computer command rate (in the integral sense).  

To operate the gyro in a strapdown mode, the pickoff angle is electrically servoed to null by 
the gyro torque generator which is driven by the pickoff output signal.  The time integral of the 
difference between the input inertial angular rate and torque-generator rate is thereby maintained 
at zero, and the integral of the torque-generator electrical current measures the integral of the 
gyro input rate for the strapdown inertial system computer.  

 
To analytically describe the SDOF floated rate integrating gyro, we apply (45) to Fig. 4, 

identifying x as the “Input Axis”, y as the “Output Axis”, and z as the “Spin Reference Axis”.  
Assuming no cross-products of inertia for the float assembly and rotor, these definitions find 

 

/ /

0 0 0 0

0 0 0

0 00 0

0
0

Float Rtr

RtrFloat

Float

0

Rtr

Input

Output

SpnSpn

x Crs
B B

y Crshsng rtr a rtr b

Spnz

IB
B B
IB BRIB

BRIB

J J

J J J J

JJ

ω

ω ωω
ωω

+

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥≡ ≡
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥≡ ≡ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (46) 

 
where RtrCrsJ  is the rotor moment of inertia around any axis perpendicular to the spin axis, 

RtrSpnJ is the rotor moment of inertia around the spin axis, and  is the rotor spin rate 

relative to the float assembly.  Substituting (46) into (45) obtains for the components along the 
output (y) axis: 

SpnBRω

 

 
( )

Spn InputRtr

Output
Float Input SpnFloatFloat

Net Spin BR IB

IB
y x z IB IB

JT

d
J J J

dt

ω ω

ω
ω ω

= −

+ + −
 (47) 
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where  is the net torque NetT B
k

k
Τ∑  component in (45) around the Fig. 4 gyro output axis. The 

net torque is composed of three terms, viscous floatation fluid torque proportional to the rate of 
change of the angle φ  between the float and case, specified command torque  electrically 
input through the gyro torque generator, and extraneous error torques : 

CmdT
ErrT

 

 Net Cmd Err
dcT T
dt

T
φ= − − −  (48) 

 
Substituting (48) in (47) yields after rearrangement 
 

 

( )
Spn InputRtr

Output
Float Input SpnFloatFloat

Cmd ErrSpin BR IB

IB
y x z IB IB

dc J T T
dt

d
J J J

dt

φ
ω ω

ω
ω ω

= −

− − −

−

ω

 (49) 

 
Further clarifying, define 
 

 
 (50) Rtr Rtr RtrSpnRtr Cmd ErrCmd ErrSpn BR BR BRBRJ H T H T Hω ω= = =

 
with which the integral of (49) becomes for the gyro pickoff angle output: 
 

( )
Input

Rtr
Output FloatFloatFloat

Input Spn
Rtr Rtr

CmdIB
BR

y IB x z
Err IB IB

BR BR

H
dtd J JJc

dtH H

ω ω

φ ω
ω ω

−⎡ ⎤
⎢ ⎥
⎢ ⎥= −
⎢ ⎥− − −
⎢ ⎥⎣ ⎦

∫
ω

 (51) 

 
Due to the large value of RtrBRH

ω
(from the high gyro rotor spin rate) and the relative 

smallness of (compared with ), the  term dominates the bracketed 

terms in (51).  Thus, for a gimbaled system, maintaining the gyro readout angle 
Errω InputIB Input CmdIBω ω−

φ  near zero (by 
mechanical gimbal torque command feedback), the platform integrated inertial angular rate 

 will equal the integrated gyro torque generator command rate .  For a strapdown 

system, maintaining the gyro readout angle 
InputIBω Cmdω

φ  near zero (by electrical feedback from the gyro 
pickoff through the gyro torque generator), the integrated  torque generator input will 
equal the true angular rate input to the gyro, hence, serve as the gyro output measure of 

measure inertial angular rate. 

Cmdω

InIBω put

 
CONCLUSIONS 

Both optical and mechanical angular rate sensors are based on the same kinematic principle: 
The components of a vector measured in an inertially non-rotating coordinate frame equal its 
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component measurements in a rotating frame plus a Coriolis correction proportional to the 
angular rate relative to non-rotating inertial space.  Optical and mechanical gyros are based on 
different fundamental laws of physics, each law being valid in inertially non-rotating 
coordinates; optical gyros are based on the Einstein’s constant-speed-of-light Relativity 
principle; mechanical gyros are based on the Newtonian dynamic mass response to applied force 
principle.  Having these fundamental laws valid in non-rotating coordinates provides the means 
for translating their effect into rotating coordinates through the same common Coriolis kinematic 
equation.  The result is that both optical and mechanical gyros measure the same angular rate 
relative to inertially non-rotating coordinates.    

 

APPENDIX A 

FUNDAMENTAL INERTIAL ANGULAR MEASUREMENT EQUATION 
 

Consider an inertially non-rotating coordinate reference frame I.  Further, consider two other 
inertially non-rotating coordinate frames B1 and B2 defined as parallel to the instantaneous 
orientation of rotating coordinate frame B at successive time instants t1 and t2.  Because B1 and 
B2 are non-rotating relative to a common non-rotating space, the angular orientation of B2 

relative to B1, and B1 relative to I will be constant.  Now, define an arbitrary vectorξ , and 1
Iξ , 

2
Iξ , 1

1
Bξ , 1

2
Bξ , 2

1
Bξ , 2

2
Bξ , the projections of ξ  on the I,  B1, and B2 coordinate axes 

(superscripts) at time instants t1 and t2 (subscripts 1 and 2).  Considering as a direction 

cosine matrix transforms vectors from frame B2 to B1, and 

1
2

B
BC

1
I
BC as a direction cosine matrix that 

transforms vectors from frame B1 to I, we can write 
 

 1 1
1 121 1

I IB BI I
B BC C C 2

2 2
B

Bξ ξ ξ ξ= =  (A-1) 

 
Also define the difference between the ξ  values at t1 and t2 as 
 

 21
2 1

I I I BB 1
2 1

Bξ ξ ξ ξ ξΞΔ ≡ − Δ ≡ −  (A-2) 
 

where IξΔ is the change in ξ  that would be measured in non-rotating frame I and 1BΞΔ  is the 

change in ξ  that would be measured in the rotating B frame over time instants t1 and t2.  Then, 
based on (A-1) and (A-2): 
 

( ) ( )
2 11

1 2 1

2 2 1 21 1 1
1 2 1 1 1 1 2

2 1 2 1

2 2 1 2

I I I B BBI I
B B B

B B B BB BI I I I I B
B B B B B B B

C C C

IC C C C C C C

ξ ξ ξ ξ ξ

ξ ξ ξ ξ Ξ

Δ = − = −

⎡ ⎤= − + − = − + Δ⎢ ⎥⎣ ⎦

 (A-3) 
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For  representing a small angular rotation 1
2

B
BC

B
IBψΔ  over time interval t1 to t2, [4, Eqs. (3.5.2-10  

& (3.5.2-17)] shows that 
 

 ( )1
2

BB
B IBIC ψ− ≈ Δ ×  (A-4) 

 
where the IB subscript indicates the angular rotation of frame B from its orientation parallel to 
non-rotating inertial frame B1 to its orientation parallel to non-rotating inertial frame B2.  
Substituting (A-4) in (A-3) obtains 
 

  ( ) ( )2 21 1
1 12 2

I B B BI IB B
B BIB IBC Cξ ψ ξ ψΞ Ξ⎡ ⎤Δ = Δ + Δ × = Δ + Δ ×⎢ ⎥⎣ ⎦

B ξ  (A-5) 

 
We then let the Δ  changes become very small so that during the  to time interval, Eq. 

(A-5) vector projections on the 
1t 2t

1B  and 2B  frames can be approximated by their projections on 

the B frame in general, and 2
2
Bξ  can be approximated by its value in general: 2

2
BBξ ξ→ , 

1 BBξ ξΔ → Δ , 1B BΞ ΞΔ IΔ → , .  Thus, (A-5) becomes 
1

IC C→ BB
 
 ( )I B BBI

B IBCξ ψ ξΞΔ = Δ + Δ ×  (A-6) 

 
Multiplying by B

IC  (the direction cosine matrix that transforms vectors from the I to the B 
frame) transforms (A-6) to the B frame: 
 
 I B BBB

I IBC
Bξ ξ ψ ξΞΔ = Δ = Δ + Δ ×  (A-7) 

 
Finally, since all vectors in (A-7) are now defined in B frame coordinates, we can dispense with 
the superscript notation to obtain the simplified form 
 
 ξ Ξ ψ ξΔ = Δ + Δ ×  (A-8) 
 
where ψΔ  is the angular rotation of the body relative to non-rotating coordinates, and during the 

ψΔ  rotation, ΞΔ is the change in ξ  observed in rotating coordinates, and ξΔ is the change in 
ξ  observed in a non-rotating coordinate frame that is instantaneously aligned with the rotating 
frame. 
 

For infinitesimally small  increments (d), finite rotation Eq. (A-6) reduces to the 
differential form 

Δ
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 ( )I B BBI
B IBd d dCξ ψ ξΞ= + ×  (A-9) 

 
Similarly, for infinitesimally small  increments, (A-8) reduces to its simplified differential 
equivalent: 

Δ

 
 dd dξ Ξ ξψ= + ×  (A-10) 

 
where it is understood that all vectors in (A-10) are projections on the B (or another common) 
coordinate frame: 

 
APPENDIX B 

ROTATIONAL DYNAMICS OF MASS GROUPS 
 

The angular momentum /
I
i 0h  of a mass  at point i relative to an arbitrary point 0 is 

traditionally defined in non-rotating inertial I frame coordinates [6, pp. 132] as 
im

 

 /
//

I
I I i 0

i i 0i 0
d r

h rm
dt

×≡  (B-1) 

 
where /

I
i 0r  is the distance vector from point 0 to point i in I frame coordinates (superscript), and 

/
I
i 0d r  is the infinitesimal change in /

I
i 0r  during the infinitesimal time interval dt.  The 

summation of (B-1) over a group of mass points yields the I frame angular momentum 0hΙ  of the 
group relative to point 0: 
 

 // /

II I i 00 i 0 i i 0i i

d rh h rm
dt

⎛ ⎞
= =∑ ∑⎜ ×

⎝ ⎠
Ι

⎟  (B-2) 

 
The rate of change of 0hΙ  is the derivative with time of (B-2): 

 

 
22 // / / //

II I I I0 iIi 0 i 0 i 0i i i 0i 0i i

h rd ddr r rd d rm mrdt dtdt dt dt

⎡ ⎤
= =∑ ∑⎢ × + × ⎥

⎣ ⎦

Ι
0×  (B-3) 

 
 Ref. [5, Eqs. (3) & (6)] shows that 
 

 
2

/
i 0

I
I II Ii 0
iSF SF

rd g ga a
dt

= − + − 0  (B-4) 
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where 
i

I
SFa , 

0
I
SFa  are the specific force accelerations at points 0 and i, and I

ig , I
0g  are the 

gravitational accelerations at these points.  Because points i and 0 are sufficiently close, I I
i 0g g≈ .   

Then with (B-4), (B-3) becomes 
 

 ( )/ i
I II0

i i 0 SF SFi

hd
a arm

dt
−= ×∑

Ι

0
 (B-5) 

 
Applying Newton’s second law of motion to (B-5) equates 

i
I

i SFam to the force iF  at point i that 

produced it, hence: 
 

 / / 0
II I I0

ii 0 i i 0 SFi i

hd
ar F rm

dt
⎛ ⎞

= × − ×∑ ∑⎜ ⎟
⎝ ⎠

Ι
 (B-6) 

 
The center of mass cm of the mass group is analytically defined to be at distance vector I

cm/0r

from point 0 such that it’s product with the total group mass M equals /
I

i i 0
i

rm∑ : 

 /
I I

i icm/ 0 i 0
i i

M M rm m≡ =∑ ∑ r  (B-7) 

 
ith (B-7), (B-6) becomes W

 

  / 0
II I I0

i 0 i cm/ 0 SFi

hd
M ar F r

t
= × − ×∑

Ι
 (B-8) 

d
    
By selecting arbitrary point 0 as the center-of-mass (point cm) for the group, I

cm/0r is zero, and 
-8) reduces to (B

 

 /
I Icm
i cm i

i

hd
r

dt
= ×∑

Ι
F  (B-9) 

 
where cmh  is the angular momentum of the mass group around the group center of mass.  By 
Newton's third law, the interactive forces between adjacent mass points at any point i are equal 
and opposite. Hence, the internal/interactive moment/force terms cancel at each i point and (B-9) 
urther simplifies to the more familiar form [6, pp. 132]: 

Ι

f
 

 / /i
I Icm
i cm i cmExternali i

hd
r F

dt
Τ= × =∑

Ι
I∑  (B-10) 

24 
 



where 
i

I
ExternalF  is the external force applied to the group at point i, and /

I
i cmΤ  is the associated 

torque around the center of mass, i.e., / / i
I I I
i cm i cm Externalr FΤ ≡ × . 
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