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ABSTRACT

A question has arisen in some inertial engineering circles as to why optical
gyros (based on Einstein’s constant-speed-of-light Relativity principle) measure
the same angular rate as mechanical gyros (based on Newton’s dynamic law of
mass response to applied force). This article shows that the answer stems from
both gyro types being based on the same fundamental Coriolis kinematic rotation
equation relating vector component measurements in coordinate frames at rotation
relative to one-another. The Relativity laws of Einstein and Dynamics laws of
Newton are valid in inertially non-rotating coordinates, not in coordinates affixed
to a rotating gyro where the gyro readout mechanism is located. Using the
Coriolis rotation equation for gyro implementation (based either on Relativity or
Newtonian Dynamics) provides the means for translating these laws from non-
rotating inertial space (in which they are valid) into rotating gyro coordinate
output axes. Beginning with the fundamental Coriolis kinematic rotation
equation, this article analytically derives the input/output expressions for optical
ring laser gyros, optical fiber optic gyros, mechanical MEMS (Micro-machined
Electro-Mechanical System) gyros, and for mechanical spinning rotor gyros,
demonstrating that each measures angular rotation relative to non-rotating inertial
space.

NOTATION

V = Vector without specific coordinate frame designation. A vector is a parameter that has
length and direction. Vectors used in the paper are classified as “free vectors”, hence, have
no preferred location in coordinate frames in which they are analytically described.

\lA = Column matrix with elements equal to the projection of V on Coordinate Frame A axes.

The projection of V on each Frame A axis equals the dot product of V with the coordinate
Frame A axis unit vector.

(\le) = Skew symmetric (or cross-product) form of \_/A represented by the square
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matrix | Vza 0  —Vxa| in which V xa,Vya, V za are the components of V. A The
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matrix product of (\iAX) with another A Frame vector equals the cross-product of (\_/Ax)

with the vector in the A Frame, i.e., (\le) V_VA:\leV_VA.

Cﬁf = Direction cosine matrix that transforms a vector from its Coordinate Frame Ap projection

form to its Coordinate Frame Az projection form.

Dppy = Angular rate of Coordinate Frame A relative to Coordinate Frame A;. When Aj is

non-rotating, is the angular rate that would be measured by angular rate sensors

@ AlA
mounted on Frame Ap.

INTRODUCTION

Both optical and mechanical gyros measure angular rotation relative to non-rotating inertial
space. Optical gyros are based on Einstein’s Theory of Relativity while mechanical gyros are
based on Newton’s laws of dynamics. Based on such different theories, why do optical and
mechanical gyros measure the same angular rotation? The elusive answer is surprising simple:
Because both gyro types are based on the same kinematic relation (Eq. (A-10) derived in
Appendix A), relating the differential change in a vector’s components as projected onto non-
rotating and rotating coordinate frames:

dé=dZ+dyxé (1)

where d¥ is a differential angular rotation of the rotating frame relative to non-rotating inertial
space, & is an arbitrary vector, d¢ is the differential change in vector £ as measured in the non-

rotating frame during the d¥/ rotation, and d = is the equivalent to d& that would be measured

in the rotating frame during the d ¥ rotation. Eq. (1) is the basis for the design of optical ring

laser gyros (RLGs), optical fiber optic gyros (FOGs), MEMS (Micro-machined Electro-
Mechanical Systems) mechanical gyros, and spinning rotor mechanical gyros. The equivalency
of (1) to each gyro type is described next.

For an optical gyro (RLG or FOG), d¥ in (1) represents a differential angular rotation of the

gyro relative to non-rotating inertial space (and the angular increment being sensed). Two
vectors within the gyro are each represented by & in (1), each from a fixed point to a photon

within a gyro generated mono-chromatic light wave. The photons travel in opposite directions,
both within a closed waveguide built into the gyro. The d&, d.Z parameters in (1) represent



differential changes in § for the counter-travelling photons that would be measured in non-
rotating space (dg) and in the rotating gyro (d.Z'). Angular rotation induces a Doppler-like
shift in the light beam wavelengths, positive for the beam travelling in the direction of rotation,
negative for the beam travelling opposite to the opposite. From Einstein’s law of Special
Relativity, the velocity of each light wave will be the same (speed of light), thereby transforming
the wavelength shift into a corresponding frequency shift between the counter-travelling waves.

Readout detectors built into the gyro sense the frequency difference between the counter-
travelling waves, converting it into the angular rotation that produced it.

For a common MEMS type mechanical gyro, d¥ in (1) represents a differential angular
rotation of the gyro relative to non-rotating inertial s_pace (and the angular increment being
sensed); é‘ in (1) represents the distance vector in the gyro between two separate linearly
vibrating masses micro-machined into the MEMS silicon substrate, and d é, dZ in(1)
represent differential changes in é that would be measured in non-rotating space (dé) and in the

rotating gyro (d £ ) during the d ¥/ rotation. Angular rotation produces Coriolis accelerations
(changes within d¢, d. £ ) which, through Newton’s laws of dynamic motion, generate reaction

forces measured by sensors (accelerometers) micro-machined into the vibrating masses.
Subtracting the accelerometer outputs eliminates their response to linear acceleration, leaving an
angular rotation induced measurement for output.

For a spinning rotor type mechanical gyro, d¥ in (1) represents an infinitesimally small

angular rotation relative to non-rotating inertial space of a housing containing the gyro rotor, &

in (1) represents an angular momentum vector generated by the composite motion of all mass
points within the gyro housing, and d&, d.£ in (1) represent differential changes in the angular

momentum vector during the d/ rotation as measured in non-rotating coordinates (d¢ ) and in

coordinates that rotate with the gyro housing (d Z).

This article analytically shows how Eq. (1) leads to the input/output relationship for each of
these gyro types.

OPTICAL GYROS

Optical gyros contain a closed-optical path containing two overlapping beams of
monochromatic light (a “p” wave and a “q”) traveling in opposite directions [1], [2]. Optical
gyros implement four versions of (1): two for the p wave and two for the q wave. For the p

wave, the two versions of & are denoted as Xpji and Xp/a where a and i are fixed points within

the rotating body (point i located within the p beam wave-path), p designates a photon travelling
with the p beam, Xp/i is the linear distance vector from point i to photon p, and Xp/a is the

linear distance vector from point a to photon p. For the change in & relative to non-rotating

are AX

space (Aé" ), the analogous inertial frame changes in Xpji» Xp/a Xpji s

A)_(p/a .



For the change in f relative to rotating space (i.c., d Z') we define Ay Z i Ax X pja 8 the

corresponding changes in x relative to the rotating body. For the small angular change

Zpli p/ i
in rotating space Ay corresponding to the infinitesimal dy in (1), we define Ag as the small

incremental angular rotation of the p, g optical paths during the Axp Ji s Axp jar AX Z i AxY o/a

position change time interval.

Applying (1) to the previous definitions finds

A)_(p/i :Alp/i"'AQXl(p/i AXija=AX;/at AOX X5 ()

Based on the definition of points a and i being fixed within the rotating body and p
approximately overlapping i:

Xpi=0  AZja=0 3)
Then (2) simplifies to

AXpyi :Alp/i AXija=A0% Xj/a (4)

We now define X, as the distance vector from point a to photon p such that

p/a

Xpra=Xpjit Xija "+ AXpa=AXpi + A% 4 (5)

Substituting (4) in (5) obtains

AX i =BXpi AXpa=AZ i+ AOX X/a (6)
Further analysis of (6) shows that

AXpra A;(p/l (Agxl(i /a) 1 (l(i/a>< Alp/l) A9

AZpA Aan ‘AZ

(7

AZ p/i

p/|‘

For A ;[ i then specialized to represent a wavelength distance 1, of the p light wave

measured at pomt aon the rotating body (i.e., A¥ = Ap/iu o/i where u /i is a unit vector in

p/i
the direction of the p wave at point a), [2] shows that (7) leads to



‘Axp/a‘ Aop, [l(i /ax(/lp/i up/i)]AQ AG
= =1+ :1+(Zi/a><!p/i)-__

(8)
(l(i/aX!p/i) A8 z1+(l(i/axgp/i) de

=1+ . .
Vi At pji Vi dt p/i

where 4, 0 is the p light wavelength that would be measured at point a in non-rotating inertial

space, Vi 1s the p wave velocity that would be measured at point & on the rotating body (i.e.,

=|Ax

Ap/i )» and the differential d has been substituted for the small but finite A

Vpri Atp/i = p/|‘

change.

Thus far, the derivations leading to (8) have been based on classical Euclidean vector
geometry. To continue the analysis for optical gyros, we now incorporate a basic precept of
Relativity theory: that the speed of light is the same constant when measured at any point in non-

rotating inertial space [3 Part 1 Chapter 11]. Hence, since dzp ;i 1s the differential distance

movement of p in non-rotating space at point i, and since dX,,; occurs over differential time

p/i
interval dtpyj , it follows that the speed of p over dtp/j will be the speed of light C, i.e.,
‘dxp/l‘ /dtp/i =C. But from (6), dl( de/I and therefore, p/|‘ /dtp/| =c. It follows

then, thath /i = ‘d X ‘ / dtp /i =C. Thus, relative to the rotating body, the magnitude of the p

p/i
wave velocity at point i will also be the speed of light c. This finding is the fundamental basis
for optical gyros being able to measure angular rotation relative to non-rotating inertial space.
For dtp/j redefined to be a specified differential time increment dt (relative to the rotating body),

the finding directly links i| to dt. Then, with Vp/j =C and dtp/j =dt, (8) gives the

d;_(p/
important result:
11 (l(i/axgp/i) dg

= 1+ .

)

To distinguish the opposite travel directions of the p and g waves, we designate U; as a
general wave path direction unit vector parallel to the p wave travel direction U ,; at pointi (i.e.,

). Thus, (9) becomes

p/i

Y _up/l



X /o X U
I _1 1+ (—I /a _|) %

(10)

A similar derivation applies for the g wave. Because the g wave is defined to travel oppositely

from the p wave along the same wave path, u aji="Yj where u j is the direction of the p wave

as it passes point j in the wave path. Then the q wave equivalent to (10) becomes

1_1 1_(1‘1/aXHJ) dé
Ag/ | /101' c dt

(1)

Finally, because the p and g waves in an optical gyro emanate from the same monochromatic
light source (the helium-neon plasma in a ring laser gyro or a super luminescent diode in a fiber
optic gyro — described subsequently), ,10p = ,101. = 10, Where A is the characteristic wavelength

of each monochromatic light beam under zero rotation rate. Then (10) and (11) become the final
forms
X /o X Us X: /o XU;
_l :i 1+—(_|/a _')_% _1 :L 1_—(_J/a _J)_% (12)
Apii Ao C dt Ag/j Ao C dt

Egs. (12) show that the wavelength of the p and q beams will differ at points i or j along their
respective wave paths in proportion to the angular rate of the gyro relative to non-rotating inertial
space d@/dt. The wavelength difference between the counter-rotating beams provides the

means for measuring angular rate.

Because both light beams in an optical gyro traverse the same wave-path (in opposite
directions), during each closed circuit (relative to the rotating gyro), the total distance L traveled
around the circuit will be the same for each beam. Thus, since the oppositely directed beams
travel at the same speed of light C through the same distance L, the transit time T around the
closed-circuit will be the same: T=L/c. (Note: The previously stated same distance premise
may not be obvious to some readers because, as is commonly known by optical gyro designers,
angular rate will cause the closed circuit distance traveled by the beams to differ, but relative to
non-rotating inertial space. However, if one can imagine a measuring tape graduated in both
directions being attached along the closed wave-path, it should be clear that the distance
measured along the tape will be the same for either measurement direction because for each, it is
the same physical tape being used for the measurement.)

In the absence of rotation, (12) shows that the wavelengths of both beams will be equal, and
upon completing a closed-circuit (each traveling the closed distance L over time interval T), the
number of waves filling the wave-path (i.e., the total cumulative phase in wavelengths from
entry to exit) will be the same. (Note: The total phase angle from peak-to-peak of a light wave
can be represented as one cycle or as 2 nw radians). Thus, without rotation, the cumulative phase
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between the beams at exit time T will be the same, and the phase difference will be zero. Under
rotation, however, (12) shows that the wavelength of the beam traveling with rotation will
become longer (and conversely for the beam traveling in the opposite direction), hence, the
cumulative phase over L will be less for the beam traveling with rotation. The result is that at T,
the phase difference between the beams will differ from what it was when the closed-path
journey began. The phase difference is proportional to the inertial angular rate around the gyro
input axis, and is optically measured at T to determine the gyro output. The means for
generating the output depends on whether the optical instrument is a fiber optic gyro or a ring
laser gyro.

Ring Laser Gyros

In a ring laser gyro (RLG), the closed wave-path is implemented using reflecting mirrors
(typically 3 or 4) that reflect monochromatic light around a closed optical cavity path [1], [2].
The concept is depicted in Fig. 1.
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Fig. 1 - Ring Laser Gyro Operating Elements

The monochromatic light in the Fig. 1 light beams is generated by the lasing action of a helium-
neon gas laser resident within the closed gyro cavity. As the beams complete each closed circuit
between the reflecting mirrors, they collide with the helium-neon lasing plasma, generating new
photons in phase and at the same wavelength as the returning photons. The added photons
replace those lost during the closed-circuit, creating two oppositely directed never-ending re-
circulating beam that begin at gyro turn-on. Consequently, as time increases, the effective beam
path length (the total closed-distance traveled by the leading wave since creation at turn-on)
becomes progressively longer, and a phase comparison between the oppositely directed beams
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thereby represents the total angular rotation (integrated angular rate) experienced since turn-on.
Suitable optics built into the RLG combine the counter-rotating beams onto a photo-detector to
generate a signal representing the sine of the integrated input angular rate. Each photo-diode
output wave thereby signifies rotation through a known angular rotation increment, the basic
form of the RLG output.

Fiber Optic Gyros

In a fiber optic gyro (FOG), the closed wave-path is implemented using optical fiber of total
length L wrapped in several concentric coils, with optical splicing technology used to close,
enter, and leave the fiber coil [2]. The concept is depicted in Fig. 2.

FIBER-OPTIC
COIL

LIGHT
SOURCE
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Monochromatic light within the FOG is generated external to the coil by a super-luminescent
diode, and gated through fiber splices into the coil where it splits into the oppositely directed
beams (the p and g branches). When the beams complete the closed-circuit around the coil at T,
they are gated out of the coil through fiber splices and combined on a photo-detector to measure
the angular rotation rate as represented by the sine of the resulting phase difference between the
beams. In common practice, the Fig. 2 configuration is augmented by feedback implemented
using electro-optic crystals inserted in the fiber circular beam path that change the index of
refraction of light passing through [2]. By regulating the refraction indices with electronic
feedback commands, the FOG can be operated near pickoff null, thereby eliminating pickoff
scale factor errors. Angular rates are then generated from the feedback control loops. Ref. [2]
describes the closed-loop FOG concept in detail.

FIBER-OPTIC
COUPLERS

Fig. 2 - Fiber Optic Gyro (FOG) Concept

MECHANICAL GYROS

Mechanical gyros implement Newton’s basic law of dynamic motion: An applied force to a
mass will accelerate the mass in proportion to the force. Original angular rotation sensors were
based on the dynamic properties of mechanical gyroscopic instruments, a spinning mass



generating reaction torque to applied inertial rotation. The term “gyro” (for “gyroscope”) was
used to describe these instruments, a term that has continued to describe forth-coming angular
rate sensors based on non-gyroscopic principles. A class of newer technology mechanical
angular rate sensors use MEMS (Micro-machined Electro-Mechanical Systems) technology to
measure mass reaction forces from vibrating masses generated within a single electronic semi-
conductor micro-chip. Each of these mechanical gyro types is described next, showing how they
both are based on the same fundamental Eq. (1) kinematic Coriolis principle for sensing angular
rotation relative to non-rotating inertial space.

MEMS Type Mechanical Gyros

For a common class of MEMS mechanical gyros, rotating coordinates are affixed to the gyro,
dy in (1) represents a differential angular rotation d@ of the gyro relative to non-rotating

inertial space (and the angular increment being sensed); & in (1) represents a distance vector

from linearly vibrating mass q to linearly vibrating mass p within the gyro, both micro-machined
into the MEMS silicon substrate, and d é , d= represent differential changes in §that would be

measured in non-rotating space (d é") and in the rotating gyro (d =) during the d ¥ rotation.

Angular rotation produces Coriolis acceleration changes withind&, d .= , which, through

Newton’s law of dynamic motion, generate reaction forces measured by p and g acceleration
sensors (accelerometers) micro-machined into the vibrating masses. Subtracting the p, g
accelerometer outputs eliminates their response to linear acceleration, providing an isolated
angular rotation induced measurement for output. The associated analytics follows.

Based on the previous discussion, the analytical equivalent of (1) for a MEMS gyro is given by
dgp/qzd;_(p/q+dg><l<p/q (13)

where d@ is the differential angular rotation of the gyro relative to non-rotating inertial space

(and the angular increment being sensed), X, 1s distance vector from point  to point p in the

p/q

MEMS substrate, each undergoing MEMS generated linear oscillatory motion, d Xp/g is the

vibration induced change in x,,, in non-rotating coordinates during the d@ rotation, andd ¥ b/g

q/

is the equivalent of d x ,, that would be measured in rotating gyro coordinates during the d@

p/q
rotation. For more specificity in the following development, (13) is rewritten as in (A-9):

I A B B B
dxq=Ch(dz5 q + dafxxE ) (14)
where the superscript denotes the projection of the associated vector on “inertial” (I) non-rotating
coordinates or “body” (B) rotating coordinates, d QF’B is the small angular rotation of the B frame

relative to the non-rotating | frame (1B subscript) as projected on B frame axes (superscript), and



C}B is the direction cosine matrix that transforms vectors from the B frame to the | frame.

Dividing (14) by the small time interval dt for the d QIBB rotation finds

B
B
dXWQ_C Zpq, 905 & (15)
dit Bl dt dt ~ ~P/d
or equivalently,
dx!
Xp/a_ 1 (yB B
at =Ch (Vg + @fsxxpiq) (16)

where \i% /q is the linear velocity of points p relative to point g in rotating B frame coordinates,

and QF’B is the angular velocity of the B frame relative to the non-rotating | frame.

Taking the time derivative of (16) using the previous\ig /q definition obtains

B
d\lp/q da)IB B

d2 d( :I
p/q B(\/B B B | = B B

(dt) dt

dc!
From [4, Eq. (3.3.2-6)],% = CEB(QIBBX) , for which (17) becomes

de
B =p/q

2,1
d-X
=p/q _ I | I I
ag +9 - 19
where aSF , élSF . are the non-gravitational specific force accelerations at points p and q (i.e., the

accelerations that would be measured by p and ( located accelerometers), and g Ip , g(lq are the

gravitational accelerations at these points. Accelerometers implement Newton’s first and second
laws of motion: 1) Every action is accompanied by an equal and opposite reaction, and 2) Applied
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force to a mass generates a mass acceleration proportional to the mass. For masses fixed to points
p and g, the reaction to the p, g motion on the p, g masses are forces proportional to the masses.

Accelerometers measure the generated p, q forces, hence, measure §ISF 0’ §ISF . in (19).

Substituting (19) in (18) while assuming that points p and ( are sufficiently close that
g' ~g' yields
g~ 2p Y

B
dop dv
bq) X Xp g+ 2 @fpxV B+ —P9 ] (20)

Lastly, multiplying (20) by the C{3 inverse obtains

B B
Qg:p_gg:q

dwB dv
_ B B B LB, (B B =p/q
—QlBX(wIBXXp/q)+ p” p/q+2a)|Bpr/q " (21)

Since all vectors in (21) are in B frame coordinates, a simplified form of (9) is

dv
~p/
=Q><(a)><xp/q) +2a)><V Vg % (22)

8, 8y Xp/q
in which all vectors are evaluated in a coordinate frame that rotates with the body and @ is the

body angular rate relative to non-rotating inertial space.

Eq. (22) represents a general form applicable to MEMS gyros having points p and
separated by distance vector Xp/q each driven into linear oscillation at V Vg relative velocity (p

relative to 0), ag 0 and QSFq are specific forces at points p and g measured by MEMS

accelerometers at these locations, and @ is the inertial angular rate to be measured. The MEMS

p, g accelerometers are configured to have parallel input axes perpendicular to Xp/q-

For a typical MEMS gyro configuration, points p and q (and their associated accelerometers)
are driven in opposite directions into linear oscillation along the Xp/q line, a line that is fixed

within the rotating gyro. We then define a set of mutually orthogonal unit vectors as

Up/q= Parallel to X0, 1. X/ = Xp/iqgUp/g Y piq=V pigUp/g

. (23)
Uainpt = Accelerometers Input Axis

Yoinpt =Yp/g* Yainpt = Gyro Input Axis

11



where U, is fixed within the rotating gyro in the direction of Xp/q» Xp/q is the magnitude of

p/q

Xp/a> Yopig is parallel to Xp/q> Vpig is the signed magnitude of \/ /q, and Ugpinpt is the gyro

input axis. With these definitions we now take the dot product of (22) with u,, npt O obtain
_ do
Yainpt - | 8¢ p_gs:q = Yainpt - [QX(QXl(p/q)} *Uainpt - Exl(p/q
dv
—P/q
+2 Yal npt * (QX! p/q) T Uq npt * dt

dw
— 2 <
= Xp/qYainpt - [Q(Q'Hp/q) ~Up/q@ }L XD/Q(Hp/qxgalnpt)' ot (24)

dv p/q

+2V D/Q<9p/qxgalnpt) @+ Uainpt - Yp/q at

dw
= Xp/q {(galnpt 'Q)(!p/q'@)"Lga)lnpt 'd_t_:|+2vp/q9a)lnpt ‘0

where @ is the magnitude of @. If the MEMS generated signed V /g velocity is a sine function

of time, the x/q value in (24) will be a small cosine oscillation (i.e., in quadrature withV p/q )

plus a constant. For u a ) sampled with a phase sensitive demodulator

alnpt'(gg:p_ SFq
. . dw o .
synchronized with V p/q, the ( Uainpt - Q) ( Up/q- Q) +Uginpt - d—? coefficient in (24) will be

eliminated and the demodulated output will be
Ual t-(@ —a ﬂ =2V p/g| Upinpt - @ (25)
{ alnp! Sp =SFq dermod ‘ IOQ‘ wlnpt - &

where ‘V P /q‘ is the unsigned magnitude of V. 0/q" The resulting MEMS gyro output will then be

Yolnpt - @= [Qalnpt : (QSF o s qﬂ terod / (2 ‘V P/Q‘) (26)

Fig. 3 depicts a MEMS gyro designed at the Charles Stark Draper Laboratory to implement
(26). A version of the unit is in production at Honeywell Minneapolis. The Fig. 3 configuration
is but one of several silicon MEMS devices developed for angular rate sensing. The same
fundamental principal of operation for each is represented by (21): Angular rate is sensed
through kinematic generated Coriolis acceleration producing a reaction force on driven vibrating
mass. The configurations differ in their physical structure and mechanism for creating the
vibration and for sensing the Coriolis reaction force.
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Fig. 3 — Representative MEMS Gyro Configuration

The Fig. 3 MEMS gyro configuration consists of a silicon structure mounted to a glass
substrate with deposited metallization for sensor interfacing. The silicon structure is micro-
machined to contain two masses suspended by a sequence of beams anchored to the substrate in
an arrangement characterized as a double ended tuning fork. By applying oscillatory voltages to
the outer motor drives, the two masses are electro-statically forced through a comb structure into

lateral in-plane velocity oscillations V. The comb structure provides added surface area to
magnify the electrostatic driving force.

Each motor drive control loop is a self-drive oscillator using proof mass position feedback to
sustain constant proof mass motion amplitude. The linear proof mass motion creates oscillating
in-plane linear momentum that rotates under applied input axis angular rate €2. Rotation of the
oscillating linear momentum vectors generates oscillating reaction forces (F and F7) through the
Coriolis effect (i.e., rotating a linear momentum vector requires applied force perpendicular to
the momentum and rotation rate vectors). The oscillating Coriolis reaction forces are equal but
opposite for each mass (because the linear momentum of each is opposite the other) which
produces out of plane differential oscillations of the masses with amplitude directly proportional
to applied angular rate and inversely proportional to the silicon suspension stiffness.

The out-of-plane oscillation is measured by capacitor plate pickoffs under each of the two
masses, generating an oscillatory electrical signal proportional to applied angular rate. The
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oscillatory angular rate signal is then demodulated for output using a reference voltage generated
in the motor drive control loop. For improved accuracy, electrostatic oscillatory closed-loop
control can be employed to maintain the masses at null, thereby reducing the effect of pickoff
scale factor and silicon structure stiffness uncertainty as error sources. The closed-loop control
voltage amplitude would then be used as the measured angular rate signal.

Momentum Wheel Type Mechanical Gyros

A classical momentum wheel gyro consists of a spinning rotor "wheel" contained within a
closed housing [1]. The housing is mounted within the gyro case using a suspension mechanism
that allows only known torques (differential equal magnitude forces operating at opposite ends of
a lever arm) to be applied to the housing, perpendicular to axes for which case angular rate is to

be measured. The governing equation for the gyro is (1) for which d/ represents an

infinitesimally small angular change in the housing angular orientation relative to non-rotating
inertial space, & represents the angular momentum of the housing including that of the enclosed

spinning rotor, d& represents, the change in angular momentum components during the d 4
rotation that would be measured in non-rotating inertial space, and d.Z represents the change in
angular momentum components during the dy rotation that would be measured in a coordinate

frame rotating with the rotor housing. For more specificity, the momentum wheel gyro
equivalent to (1) can be rewritten as in (A-9) of Appendix A:

I _ I B B B
dhhsng+rtr/a =Cp (dﬂhsng+rtr/a+ dQIBXﬂhsngHtr/a) (27)

where the superscripts represent the coordinate frame in which the vector components are being
measured, | for the inertially non-rotating frame, B for the frame that rotates with the gyro rotor

housing, the IB subscript denotes rotation of the B frame relative to the | frame, C I3 is the
direction cosine matrix that transforms vector projections from the B frame to the | frame, and
subscript hsng + rtr / adenotes the angular momentum of the gyro rotor housing (including the
rotor) around its center of mass point a. Dividing (27) by the time interval dt for the d QFB
rotation obtains the differential equation

I B
dhhsng+rtr/a _ dﬂhsngﬂtr/a
dt

| B B
dt =Cp +QIBXﬂhsng+rtr/a (28)

where QIBB is the angular rate of the rotor housing relative to non-rotating inertial space, i.e.,

o= dofg /dt.
I

dbhsng+rtr/a

Eq. (B-10) in Appendix B shows that in (28) equals the composite of k

external torques 7’ ||( applied to the rotor housing:
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dh!
—hsng+rtr ZTIL (29)
dt Kk

Appendix B, Eq. (B-2) shows that the rotor housing plus rotor angular momentum around its
center of mass (point a) is defined in | frame coordinates as

dr!
_ | i/
hhsng+rtr/a_ .[i [Li/a>< dlt a} pi dv (30)

where rlI /518 the distance from the housing+rotor center of mass point a to point i in the

housing+rotor, p; is the mass density at point i, and dv is a differential volume at point i. The

angular momentum vector in B frame coordinates ﬂrl?sng +rtr/a €quals b{\sng +rtr/a 10 (30)

transformed to the B frame:

dr I
| Ly
HhSﬂQHU/a cP hhsng+rtr/a CF’L {[i/a dl aJ pi v

=J; {CIBLiI/aCI?, C.B[d a‘l/ ""H pidv=[; {(Lﬁ’aX) C.B[dglt/ ""H pi dv

d I
Ref. [4, Eq. (3.4-6)] transformed to the B frame finds for the CF[%J term in (31):

(1)

dr dr B B
Cl[ dlt/aJ dlt/a+a)|BXrl/a (32)
Substituting (32) in (31) obtains
HE X dr'/a+ B xrB dv
—~hsng+rtr/a™ I —|/a dt DiBXLi/a || Pi
dLBa
_L [( li/a )wlerl/a} dV+J ( li/a ) m pi av (33)
B B dr|/a
=_{.[i [(Li/ax) (Li/a )}p dv} wIB+I| ( |/ax) at p; av
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For the i points located in the rigid housing (i.e., not in the rotor), r B s constant, hence, the

“i/a
second integral in (33) for these points is zero. For the remaining i points (i.e., those in the
rotor), identify them as j points so that (33) becomes

drB
ﬂf?sngﬂtr/a {L [( li/a )( |/ax)}p dV} wIB+.[ ( ?/aX)% Pj av  (34)

Define

B _.B , B
Lia=Torat L (35)

where [E’/ a 1s the distance vector from point a (the housing+rotor center of mass) to the rotor

center of mass at point b, and [Ijs/b is the distance vector from point b to point j in the rotor. For

a symmetrical rotor, the rotor center of mass location b will be fixed in the housing. Then [E’ /a

will be constant so that the integrand in the second (34) integral becomes

drB drB drB dr®B
B . \_—i/a B B ~j/b_ B ~j/b B Lijlb
(El/ax) p [(Lb/aﬂj/b)xJ G fbraX g tLiwx—g (9

Now identify another coordinate frame R that rotates with the spinning rotor. Recognizing
that r ?/b is constant in the R frame, the general Coriolis relationship [4, Eq. (3.4-6)] shows that

er/b BdLJR/b B_B _ B _B 17
G CR gt T2BRXLjb=@eRXI{)h (37)

where QER is the angular rate of the rotor fixed R frame relative to the rotating B frame.
Substituting (37) in (36) obtains

B _ B . B B B . B
(lj/ax) at —lb/ax(QBinj/b)+£j/b><(QBRX£j/b) (38)
_ B B B B
—(lb/ax)(QBRx)Lj/b—(Lj/bx)(lj/bX)QBR

With (38), the second integral term in (34) becomes
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Since point b was defined as the rotor center of mass, I j r Ij3/b Pj dv=0, and (39) simplifies to

J j (LJB/aX)

~i/a _ B B B
& |7 d"—‘[f i(rFX)(r5iox) o) dV}QBR (40)
Then with (40), (34) becomes

ﬂr?sngﬂtr/a: _Ui (Li?ax) (Lieax) Pi dv} QFB_U j(L?/bX)(LIjB/bX) Pij dV]QER (41)

Define

Jﬁsng+rtr/a =" ,[i (LiE/’aX) (LiE/’aX) PV I p=- J j (Lljg/bx) (Lljg/bx) pjav (42)

where ] Emg +rtr/a 18 the moment of inertia tensor of the housing+rotor assembly about its

center-of-mass point a as measured in B frame coordinates, and J rBtr b 1s the B frame measured

moment of inertia tensor of the rotor about its center-of-mass point b. With the (42) definitions,
(41) assumes the simpler form

B _ 1B B B B
ﬂhsng+rtr/a_Jhsng+rtr/anB+thr/bQBR (43)

For the derivative of (43) in (28), assume that the rotor speed QER is maintained constant by

dwt
the synchronous hysteresis spin-motor drive so that T:I—tBR =0. Additionally, assuming a

symmetrical rotor, J Esng +rtr/a and J ﬁr b will be constant, hence

B B
dﬂhsng+rtr/a B dog

dt =J hsng+rtr/a dt (44)

Lastly, substitute (43), (44), and (29) in (28), and transform to the B frame for the final result:
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B
B_ B.o(B B ). 1B dop . B, (B B
%Zk _QIBX(thr/bQBR)+‘]hsng+rtr/a dt +QIBX(Jhsng+rtr/aQIB) (45)

Eq. (45) is a general result applicable to several momentum wheel gyro configurations. As a
particular example of (45), the remainder of this section will describe the single-degree-of-
freedom (SDOF) floated rate-integrating gyro as described pictorially in Fig. 4.

PICKOFF ANGLE SPIN REFERENCE AXIS
PROPORTIONAL TO INTEGRAL (CASE FIXED) SPIN AXIS
OF INPUT AXIS RATE MINUS /
TORQUER BIAS RATE \ \; ROTOR (SPIN-MOTOR)
|

-~ TORQUE
— GENERATOR

INPUT AXIS
(CASE FIXED)

HERMETICALLY SEALED

—

OX—)I;:DSUT CYLINDRICAL ROTOR
ASSEMBLY (OR FLOAT)
PIVOT FOR JEWEL-RING VISCOUS FLUID FULLY SUPPORTS
OR MAGNETIC CENTERING CILINDRICAL ROTOR ASSEMBLY AT
OF ROTOR ASSEMBLY NEUTRAL BUOYANCY AND PROVIDES

DAMPING ABOUT OUTPUT AXIS
Fig. 4 — Single Degree of Freedom Inertial Rate Integrating Gyro

The SDOF gyro configuration depicted in Fig. 4 consists of a cylindrical hermetically sealed
momentum-wheel/spin-motor assembly (float) contained in a cylindrical hermetically sealed
case. The float is interfaced to the case by a precision suspension assembly that is laterally rigid
(normal to the cylinder case) but allows "frictionless" angular movement of the float relative to
the case about the cylinder axis. The cavity between the case and float is filled with a fluid that
serves the dual purpose of suspending the float at neutral buoyancy, and providing viscous
damping to resist relative float-case angular motion about the suspension axis (output axis).

A ball-bearing or gas-bearing synchronous-hysteresis spin-motor is utilized in the float to
maintain constant rotor spin-speed, hence constant float angular momentum. An electrical
pickoff assembly provides an electrical output signal from the gyro proportional to the angular
displacement of the float relative to the case. An electrical torque generator (typically a torquer
coil on the float and a permanent magnet on the case) provides the capability for applying known
torques to the float about the suspension axis proportional to an applied electrical input current.
Delicate flex leads are used to transmit electrical signals and power between the case and float.

Under applied angular rates about the input axis, the gyro float develops a precessional rate
about the output axis (rotation rate of the angle sensed by the pick-off). The pick-off angle rate
generates viscous torque on the float about the output axis (due to the damping fluid) which sums
with the electrically applied torque-generator torque to precess the float about the input axis at
the gyro input rate. The pick-off angle rate thereby becomes proportional to the difference
between the input rate and the torque generator precessional rate; hence, the pickoff angle
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becomes proportional to the integral of the difference between the input and torque-generator
rates (thus, the name rate-integrating gyro).

To operate the gyro in a gimbaled application, three gyros are mounted (with input axes
orthogonal to one-another) on a “platform” that is physically supported by gimbals which are
electro-mechanically controlled by “gimbal torque motors” positioned around the gimbal axes.
The drive signals to the gimbal torquers are designed to maintain the gyro pickoff angles at null.
Desired rotation rates of the platform (as specified by the inertial system computer) are used as
“gyro torque generator” inputs. By maintaining the gyro outputs at null (i.e., the integrated
difference between the computer command rates and actual platform rotation rates), the platform
rate is forced to balance the computer command rate (in the integral sense).

To operate the gyro in a strapdown mode, the pickoff angle is electrically servoed to null by
the gyro torque generator which is driven by the pickoff output signal. The time integral of the
difference between the input inertial angular rate and torque-generator rate is thereby maintained
at zero, and the integral of the torque-generator electrical current measures the integral of the
gyro input rate for the strapdown inertial system computer.

To analytically describe the SDOF floated rate integrating gyro, we apply (45) to Fig. 4,
identifying x as the “Input Axis”, y as the “Output Axis”, and z as the “Spin Reference Axis”.
Assuming no cross-products of inertia for the float assembly and rotor, these definitions find

J XFloat 0 0 JCrthr 0 0
Jrl?sr]g+rtr/a5 0 Jy;:|oat JEr/bE 0 JCrthr
0 O Jzpia 0 0 J gy 46)
@\Bnput 0
0B=|o Boutput wgr=| O
1B g @BRgpn

where J CrsRir is the rotor moment of inertia around any axis perpendicular to the spin axis,

J gy, 18 the rotor moment of inertia around the spin axis, and WBRgpn 15 the rotor spin rate

relative to the float assembly. Substituting (46) into (45) obtains for the components along the

output (y) axis:

T Net = ~J sping,, @®BRgon @IBinput

+ dao, Boutput
YFloat dt

(47)

( XFloat ~ I ZFIoat)a)|BInput @1Bgpn
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where T ngt 1S the net torque . ZE component in (45) around the Fig. 4 gyro output axis. The
k

net torque is composed of three terms, viscous floatation fluid torque proportional to the rate of
change of the angle ¢ between the float and case, specified command torque Ty electrically

input through the gyro torque generator, and extraneous error torques T gy :

d
TNet=—Cd—f—Tij—TErr (48)

Substituting (48) in (47) yields after rearrangement

dg
CE = J Jing, ®BRgon P1Binput ~ 1 Cmd ~ T Err
(49)
doigoy
put
—J YFloat dt _( XFloat ~ 9 ZFIoat)a)lBlnput @1Bgpn

Further clarifying, define
Jng, @BRgn = HBRRy  TCmd = H pRgy @Cmd TEr =Hprgy @Err  (50)
with which the integral of (49) becomes for the gyro pickoff angle output:

@1Bppyt ~ ¥Cmd

dt (51)

”BR
Rtr
¢= I—
C
O1Bnput P1Bgpn

B B J YFloat dw|BOutput _ (‘J XFloat J ZFIoat)
WErr

Hergy O H BReyr

Due to the large value of H BRRr (from the high gyro rotor spin rate) and the relative
smallness of @g,r (compared with D1Bnput ), the @ Binput ~ €Cmd term dominates the bracketed

terms in (51). Thus, for a gimbaled system, maintaining the gyro readout angle ¢ near zero (by

mechanical gimbal torque command feedback), the platform integrated inertial angular rate
DBt will equal the integrated gyro torque generator command rate gcpg - For a strapdown

system, maintaining the gyro readout angle ¢ near zero (by electrical feedback from the gyro
pickoff through the gyro torque generator), the integrated @cmg torque generator input will
equal the true angular rate input D1Bnput to the gyro, hence, serve as the gyro output measure of

measure inertial angular rate.

CONCLUSIONS

Both optical and mechanical angular rate sensors are based on the same kinematic principle:
The components of a vector measured in an inertially non-rotating coordinate frame equal its
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component measurements in a rotating frame plus a Coriolis correction proportional to the
angular rate relative to non-rotating inertial space. Optical and mechanical gyros are based on
different fundamental laws of physics, each law being valid in inertially non-rotating
coordinates; optical gyros are based on the Einstein’s constant-speed-of-light Relativity
principle; mechanical gyros are based on the Newtonian dynamic mass response to applied force
principle. Having these fundamental laws valid in non-rotating coordinates provides the means
for translating their effect into rotating coordinates through the same common Coriolis kinematic
equation. The result is that both optical and mechanical gyros measure the same angular rate
relative to inertially non-rotating coordinates.

APPENDIX A
FUNDAMENTAL INERTIAL ANGULAR MEASUREMENT EQUATION

Consider an inertially non-rotating coordinate reference frame |. Further, consider two other
inertially non-rotating coordinate frames By and B, defined as parallel to the instantaneous
orientation of rotating coordinate frame B at successive time instants t] and t;. Because B and

B, are non-rotating relative to a common non-rotating space, the angular orientation of By

relative to By, and Bj relative to | will be constant. Now, define an arbitrary vector § , and g 1' ,
él , gFl , ;Bl , §F2 , §282 , the projections of é on the I, By, and By coordinate axes
(superscripts) at time instants t] and ty (subscripts 1 and 2). Considering ng as a direction
cosine matrix transforms vectors from frame B, to By, and C:Bl as a direction cosine matrix that

transforms vectors from frame By to |, we can write

& =ch P &h=chchléP (A-D)
Also define the difference between the é‘ values at t] and tp as

Afl=gy-g) AZB=L g (A2)

where A é "is the change in & that would be measured in non-rotating frame | and A5 B! is the

change in § that would be measured in the rotating B frame over time instants t; and tp. Then,
based on (A-1) and (A-2):

I _ el | _ 1 ~Bj £B | £B
Ag =¢,-¢,=Cg Cghé, —Cpg ¢y

(A-3)
N B [ B2 | £B2 | £B1_ Al B B2 =B
_(c:Bchlz—cBl)ﬁ2 +ch 82-cp ¢! —CBI[(CBIZ—I)Q_ FAZ 1]
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For Cgl2 representing a small angular rotation AZIBB over time interval ty to tp, [4, Egs. (3.5.2-10
& (3.5.2-17)] shows that

B _ B
Cg, ! '“(A%BX) (A-4)

where the IB subscript indicates the angular rotation of frame B from its orientation parallel to

non-rotating inertial frame Bj to its orientation parallel to non-rotating inertial frame By.
Substituting (A-4) in (A-3) obtains

A§| :C|BI|:A::BI+(AZIBBX) ész:l :CIBI(A::BI+AZ|BBX§282) (A—S)

We then let the A changes become very small so that during the t; to t, time interval, Eq.
(A-5) vector projections on the By and B, frames can be approximated by their projections on

the B frame in general, and § 282 can be approximated by its value in general: g 282 — g B,

AEBIALR AZBI A EB, Cg, — Cg- Thus, (A-5) becomes
AE! :CE(A§B+AZFBX§B) (A-6)

Multiplying by CF (the direction cosine matrix that transforms vectors from the | to the B

frame) transforms (A-6) to the B frame:
—AZB+ AYD x &P (A-7)

Finally, since all vectors in (A-7) are now defined in B frame coordinates, we can dispense with
the superscript notation to obtain the simplified form

AE=AZ +AyxE (A-8)

where Ay is the angular rotation of the body relative to non-rotating coordinates, and during the
Ay rotation, AZ is the change in & observed in rotating coordinates, and A¢ is the change in

& observed in a non-rotating coordinate frame that is instantaneously aligned with the rotating

frame.

For infinitesimally small A increments (d), finite rotation Eq. (A-6) reduces to the
differential form
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dé' =c{3(d§B+dngx§B) (A-9)

Similarly, for infinitesimally small A increments, (A-8) reduces to its simplified differential
equivalent:

dé=d= +dyx& (A-10)

where it is understood that all vectors in (A-10) are projections on the B (or another common)
coordinate frame:

APPENDIX B
ROTATIONAL DYNAMICS OF MASS GROUPS

The angular momentum bil o of amass my at point i relative to an arbitrary point 0 is

traditionally defined in non-rotating inertial | frame coordinates [6, pp. 132] as

drig
dt

I I
N0 = mi Lo (B-1)
where r il J0 1s the distance vector from point O to point i in | frame coordinates (superscript), and
dr il /o 18 the infinitesimal change in 1 iI so during the infinitesimal time interval dt. The

summation of (B-1) over a group of mass points yields the | frame angular momentum hé of the

group relative to point O:

dr!
ho = iZbil/o = iz(mi rijoX (let/ Oj (B-2)

The rate of change of bé is the derivative with time of (B-2):

dhg drl,q dr q2r! . d2r!
— = : ~i/0 =i/0, I Lijo|= o ~i/0 B-3
dt iZm.[ a - at b0 T iZmu Lio* 4 (B-3)
Ref. [5, Egs. (3) & (6)] shows that
d’rlo | I
d i gt 9 9 (B-4)

23



where aISF' , aISFo are the specific force accelerations at points O and i, and gi' , gé) are the
Ag,- 4 i, 9

gravitational accelerations at these points. Because points i and O are sufficiently close, gil = g(I)
Then with (B-4), (B-3) becomes

dhy _ ! | |
& Tmox(a mas) ®-)

Applying Newton’s second law of motion to (B-5) equates my QESF' to the force F; at point i that
I
produced it, hence:
dhf

& - ZLioxEi - [iz m ii'/ojxé"spo (B-6)

The center of mass cm of the mass group is analytically defined to be at distance vector L(I:m/O

from point O such that it’s product with the total group mass M equals > mj r il 0
[

M=Ym Mrgyo=2mLo (B-7)
| |

With (B-7), (B-6) becomes

dh}
;O:Zr-' xEl-Mr! xal (B-8)
dt i =i/07 i —em/0” Egr

By selecting arbitrary point O as the center-of-mass (point cm) for the group, Elzm/O is zero, and
(B-8) reduces to

dh’
a;:m = izlil/cmeiI (B-9)

where ng is the angular momentum of the mass group around the group center of mass. By

Newton's third law, the interactive forces between adjacent mass points at any point i are equal
and opposite. Hence, the internal/interactive moment/force terms cancel at each i point and (B-9)
further simplifies to the more familiar form [6, pp. 132]:

dhgm_ | I:I _ TI
dt _Zili/cmX_Extemai_%_i/cm

(B-10)
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i/em is the associated

I . . .
where EExtern al; 1S the external force applied to the group at point I, and 7°

torque around the center of mass, i.e., Zil/cm = LiI/CmXE:External' .
|
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